13,791 research outputs found

    An Efficient Framework For Fast Computer Aided Design of Microwave Circuits Based on the Higher-Order 3D Finite-Element Method

    Get PDF
    In this paper, an efficient computational framework for the full-wave design by optimization of complex microwave passive devices, such as antennas, filters, and multiplexers, is described. The framework consists of a computational engine, a 3D object modeler, and a graphical user interface. The computational engine, which is based on a finite element method with curvilinear higher-order tetrahedral elements, is coupled with built-in or external gradient-based optimization procedures. For speed, a model order reduction technique is used and the gradient computation is achieved by perturbation with geometry deformation, processed on the level of the individual mesh nodes. To maximize performance, the framework is targeted to multicore CPU architectures and its extended version can also use multiple GPUs. To illustrate the accuracy and high efficiency of the framework, we provide examples of simulations of a dielectric resonator antenna and full-wave design by optimization of two diplexers involving tens of unknowns, and show that the design can be completed within the duration of a few simulations using industry-standard FEM solvers. The accuracy of the design is confirmed by measurements

    Numerical simulation of the tip vortex off a low-aspect-ratio wing at transonic speed

    Get PDF
    The viscous transonic flow around a low aspect ratio wing was computed by an implicit, three dimensional, thin-layer Navier-Stokes solver. The grid around the geometry of interest is obtained numerically as a solution to a Dirichlet problem for the cube. A low aspect ratio wing with large sweep, twist, taper, and camber is the chosen geometry. The topology chosen to wrap the mesh around the wing with good tip resolution is a C-O type mesh. The flow around the wing was computed for a free stream Mach number of 0.82 at an angle of attack of 5 deg. At this Mach number, an oblique shock forms on the upper surface of the wing, and a tip vortex and three dimensional flow separation off the wind surface are observed. Particle path lines indicate that the three dimensional flow separation on the wing surface is part of the roots of the tip vortex formation. The lifting of the tip vortex before the wing trailing edge is observed by following the trajectory of particles release around the wing tip

    On k-Convex Polygons

    Get PDF
    We introduce a notion of kk-convexity and explore polygons in the plane that have this property. Polygons which are \mbox{kk-convex} can be triangulated with fast yet simple algorithms. However, recognizing them in general is a 3SUM-hard problem. We give a characterization of \mbox{22-convex} polygons, a particularly interesting class, and show how to recognize them in \mbox{O(nlogn)O(n \log n)} time. A description of their shape is given as well, which leads to Erd\H{o}s-Szekeres type results regarding subconfigurations of their vertex sets. Finally, we introduce the concept of generalized geometric permutations, and show that their number can be exponential in the number of \mbox{22-convex} objects considered.Comment: 23 pages, 19 figure

    Optimal randomized incremental construction for guaranteed logarithmic planar point location

    Full text link
    Given a planar map of nn segments in which we wish to efficiently locate points, we present the first randomized incremental construction of the well-known trapezoidal-map search-structure that only requires expected O(nlogn)O(n \log n) preprocessing time while deterministically guaranteeing worst-case linear storage space and worst-case logarithmic query time. This settles a long standing open problem; the best previously known construction time of such a structure, which is based on a directed acyclic graph, so-called the history DAG, and with the above worst-case space and query-time guarantees, was expected O(nlog2n)O(n \log^2 n). The result is based on a deeper understanding of the structure of the history DAG, its depth in relation to the length of its longest search path, as well as its correspondence to the trapezoidal search tree. Our results immediately extend to planar maps induced by finite collections of pairwise interior disjoint well-behaved curves.Comment: The article significantly extends the theoretical aspects of the work presented in http://arxiv.org/abs/1205.543

    Improved Implementation of Point Location in General Two-Dimensional Subdivisions

    Full text link
    We present a major revamp of the point-location data structure for general two-dimensional subdivisions via randomized incremental construction, implemented in CGAL, the Computational Geometry Algorithms Library. We can now guarantee that the constructed directed acyclic graph G is of linear size and provides logarithmic query time. Via the construction of the Voronoi diagram for a given point set S of size n, this also enables nearest-neighbor queries in guaranteed O(log n) time. Another major innovation is the support of general unbounded subdivisions as well as subdivisions of two-dimensional parametric surfaces such as spheres, tori, cylinders. The implementation is exact, complete, and general, i.e., it can also handle non-linear subdivisions. Like the previous version, the data structure supports modifications of the subdivision, such as insertions and deletions of edges, after the initial preprocessing. A major challenge is to retain the expected O(n log n) preprocessing time while providing the above (deterministic) space and query-time guarantees. We describe an efficient preprocessing algorithm, which explicitly verifies the length L of the longest query path in O(n log n) time. However, instead of using L, our implementation is based on the depth D of G. Although we prove that the worst case ratio of D and L is Theta(n/log n), we conjecture, based on our experimental results, that this solution achieves expected O(n log n) preprocessing time.Comment: 21 page

    The contact dynamics method for granular media

    Full text link
    In this paper we review the simulation method of the non-smooth contact dynamics. This technique was designed to solve the unilateral and frictional contact problem for a large number of rigid bodies and has proved to be especially valuable in research of dense granular materials during the last decade. We present here the basic principles compared to other methods and the detailed description of a 3D algorithm. We point out an artifact manifesting itself in spurious sound waves and discuss the applicability of the method.Comment: for the proceedings of the 7th Granada Seminar, 23 pages, 8 figure
    corecore