3,534 research outputs found

    Team Semantics and Recursive Enumerability

    Full text link
    It is well known that dependence logic captures the complexity class NP, and it has recently been shown that inclusion logic captures P on ordered models. These results demonstrate that team semantics offers interesting new possibilities for descriptive complexity theory. In order to properly understand the connection between team semantics and descriptive complexity, we introduce an extension D* of dependence logic that can define exactly all recursively enumerable classes of finite models. Thus D* provides an approach to computation alternative to Turing machines. The essential novel feature in D* is an operator that can extend the domain of the considered model by a finite number of fresh elements. Due to the close relationship between generalized quantifiers and oracles, we also investigate generalized quantifiers in team semantics. We show that monotone quantifiers of type (1) can be canonically eliminated from quantifier extensions of first-order logic by introducing corresponding generalized dependence atoms

    Characterizing Quantifier Extensions of Dependence Logic

    Full text link
    We characterize the expressive power of extensions of Dependence Logic and Independence Logic by monotone generalized quantifiers in terms of quantifier extensions of existential second-order logic.Comment: 9 page

    A Simple Logic of Functional Dependence

    Get PDF
    This paper presents a simple decidable logic of functional dependence LFD, based on an extension of classical propositional logic with dependence atoms plus dependence quantifiers treated as modalities, within the setting of generalized assignment semantics for first order logic. The expressive strength, complete proof calculus and meta-properties of LFD are explored. Various language extensions are presented as well, up to undecidable modal-style logics for independence and dynamic logics of changing dependence models. Finally, more concrete settings for dependence are discussed: continuous dependence in topological models, linear dependence in vector spaces, and temporal dependence in dynamical systems and games.Comment: 56 pages. Journal of Philosophical Logic (2021

    Dependence Logic with Generalized Quantifiers: Axiomatizations

    Full text link
    We prove two completeness results, one for the extension of dependence logic by a monotone generalized quantifier Q with weak interpretation, weak in the meaning that the interpretation of Q varies with the structures. The second result considers the extension of dependence logic where Q is interpreted as "there exists uncountable many." Both of the axiomatizations are shown to be sound and complete for FO(Q) consequences.Comment: 17 page

    Some Turing-Complete Extensions of First-Order Logic

    Full text link
    We introduce a natural Turing-complete extension of first-order logic FO. The extension adds two novel features to FO. The first one of these is the capacity to add new points to models and new tuples to relations. The second one is the possibility of recursive looping when a formula is evaluated using a semantic game. We first define a game-theoretic semantics for the logic and then prove that the expressive power of the logic corresponds in a canonical way to the recognition capacity of Turing machines. Finally, we show how to incorporate generalized quantifiers into the logic and argue for a highly natural connection between oracles and generalized quantifiers.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201

    Decidability of predicate logics with team semantics

    Get PDF
    We study the complexity of predicate logics based on team semantics. We show that the satisfiability problems of two-variable independence logic and inclusion logic are both NEXPTIME-complete. Furthermore, we show that the validity problem of two-variable dependence logic is undecidable, thereby solving an open problem from the team semantics literature. We also briefly analyse the complexity of the Bernays-Sch\"onfinkel-Ramsey prefix classes of dependence logic.Comment: Extended version of a MFCS 2016 article. Changes on the earlier arXiv version: title changed, added the result on validity of two-variable dependence logic, restructurin

    A Fragment of Dependence Logic Capturing Polynomial Time

    Get PDF
    In this paper we study the expressive power of Horn-formulae in dependence logic and show that they can express NP-complete problems. Therefore we define an even smaller fragment D-Horn* and show that over finite successor structures it captures the complexity class P of all sets decidable in polynomial time. Furthermore we study the question which of our results can ge generalized to the case of open formulae of D-Horn* and so-called downwards monotone polynomial time properties of teams
    • …
    corecore