
Decidability of Predicate Logics with Team
Semantics
Juha Kontinen1, Antti Kuusisto2, and Jonni Virtema3

1 University of Helsinki, Helsinki, Finland
juha.kontinen@helsinki.fi

2 University of Bremen, Bremen, Germany
kuusisto@uni-bremen.de

3 University of Helsinki, Helsinki, Finland, and
Leibniz Universität Hannover, Hannover, Germany
jonni.virtema@gmail.com

Abstract
We study the complexity of predicate logics based on team semantics. We show that the satis-
fiability problems of two-variable independence logic and inclusion logic are both NEXPTIME-
complete. Furthermore, we show that the validity problem of two-variable dependence logic is
undecidable, thereby solving an open problem from the team semantics literature. We also briefly
analyse the complexity of the Bernays-Schönfinkel-Ramsey prefix classes of dependence logic.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Team semantics, dependence logic, complexity, two-variable logic

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.60

1 Introduction

The satisfiability problem of two-variable logic FO2 was shown to be NEXPTIME-complete
in [9]. The extension of two-variable logic with counting quantifiers, FOC2, was proved
decidable in [10, 22], and it was subsequently shown to be NEXPTIME-complete in [23].
Research on extensions and variants of two-variable logic is currently very active. Recent
research efforts have mainly concerned decidability and complexity issues in restriction to
particular classes of structures and also questions related to different built-in features and
operators that increase the expressivity of the base language. Recent articles in the field
include for example [1], [4], [13], [16], [24], and several others.

In this article we study two-variable fragments of logics based on team semantics. Team
semantics was originally conceived in [15] in the context of independence friendly (IF) logic
[14]. In [25], Väänänen introduced dependence logic, which is a novel approach to IF logic
based on new atomic formulas =(x1, ...xk, y) stating that the interpretation of the variable y
is functionally determined by the interpretations of the variables x1, ..., xk.

After the introduction of dependence logic, research on logics based on team semantics
has been active. Several different logics with different applications have been suggested. In
particular, team semantics has proved to be a powerful framework for studying different kinds
of dependency notions. Independence logic [11] is a variant of dependence logic that extends
first-order logic by new atomic formulas x1, ..., xk ⊥ y1, ..., yl with the intuitive meaning
that the interpretations of the variables x1, ..., xk are informationally independent of the
interpretations of the variables y1, ..., yl. Inclusion logic [6] extends first-order logic by atomic
formulas x1, ..., xk ⊆ y1, ..., yk, whose intuitive meaning is that tuples interpreting the

© Juha Kontinen, Antti Kuusisto, and Jonni Virtema;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 60; pp. 60:1–60:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922450?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.60
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

60:2 Decidability of Predicate Logics with Team Semantics

variables x1, ..., xk are also tuples interpreting y1, ..., yk. Currently dependence, independence
and inclusion logics are the three most important and most widely studied systems based on
team semantics.

Both dependence logic and independence logic are equiexpressive with existential second-
order logic (see [25], [11]), and thereby capture NP. Curiously, inclusion logic is equiexpressive
with greatest fixed point logic (see [7]), and thereby characterizes P on finite ordered models.
While the descriptive complexity of most known logics based on team semantics is understood
reasonably well, the complexity of related satisfiability problems has received somewhat
less attention. The satisfiability problem of the two-variable fragment of dependence logic
and IF-logic have been studied in [18]. It is shown that while the two-variable IF-logic is
undecidable, the corresponding fragment of dependence logic is NEXPTIME-complete.

In this article we establish that the satisfiablity problems of the two-variable fragments
of independence and inclusion logics are likewise NEXPTIME-complete. This result is es-
tablished via proving a more general theorem that implies also a range of other decidability
results for a variety of team-semantics-based logics with generalized dependency notions.
Furthermore, we prove that the validity problem of two-variable dependence logic is unde-
cidable; this result is the main result of the paper. The problem has been open for some
time in the team semantics literature and has been explicitly posed in, e.g., [5], [18], [26],
and elsewhere.

In addition to studying two-variable logics, we study the Bernays-Schönfinkel-Ramsey
prefix class, i.e., sentences with the quantifier prefix ∃∗∀∗. We show that—as in the case
of ordinary first-order logic—the prefix class ∃∗∀∗ of FO(A) is decidable for any uniformly
polynomial time computable class A of generalized dependencies closed under substructures.
We prove inclusion in 2NEXPTIME, and furthermore, for vocabularies of fixed arity, we
show NEXPTIME-completeness. We also prove a partial converse of the result concerning
logics FO(A) with a decidable prefix class ∃∗∀∗, see Theorem 22.

2 Preliminaries

The domain of a structure A is denoted by A. We assume that the reader is familiar with
first-order logic FO. The extension of FO with counting quantifiers ∃≥i is denoted by FOC.
The two-variable fragments FO2 and FOC2 are the fragments of FO and FOC with formulas
in which only the variables x and y appear. We let Σ1

1 denote the fragment of formulas of
second-order logic of the form ∃X1...∃Xk ϕ, where X1, ..., Xk are relation symbols and ϕ a
first-order formula. Σ1

1(FOC2) is the extension of FOC2 consisting of formulas of the form
∃X1...∃Xk χ, where X1, ..., Xk are relation symbols and χ a formula of FOC2.

2.1 Logics based on team semantics

Let Z+ denote the set of positive integers, and let VAR = { vi | i ∈ Z+ } be the set of exactly
all first-order variable symbols. We mainly use metavariables x, y, z, x1, x2, etc., in order to
refer to variable symbols in VAR. We let x, y, z, x1, x2, etc., denote finite nonempty tuples of
variable symbols, i.e., tuples in VARn for some n ∈ Z+. When we study two-variable logics,
we use the metavariables x and y, and assume they denote distinct variables in VAR.

Let D ⊆ VAR be a finite, possibly empty set. Let A be a model. We do not allow for
models to have an empty domain, so A 6= ∅. A function s : D → A is called an assignment
with codomain A. If x = (x1, . . . , xn), we denote (s(x1), . . . , s(xn)) by s(x). We let s[a/x]
denote the variable assignment with the domain D ∪ { x } and codomain A defined such

J. Kontinen, A. Kuusisto, and J. Virtema 60:3

that s[a/x](y) = a if y = x, and s[a/x](y) = s(y) if y 6= x. Let T ∈ P(A), where P denotes
the power set operator. We define s[T/x] = { s[a/x] | a ∈ T }.

Let D ⊆ VAR be a finite, possibly empty set of first-order variable symbols. Let X be a
set of assignments s : D → A. Such a set X is a team with the domain D and codomain A.
Note that the empty set is a team, as is the set {∅} containing only the empty assignment.
The team ∅ does not have a unique domain; any finite subset of VAR is a domain of ∅. The
domain of the team {∅} is ∅.

Let X be a team with the domain D and codomain A. Let T ⊆ A. We define X[T/x] =
{ s[a/x] | a ∈ T, s ∈ X }. Let F : X → P(A) be a function. We define X[F/x] =⋃
s∈X

s[F (s)/x]. Let C ⊆ A. We define X � C = { s ∈ X | s(x) ∈ C for all x ∈ D }.

Let X be a team with domain D. Let k ∈ Z+, and let y1, ..., yk be variable symbols.
Assume that {y1, ..., yk} ⊆ D. We define rel

(
X, (y1, ..., yk)

)
= {

(
s(y1), ..., s(yk)

)
| s ∈ X }.

Let τ be a relational vocabulary, i.e., a vocabulary containing relation symbols only. (In
this article we consider only relational vocabularies.) The syntax of a logic based on team
semantics is usually given in negation normal form. We shall also follow this convention in
the current article. For this reason, we define the syntax of first-order logic as follows.

ϕ ::= R(x) | ¬R(x) | x1 = x2 | ¬x1 = x2 | (ϕ1 ∨ ϕ2) | (ϕ1 ∧ ϕ2) | ∃xϕ | ∀xϕ ,

where R ∈ τ . The first four formula formation rules above introduce first-order literals to
the language. Below we shall consider logics FO(A), where the above syntax is extended
by clauses of the type AQ (y1, ..., yk). Here AQ is (a symbol corresponding to) a generalized
atom in A and each yi is a tuple of variables. Before considering such novel atoms, let us
define lax team semantics for first-order logic.

I Definition 1 ([15, 25]). Let A be a model and X a team with codomain A. The satisfaction
relation A |=X ϕ is defined as follows.
1. If ϕ is a first-order literal, then A |=X ϕ iff for all s ∈ X: A, s |=FO ϕ. Here |=FO refers to

the ordinary Tarskian satisfaction relation of first-order logic.
2. A |=X ψ ∧ ϕ iff A |=X ψ and A |=X ϕ.
3. A |=X ψ ∨ ϕ iff there exist teams Y and Z such that X = Y ∪ Z, A |=Y ψ, and A |=Z ϕ.
4. A |=X ∃xψ iff A |=X[F/x] ψ for some F : X → (P(A) \ {∅}).
5. A |=X ∀xψ iff A |=X[A/x] ψ.
Finally, a sentence ϕ is true in a model A (A |= ϕ) if A |={∅} ϕ.

I Proposition 2 ([15, 25]). Let ψ be a formula of first-order logic. We have A |=X ψ iff
A, s |=FO ψ for all s ∈ X.

In this paper we consider first-order logic extended with generalized dependency atoms.
Before formally introducing the notion of a generalized dependency atom, we recall some
particular atoms familiar from the literature related to team semantics.

Dependence atoms =(x, y), inspired by the slashed quantifiers of Hintikka and Sandu
[14], were introduced by Väänänen [25]. The intuitive meaning of the atom =(x, y) is
that the value of the variable y depends solely on the values of the variables in x. The
semantics for dependence atoms is defined as follows: A |=X =(x, y) iff ∀s, s′ ∈ X : if s(x) =
s′(x) then s(y) = s′(y). Dependence logic (D) is the extension of first-order logic with
dependence atoms.

While dependence atoms of dependence logic declare dependences between variables,
independence atoms, introduced by Grädel and Väänänen [11], do just the opposite; inde-
pendence atoms are used to declare independencies between variables. Independence atom

MFCS 2016

60:4 Decidability of Predicate Logics with Team Semantics

is an atomic formula of the form (x1, ..., xk)⊥(z1,...,zt) (y1, ..., yl) with the intuitive meaning
that for any fixed interpretation of the variables z1, . . . , zt, the interpretations of the variables
x1, ..., xk are independent of the interpretations of the variables y1, ..., yl. The semantics for
independence atoms is defined as follows:

A |=X (x1, ..., xk)⊥(z1,...,zt) (y1, ..., yl) iff ∀s, s′ ∈ X ∃s′′ ∈ X :
∧
i≤t

s(zi) = s′(zi)

implies that
∧
i≤k

s′′(xi) = s(xi) ∧
∧
i≤t

s′′(zi) = s(zi) ∧
∧
i≤l

s′′(yi) = s′(yi).

Independence logic (Ind) is the extension of first-order logic with independence atoms.
Galliani [6] introduced inclusion and exclusion atoms. The intuitive meaning of the inclu-

sion atom (x1, . . . , xn) ⊆ (y1, . . . , yn) is that tuples interpreting the variables x1 . . . , xn are
also tuples interpreting y1, . . . , yn. The intuitive meaning of the exclusion atom (x1, . . . , xn) |
(y1, . . . , yn) on the other hand is that tuples interpreting the variables x1 . . . , xn and the
tuples interpreting y1, . . . , yn are distinct. The semantics for inclusion atoms and exclusion
atoms is defined as follows:

A |=X x ⊆ y iff ∀s ∈ X ∃s′ ∈ X : s(x) = s′(y), A |=X x | y iff ∀s, s′ ∈ X : s(x) 6= s′(y).

The extension of first-order logic with inclusion atoms (exclusion atoms) is called inclusion
logic (exclusion logic) and denoted by Inc (Exc). The extension of first-order logic with
both inclusion atoms and exclusion atoms is called inclusion/exclusion logic and denoted by
Inc/Exc.

2.2 Generalized atoms
In this section we first give the well known definition of generalized quantifiers (Lindström
quantifiers [21]). We then show how each generalized quantifier naturally gives rise to a
generalized atom. Finally, we discuss on some fundamental properties of first-order logic
extended with generalized atoms. Generalized atoms were first defined in [20].

Let (i1, ..., in) be a nonempty sequence of positive integers. A generalized quantifier of
the type (i1, ..., in) is a class C of structures (A,B1, ..., Bn) such that the following conditions
hold.
1. A 6= ∅, and for each j ∈ {1, ..., n}, we have Bj ⊆ Aij .
2. If (A′, B′1, ..., B′n) ∈ C and if there is an isomorphism f : A′ → A′′ from (A′, B′1, ..., B′n)

to another structure (A′′, B′′1 , ..., B′′n), then (A′′, B′′1 , ..., B′′n) ∈ C.

Let Q be a generalized quantifier of the type (i1, ..., in). Let A be a model with the
domain A. We define QA to be the set { (B1, ..., Bn) | (A,B1, ..., Bn) ∈ Q }.

Let n be a positive integer. Let Q be a generalized quantifier of the type (i1, ..., in). Extend
the syntax of first-order logic with atomic expressions of the type AQ(y1, ..., yn), where each
yj is a tuple of variables of length ij . Let X be a team whose domain contains all variables
occurring in the tuples y1, ..., yn. Extend team semantics such that A |=X AQ(y1, ..., yn) if
and only if

(
rel(X, y1), ..., rel(X, yn)

)
∈ QA. The generalized quantifier Q defines a generalized

atom AQ of the type (i1, ..., in).
A generalized atom AQ is downwards closed if for all A, X and y1, ..., yk, it holds that if

A |=X AQ(y1, ..., yk) and Y ⊆ X, then A |=Y AQ(y1, ..., yk). Similarly, a generalized atom AQ
is closed under substructures if for all A, X and y1, ..., yk, it holds that if A |=X AQ(y1, ..., yk),
A′ := A � B and X ′ := X � B for some B ⊆ A, then we have A′ |=X′ AQ(y1, ..., yk). Finally,
a generalized atom AQ is universe independent if for all A, B, X and y1, ..., yk, where

J. Kontinen, A. Kuusisto, and J. Virtema 60:5

both A and B are codomains for X, it holds that A |=X AQ(y1, ..., yk) if and only if
B |=X AQ(y1, ..., yk).

Let ϕ be a formula of first-order logic, possibly extended with generalized atoms. The
set Fr(ϕ) of free variables of ϕ is defined in the same way as in first-order logic. The set
Fr(AQ(y1, ..., yk)) of course contains exactly all variable that occur in the tuples yi. The
satisfiability problem of a (possibly team-semantics-based) logic L takes as an input a sentence
of L and asks whether A |= ϕ for some model A. The validity problem asks, given a sentence
ϕ, whether A |= ϕ for all models A.

Let k ∈ Z+ and let AQ be a generalized atom of the type (i1, ..., in), where ij ≤ k for each
j. Let ϕ(R1, ..., Rn) be a sentence of Σ1

1(FOCk) with unquantified relation symbols R1, ..., Rn
of arities i1, ..., in, respectively. Assume that for all models A and teams X with codomain
A and domain containing the variables in AQ(x1, ..., xn), we have A |=X AQ(x1, ..., xn) iff(

A, R1 := rel(X,x1), ..., Rn := rel(X,xn)
)
|=FO ϕ(R1, ..., Rn).

Then we say that the atom AQ is definable in Σ1
1(FOCk).

We now show that, for any generalized atom AQ, the logic FO(AQ) has the so-called
locality property. We also show that, for a downwards closed atom AQ, all formulas of
FO(AQ) satisfy the downwards closure property. These two properties have previously turned
out to be very useful in the study of dependence logic.

Let X be a team with domain {x1, . . . , xk}, and let V ⊆ {x1, . . . , xk}. We denote by
X(V) the team {s � V | s ∈ X} with the domain V . The following proposition shows that the
truth of an FO(AQ)-formula depends only on the interpretations of the variables occurring
free in the formula. The proof uses the fact that generalized atoms satisfy the claim by
definition. Otherwise the proof is identical to the corresponding proof given in [6].

I Proposition 3 (Locality). Let AQ be a generalized atom and ϕ ∈ FO(AQ) a formula. If
V ⊇ Fr(ϕ), then A |=X ϕ if and only if A |=X(V) ϕ.

The next proposition is also very useful. The proof is almost identical to the corresponding
proof for dependence logic, see [25]. The additional case for generalized atoms follows by the
assumption of downwards closure.

I Proposition 4 (Downward closure). Let AQ be a downwards closed generalized atom.
Suppose ϕ is an FO(AQ)-formula, A a model, and Y ⊆ X teams. Then A |=X ϕ implies
A |=Y ϕ.

3 Satisfiability problems of logics FO2(A)

In this section we show that for any finite collection A of Σ1
1(FOC2)-definable atoms AQ,

both Sat(FO2(A)) and FinSat(FO2(A)) are NEXPTIME-complete. Our proof relies on a
translation from FO2(A) into Σ1

1(FOC2) and the fact that Sat(FOC2) and FinSat(FOC2)
are NEXPTIME-complete [23].

We start by establishing a more general translation. We show that for every k ≥ 1 and
every Σ1

1(FOCk) definable atom AQ, we have FOk(AQ) ≤ Σ1
1(FOCk). Note that strictly

speaking FOk(AQ) uses only one atom AQ instead of a finite collection A of atoms, but our
proof below generalizes directly to the case with a finite collection of atoms. The reason for
considering a single atom is simply to keep the notation light.

When considering k-variable logic, we let {x1, ..., xk} denote the k distinct variables used
in the syntax of the logic, and we let rel(X) denote rel

(
X, (x1, ..., xk)

)
. The proof of the

following lemma (see the full version in arXiv [19]) significantly modifies and extends the
argument establishing Lemma 3.3.14 of [26]. See also [18] and Theorem 6.2 in [25].

MFCS 2016

60:6 Decidability of Predicate Logics with Team Semantics

I Lemma 5. Assume that k, t ≥ 1. Let τ be a relational vocabulary, let R 6∈ τ be a k-ary
relation symbol and let AQ be a Σ1

1(FOCk)-definable atom of type (i1, . . . , it), where ij ≤ k
for each j. For every formula ϕ ∈ FOk(AQ) there exists a sentence ϕ∗ ∈ Σ1

1(FOCk)(τ ∪ {R})
such that for every model A and team X with codomain A and dom(X) = {x1, . . . , xk}, we
have

A |=X ϕ iff
(
A, rel(X)

)
|= ϕ∗, (1)

where (A, rel(X)) is the expansion A′ of A into the vocabulary τ∪{R} such that RA′ := rel(X).
Moreover ϕ∗ is computable from ϕ in polynomial time.

I Theorem 6. For every k ≥ 1 and for every Σ1
1(FOCk)-definable atom AQ it holds that

FOk(AQ) ≤ Σ1
1(FOCk), i.e., for every sentence of FOk(AQ), there exists an equivalent

sentence of Σ1
1(FOCk).

Proof. Let τ be a relational vocabulary, k ≥ 1, and AQ a Σ1
1(FOCk)-definable atom. Let ϕ

be an FOk(AQ)(τ)-sentence and ϕ∗ = ∃R1 . . . ∃Rnψ the related Σ1
1(FOCk)(τ ∪ {R})-sentence

given by Lemma 5. The following conditions are equivalent.
1. A |= ϕ.
2. A |=X ϕ for some nonempty team X such that dom(X) = {x1, . . . , xk}.
3.
(
A, rel(X)

)
|= ϕ∗ for some nonempty team X such that dom(X) = {x1, . . . , xk}.

4. (A, R) |= ∃R1 . . . ∃Rn
(
∃x1 . . . ∃xkR(x1, . . . , xk) ∧ ψ

)
for some R ⊆ Ak.

5. A |= ∃R∃R1 . . . ∃Rn
(
∃x1 . . . ∃xkR(x1, . . . , xk) ∧ ψ

)
.

The equivalence of 1 and 2 follows from Proposition 3 and the fact that Fr(ϕ) = ∅. By
Lemma 5, conditions 2 and 3 are equivalent. The equivalence of 3 and 4 follows from the
fact that ϕ∗ = ∃R1 . . . ∃Rnψ. The conditions 4 are 5 clearly equivalent. J

I Theorem 7. Let AQ be a Σ1
1(FOC2)-definable generalized atom. Then Sat(FO2(AQ)) and

FinSat(FO2(AQ)) are NEXPTIME-complete.

Proof. Since the translation ϕ 7→ ϕ∗ is computable in polynomial time and (finite) satisfiab-
ility of Σ1

1(FOC2) can be checked in NEXPTIME [23], we conclude that both Sat(FO2(AQ))
and FinSat(FO2(AQ)) are in NEXPTIME. On the other hand, since FO2 ≤ FO2(AQ) by
Proposition 2, and since both Sat(FO2) and FinSat(FO2) are NEXPTIME-hard [9], it
follows that both Sat(FO2(AQ)) and also FinSat(FO2(AQ)) are as well. J

The result of Theorem 7 can be directly generalized to concern finite collections A of
generalized atoms. The proof of the following theorem is practically the same as that of
Theorem 7.

I Theorem 8. Let A be a finite collection of Σ1
1(FOC2)-definable generalized atoms. The

satisfiability and the finite satisfiability problems of FO2(A) are NEXPTIME-complete.

We shall next make use of Theorem 8 in order to show that the satisfiability and the
finite satisfiability problems of two-variable fragments of dependence logic, inclusion logic,
exclusion logic and independence logic are NEXPTIME-complete. The result for two-variable
dependence logic was already established in [18]. Note that when regarded as generalized
atoms, each of the dependency notions above correspond to a collection of generalized atoms;
for example the atomic formulas =(x, y) and =(x, y, z) refer to two different atoms, one of
type (2) and the other of type (3). However, in order to capture the two-variable fragments
of of these logics, we only need a finite number of generalized atoms for each logic, as we
shall see. We define ϕconst := ∃≤1xR(x), ϕdep := ∀x∃≤1yR(x, y), ϕinc := ∀x∀y

(
R(x, y) →

J. Kontinen, A. Kuusisto, and J. Virtema 60:7

S(x, y)
)
, ϕexc := ∀x∀y

(
R(x, y) → ¬S(x, y)

)
, ϕind := ∀x∀y

(
(∃yR(x, y) ∧ ∃xR(x, y)) →

R(x, y)
)
.

The formulas ϕconst, ϕdep, ϕinc, ϕexc and ϕind define the generalized atoms Aconst of
type (1), Adep of type (2), Ainc of type (2, 2), Aexc of type (2, 2), and Aind of type (2),
respectively.

I Theorem 9. The satisfiability and finite satisfiability problems of the two-variable frag-
ments of dependence logic, inclusion logic, exclusion logic, inclusion/exclusion logic, and
independence logic are all NEXPTIME-complete.

Proof. The proof proceeds via polynomial time translations D2 → FO2({Aconst, Adep}),
Inc2 → FO2(Ainc), Exc2 → FO2(Aexc), Inc/Exc2 → FO2(Ainc, Aexc),
Ind2 → FO2({Aconst, Adep, Aind}) that preserve equivalence. The result then follows from
Lemma 8 and the fact that the generalised atoms Aconst, Adep, Aexc, Ainc, Aind are all
Σ1

1(FOC2)-definable. For the full proof, see [19]. J

4 Undecidability via non-tiling

In this section we introduce structures and methods that we will later employ to prove
undecidability of the validity problem of two-variable dependence logic. Curiously, all
attempts (by us or known to us) to use the standard (Π0

1-complete) tiling problem for the
undecidability proof have failed; we will instead use the (Σ0

1-complete) non-tiling problem in
our arguments below.

The grid is the structureG = (N2, V,H), where V = {
(
(i, j), (i, j+1)

)
∈ N2×N2 | i, j ∈ N}

and H = {
(
(i, j), (i+ 1, j)

)
∈ N2 × N2 | i, j ∈ N}. A function t : 4 −→ N is called a tile type.

Define the set TILES := {Pt | t is a tile type} of unary relation symbols. The unary relation
symbols in the set TILES are called tiles. The number t(0) is the top colour, t(1) the right
colour, t(2) the bottom colour, and t(3) the left colour of Pt.

Let T be a finite nonempty set of tiles and V and H binary relation symbols. We say that
a structure A = (A, V,H) is T -tilable, if there exists an expansion of A to the vocabulary
{H,V } ∪ { Pt | Pt ∈ T } such that the following conditions hold for all u, v ∈ A.
1. The point u belongs to the extension of exactly one symbol Pt in T .
2. If uHv, Pt(u) and Ps(v), then the right colour of Pt is the same as the left colour of Ps.
3. If uV v, Pt(u) and Ps(v), then the top colour of Pt is the same as the bottom colour of Ps.

We will next define the tiling problem and the non-tiling problem. Let F denote the
set of finite, nonempty subsets of TILES. We define T := {T ∈ F | G is T -tilable} and
T̄ ′ := {T ∈ F | G is not T -tilable}. The tiling problem (non-tiling problem, resp.) is the
membership problem of the set T (T̄ ′, resp.) with the input set F .

I Theorem 10 ([2]). The tiling problem is Π0
1-complete.

The non-tiling problem is the complement of the tiling problem. Thus the following corollary
follows.

I Corollary 11. The non-tiling problem is Σ0
1-complete.

The proof of the following lemma is straightforward.

I Lemma 12. There is a computable function associating each input T to the non-tiling
problem with an FO2-sentence ϕT of the vocabulary τ := {H,V } ∪ T such that for every
structure A of the vocabulary {H,V }, the structure A is not T -tilable iff for every expansion
A∗ of A to the vocabulary τ , it holds that A∗ |= ϕT .

MFCS 2016

60:8 Decidability of Predicate Logics with Team Semantics

I Definition 13. Let τ = {V,H} be a vocabulary where V and H are binary relation symbols.
Let A = (A, V,H) be a τ -structure. We say that A is gridlike if the below conditions hold.
1. The extension of V in A is serial (i.e., ∀x ∈ A ∃y ∈ A s.t. V (x, y)).
2. The extension of H in A is serial (i.e., ∀x ∈ A ∃y ∈ A s.t. H(x, y)).
3. If a, b, c, b′, c′ ∈ A are such that V (a, b), H(b, c), H(a, b′), and V (b′, c′), then c = c’.

Note that it follows from the above definition that in gridlike structures, for every point
a, there exist points b, c and d such that H(a, b), V (a, c), V (b, d), and H(c, d).

Let τ be the vocabulary of gridlike structures and U , P , Q, C unary relation symbols.
We say that a τ ∪ {U,P,Q,C}-structure A is striped and gridlike if the τ -reduct of A is
gridlike, the extensions of P and Q in A are distinct singleton sets, the extension of U in A

is the union of the extensions of P and Q, and A has the following property (intuitively C
creates stripes in A):(

H(a, b)⇒ (C(a)⇔ C(b))
)
and

(
V (a, b)⇒ (C(a)⇔ ¬C(b))

)
. (2)

The following lemma can be now proven by a simple inductive argument.

I Lemma 14. If A is striped and gridlike, then there exists a homomorphism from the grid
into A.

I Lemma 15. Let T be an input to the non-tiling problem. The grid is non-T -tilable iff (the
{H,V}-reduct of) every striped gridlike structure is non-T -tilable.

Proof. The direction from left to right follows from Lemma 14 in a straightforward way.
The converse holds since the grid is an {H,V}-reduct of a striped gridlike structure. J

5 The validity problem of D2 is undecidable

In this section we give a reduction from the non-tiling problem to the validity problem of D2.
Let τ = {V,H,C,U, P,Q} be the vocabulary of striped gridlike structures. We will first

define a formula ϕnon−grid of D2 such that A is not striped and gridlike iff A |= ϕnon−grid.
We first notice that the first two conditions of Definition 13 are easy to deal with. Define
ϕnon−serial := ∃x∀y¬V (x, y)∨∃x∀y¬H(x, y). The third condition of Definition 13 is nontrivial.
In the below construction, we will use the predicates P , Q, U for counting (only). We will
first show how to force the extensions of P and Q to be distinct singletons and the extension
of U to be the union of P and Q. The next formulae will be used for dealing with the cases
where this does not hold.

ϕnon−singleton(X) := ∀x¬X(x) ∨ ∃x∃y
(
X(x) ∧X(y) ∧ ¬x = y

)
ϕnon−distinct(X,Y) := ∃x

(
X(x) ∧ Y (x)

)
ϕnon−union(X,Y, Z) := ∃x

(
X(x) ∧

(
¬Y (x) ∨ ¬Z(x)

))
∨ ∃x

(
¬X(x) ∧

(
Y (x) ∨ Z(x)

))
ϕ|U |6=2 := ϕnon−singleton(P) ∨ ϕnon−singleton(Q) ∨ ϕnon−distinct(P,Q)

∨ ϕnon−union(U,P,Q).

It is easy to check that the τ -models A such that A 6|= ϕ|U |6=2 are exactly those models where
the extensions of P and Q are distinct singletons and the extension of U is the union of the
extensions of P and Q (and thus the cardinality of the extension of U is 2).

J. Kontinen, A. Kuusisto, and J. Virtema 60:9

We will now show how to enforce Equation (2). The formula ϕnon−stripes below takes
care of the cases where (2) does not hold. Define

ϕnon−stripes := ∃x∃y
((
H(x, y) ∧

(
C(x)↔ ¬C(y)

))
∨
(
V (x, y) ∧

(
C(x)↔ C(y)

)))
.

We are now ready to show how to deal with models that violate the last condition of Definition
13. To understand the intended meaning of the following formula, assume that the extension
of U is of size two and that the condition given by Equation (2) holds. Note also that from
(2) it follows that if such points c and c′ exist that violate the last condition of Definition
13, then c and c′ agree about C, i.e., we have C(c) iff C(c′). We first deal with the case
where C(c) and C(c′) both hold. We denote by ϕnon−C+−join the following formula (whose
meaning is fully explained in the proof of Lemma 16):

∀x
(
¬U(x) ∨ ∃y

(
C(y) ∧=(y, x) ∧ ∃x

(
=(x, y) ∧

((
=(x) ∧H(x, y)

)
∨
(
=(x) ∧ V (x, y)

))
∧ ∃y

(
=(y) ∧

(
V (y, x) ∨H(y, x)

)
∧ ¬C(y))

))))
.

To deal with the case where ¬C(c) and ¬C(c′), we define the formula ϕnon−C−−join which
is obtained from ϕnon−C+−join by simultaneously replacing each C(x) and C(y) by ¬C(x)
and ¬C(y), respectively. Finally, we define that ϕnon−join := ϕnon−C+−join ∨ ϕnon−C−−join
and ϕnon−grid := ϕnon−serial ∨ ϕ|U |6=2 ∨ ϕnon−stripes ∨ ϕnon−join.

I Lemma 16. Let τ = {V,H,C,U, P,Q} be the vocabulary of striped gridlike structures. Let
A be a τ -structure such that the extension of U is of cardinality 2. Assume the condition (2)
holds. Then A |= ϕnon−join iff the last condition of Definition 13 fails in A.

Proof. From (2) it follows that if such c and c′ exist in A that violate the last condition of
Definition 13, then c and c′ agree on C. We will show that

A |= ϕnon−C+−join iff the last condition of Definition 13 fails in A for some c, c′ s.t.
C(c) & C(c′). (3)

The analogous argument for ϕnon−C−−join and the case where ¬C(c) and ¬C(c′) hold is
similar.

Below we denote by {(x1, v1), ..., (xk, vk)} the variable assignment that maps xi to vi
for each i. Let u, u′ be the elements that are in the extension of U in A. We thus have
A |= ϕnon−C+−join iff

A |=X1 ∃y
(
C(y) ∧=(y, x) ∧ ∃x

(
=(x, y) ∧

((
=(x) ∧H(x, y)

)
∨
(
=(x) ∧ V (x, y)

))
∧ ∃y

(
=(y) ∧

(
V (y, x) ∨H(y, x)

)
∧ ¬C(y))

)))
,

where X1 = {{(x, u)}, {(x, u′)}}. Now, recalling that dependence logic has the downwards
closure property (cf. proposition 4), we observe that the above holds if and only if there exist
distinct (distinctness being due to the atom =(y, x)) points c, c′ in the extension of C such
that

A |=X2 ∃x
(

=(x, y) ∧
((

=(x) ∧H(x, y)
)
∨
(
=(x) ∧ V (x, y)

))
∧ ∃y

(
=(y) ∧

(
V (y, x) ∨H(y, x)

)
∧ ¬C(y))

))
,

where X2 = {{(x, u), (y, c)}, {(x, u′), (y, c′)}}. The above holds if and only if there exist
distinct points b, b′ of A such that H(b, c) and V (b′, c′) (or V (b, c) and H(b′, c′) in which case
the argument is analogous) and

A |=X3 ∃y
(
=(y) ∧

(
V (y, x) ∨H(y, x)

)
∧ ¬C(y))

)
,

MFCS 2016

60:10 Decidability of Predicate Logics with Team Semantics

where X3 = {{(x, b), (y, c)}, {(x, b′), (y, c′)}}. The above holds if and only if there exists a
point a in A such that ¬C(a), (V (a, b) or H(a, b)) and (V (a, b′) or H(a, b′)). Since C(c) and
C(c′) hold, it follows from the assumption that (2) holds that C(b) and ¬C(b′). Now since
also ¬C(a) holds, it follows again from (2) that V (a, b) and H(a, b′). When all of the above
is combined, we obtain (3). The analogous condition where ¬C(c) and ¬C(c′) is proved
similarly. Since (2) holds for A, any points c and c′ of A that violate the last condition of
Definition 13, must agree on C. Thus the lemma holds. J

The next lemma follows from Lemma 16 together with the observations made above.

I Lemma 17. Let τ = {V,H,C,U, P,Q} be the vocabulary of striped gridlike structures and
let A be a τ -model. Then A is striped and gridlike iff A 6|= ϕnon−grid.

I Theorem 18. The validity problem for D2 is undecidable (more precisely, Σ0
1-hard).

Proof. We give a computable reduction from the non-tiling problem to the validity problem
of D2. Since the former is Σ0

1-complete (Corollary 11), we obtain Σ0
1-hardness for the latter.

If T is an input to the non-tiling problem, then ϕT denotes the FO2-sentence given by
Lemma 12 and ϕnon−T−tiling := (ϕnon−grid ∨ ϕT). Let τ be as defined in Lemma 17. Let
Cτ,T denote the class of all τ ∪ T -structures and let Cτ,Ts−gridlike be the class of exactly all
expansions of striped gridlike structures to the vocabulary τ ∪ T .

Let T be an input to the non-tiling problem. We will show that the grid is non-T-
tilable iff the D2-sentence ϕnon−T−tiling is valid. By definition, ϕnon−T−tiling is valid iff
A |= ϕnon−grid ∨ ϕT holds for every A ∈ Cτ,T . Since ϕnon−grid and ϕT are sentences, the
right-hand side of this equivalence is equivalent to the claim that

∀A ∈ Cτ,T : A |= ϕnon−grid or A |= ϕT . (4)

By Lemma 17, B∗ |= ϕnon−grid holds for every τ -reduct B∗ of B ∈ Cτ,T that is not striped
and gridlike. Hence for every B ∈ Cτ,T such that the τ -reduct B∗ of B is not striped and
gridlike, it holds that B |= ϕnon−grid . Thus (4) is equivalent to the claim that

∀A ∈ Cτ,Ts−gridlike : A |= ϕnon−grid or A |= ϕT . (5)

Now let B be an arbitrary striped and gridlike τ -structure. By Lemma 17, B 6|= ϕnon−grid .
Thus B∗ 6|= ϕnon−grid for every expansion B∗ of B to the vocabulary τ ∪ T . From this it
follows that (5) is equivalent to the claim that

∀A ∈ Cτ,Ts−gridlike : A |= ϕT . (6)

Thus, by Lemma 12, (6) holds if and only if every striped gridlike structure is non-T -tilable.
Finally, from Lemma 15 it follows that this is equivalent to the claim that the grid is
non-T -tilable. J

6 Satisfiability of ∃∗∀∗-formulas

In this section we consider the complexity of satisfiability for sentences of dependence logic
and its variants in the prefix class ∃∗∀∗. For first-order logic, the satisfiability and finite
satisfiability problems of the prefix class ∃∗∀∗ are known to be NEXPTIME-complete. The
results hold for both the case with equality and the case without equality, see [3].

Let A be a collection of generalized atoms. We denote by ∃∗∀∗[A] the class of sentences
of FO(A) of the form ∃x0 · · · ∃xn∀y0 · · · ∀ymθ, where θ is a quantifier-free formula whose

J. Kontinen, A. Kuusisto, and J. Virtema 60:11

generalized atoms are in A. It is worth noting that, depending on the set A, the expressive
power and complexity of sentences in ∃∗∀∗[A] can vary considerably even when A is finite
and contains only computationally non-complex atoms. For example, there are universal
sentences of dependence logic that define NP-complete problems [17]. Furthermore, every
sentence of inclusion logic is equivalent to a sentence with a prefix of the form ∃∗∀1 [12]
implying that the satisfiability problem of the ∃∗∀∗-fragment of inclusion logic is undecidable.

Recall that we say that a formula ϕ is closed under substructures if for all A and X

it holds that if A |=X ϕ, A′ := A � B and X ′ := X � B for some B ⊆ A, then we have
A′ |=X′ ϕ.

I Lemma 19. Let A be a collection of generalized atoms that are closed under substructures.
Then the following conditions hold.
1. Suppose ϕ ∈ FO[A] is of the form ∀y0 · · · ∀ymθ, where θ is quantifier-free. Then ϕ is

closed under substructures.
2. Let ϕ ∈ ∃∗∀∗[A] be a sentence. Then, if ϕ is satisfiable, ϕ has a model with at most

max{1, k} elements, where k refers to the number of existentially quantified variables in
ϕ.

Proof. We will first prove claim (1). Suppose that ϕ := ∀y0 · · · ∀ymθ. We will first show the
claim for quantifier-free formulas θ, i.e., we will show that for all A, X, A′, and X ′ such that
A′ := A � B and X ′ := X � B for some B ⊆ A, the following implication holds.

A |=X θ ⇒ A′ |=X′ θ. (7)

The claim obviously holds if θ is a first-order literal. If θ is a generalized atom from A,
then the claim holds by assumption. The case θ := ψ1 ∧ ψ2 follows immediately from the
induction hypothesis. Let us then assume that θ := ψ1 ∨ ψ2. Since A |=X θ, there are sets
Y and Z such that Y ∪ Z = X, A |=Y ψ1 and A |=Z ψ2. By the induction hypothesis, we
have A′ |=Y ′ ψ1 and A′ |=Z′ ψ2, where Y ′ := Y � B and Z ′ := Z � B. Since Y ′ ∪ Z ′ = X ′, it
follows that A′ |=X′ θ.

We will now show that the claim also holds for ϕ. Suppose that A |=X ϕ. Then, by
the truth definition, A |=X[A/y0]···[A/ym] θ. Using (7), we have A′ |=(X[A/y0]···[A/ym])�B θ. It
is easy to check that (X[A/y0] · · · [A/ym]) � B = (X � B)[B/y0] · · · [B/ym]. Hence we have
A′ |=X′ ϕ.

Let us then prove 2. Assume ϕ is a sentence of the form ∃x0 · · · ∃xn∀y0 · · · ∀ymθ, where
θ is quantifier-free, and that there is a structure A such that A |= ϕ. Hence there exists
functions Fi such that A |=X ∀y0 · · · ∀ymθ, where X = {∅}[F0/x0] · · · [Fn/xn]. Let s be some
assignment in X. Let range(s) denote the set of elements b such that s(x) = b for some
variable x in the domain of s. If range(s) 6= ∅ define B := range(s), and if range(s) = ∅ (i.e.,
s = ∅), define B = {b}, where b is an arbitrary element in A. By claim (1), the formula
∀y0 · · · ∀ymθ is closed under substructures. Thus A � B |=X�B ∀y0 · · · ∀ymθ. Thus it follows
that A � B |= ϕ. J

A generalized atom AQ is said to be polynomial time computable if the question whether
A |=X AQ(y1, ..., yn) holds can be decided in time polynomial in the size of A and X. A class
of atoms A is said to be uniformly polynomial time computable if there exists a polynomial
function f : N → N such that for every atom AQ ∈ A it holds that the question whether
A |=X AQ(y1, ..., yn) holds can be decided in time f

(
|A|+ |X|+ |AQ(y1, ..., yn)|

)
. Note that

every finite class of polynomial time computable atoms is also uniformly polynomial time
computable.

MFCS 2016

60:12 Decidability of Predicate Logics with Team Semantics

The following theorem now follows from Lemma 19. We will make use of the recent result
of Grädel showing that for a uniformly polynomial time computable collection A of atoms,
the model checking problem for FO(A)-formulas is in NEXPTIME [8].

I Theorem 20. Let AQ be a generalized atom that is closed under substructures and poly-
nomial time computable. Then Sat(∃∗∀∗[AQ]) and FinSat(∃∗∀∗[AQ]) are in 2NEXPTIME.
If τ is a vocabulary consisting of relation symbols of arity at most k, k ∈ Z+, then
Sat(∃∗∀∗[AQ](τ)) and FinSat(∃∗∀∗[AQ](τ)) are NEXPTIME-complete.

Proof. Note first that the lower bounds follow from the fact that both Sat(∃∗∀∗) and
FinSat(∃∗∀∗) are already NEXPTIME-complete. It hence suffices to show containments in
2NEXPTIME and NEXPTIME, respectively.

Let ϕ ∈ ∃∗∀∗[AQ]. By Lemma 19, ϕ is satisfiable if and only if it has a model of
cardinality at most |ϕ|. We can decide satisfiability of ϕ as follows: non-deterministically
guess a structure A of cardinality at most |ϕ| and accept iff A |= ϕ. By the result of Grädel
in [8], the question whether A |= ϕ can be checked non-deterministically in exponential time
with input A and ϕ. Assume first that the maximum arity of relation symbols that may occur
in ϕ is not a fixed constant. Relation symbols of arity at most |ϕ| may occur in ϕ. Thus the
size of the binary encoding of a model A of ϕ such that A ≤ |ϕ| is worst case exponential
with respect to |ϕ|. If, on the other hand, the maximum arity of relation symbols that can
occur in ϕ is a fixed constant, then the size of the encoding of A is just worst case polynomial
with respect to |ϕ|. Therefore it follows that our algorithm for checking satisfiability of ϕ is
in NEXPTIME in the case of fixed arity vocabularies and in 2NEXPTIME in the general
case. The corresponding results for the finite satisfiability problem follow by the observation
that ∃∗∀∗[AQ] has the finite model property, Lemma 19. J

I Corollary 21. Let A be a uniformly polynomial time computable class of generalized
atoms that are closed under substructures. Then Sat(∃∗∀∗[A]) and FinSat(∃∗∀∗[A]) are in
2NEXPTIME. If τ is a vocabulary consisting of relation symbols of arity at most k, k ∈ Z+,
then Sat(∃∗∀∗[A](τ)) and FinSat(∃∗∀∗[A](τ)) are NEXPTIME-complete.

In the following sense Theorem 20 is optimal: there exists a polynomial time computable
generalized atom AQ such that Sat(∃3∀[AQ]) and FinSat(∃3∀[AQ]) are undecidable. This
already holds for vocabularies with at least one binary relation symbol and a countably infinite
set of unary relation symbols. Let ϕ5−inc := ∀x1 . . . ∀x5

(
R(x1, . . . , x5)→ S(x1, . . . x5)

)
, and

let A5−inc be the related generalized atom of the type (5, 5), i.e., A5−inc is the 5-ary inclusion
atom interpreted as a generalized atom. Clearly A5−inc is computable in polynomial time.

I Theorem 22. Let τ be a vocabulary consisting of one binary relation symbol and a countably
infinite set of unary relation symbols. Then both Sat(∃3∀[A5−inc](τ)) and
FinSat(∃3∀[A5−inc](τ)) are undecidable.

Proof. It well known that for the Kahr class (i.e., the prefix class ∀∃∀ of FO with vocabulary
τ) the satisfiability and the finite satisfiability problems are undecidable (see, e.g., [3]). From
the proof of [12, Theorem 5] it follows that there exists a polynomial time translation ϕ 7→ ϕ∗

from the Kahr class into ∃3∀[A5−inc](τ) such that A |=X ϕ⇔ A |=X ϕ∗ holds for every model
A and team X with codomain A. Thus Sat(∃3∀[A5−inc](τ)) and FinSat(∃3∀[A5−inc](τ))
are undecidable. J

It is easy to see that dependence atoms viewed as generalized atoms are closed under
substructures since they are downwards closed and universe independent. Likewise, it is

J. Kontinen, A. Kuusisto, and J. Virtema 60:13

straightforward to check that the class of dependence atoms is uniformly polynomial time
computable. Hence we obtain:

I Corollary 23. Both the satisfiability and the finite satisfiability problems for the ∃∗∀∗-
sentences of dependence logic are in 2NEXPTIME. If τ is a vocabulary consisting of relation
symbols of arity at most k, then the satisfiability and the finite satisfiability problems for the
∃∗∀∗-sentences of dependence logic over the vocabulary τ are NEXPTIME-complete.

7 Conclusion

We have tied some loose ends concerning the complexity of predicate logics based on
team semantics. Using a general approach, we have shown that the satisfiability and the
finite satisfiability problems of the two-variable fragments of inclusion logic, exclusion logic,
inclusion/exclusion logic, and independence logic are all NEXPTIME-complete. Additionally,
we have shown that the satisfiability and the finite satisfiability problems of the prefix class
∃∗∀∗ of dependence logic are NEXPTIME-complete for any vocabulary of bounded arity,
and in 2NEXPTIME in the general case. The general approach we have employed of course
also implies a range of other results on team-semantics-based logics. Finally, we have proved
that the validity problem of two-variable dependence logic is undecidable, thereby answering
an open problem from the literature on team semantics.

This article clears path to a more comprehensive classification of the decidability and
complexity of different fragments of logics with generalized atoms and team semantics. In the
future, we aim to identify further interesting related systems with a decidable satisfiability
problem.

Acknowledgements. Juha Kontinen was supported by grant 292767 of the Academy of
Finland. Antti Kuusisto was supported by the ERC grant 647289 “CODA” and the Jenny
and Antti Wihuri Foundation. Jonni Virtema was supported by grants 266260 and 292767
of the Academy of Finland and the Vilho, Yrjö and Kalle Väisälä Foundation.

References
1 Saguy Benaim, Michael Benedikt, Witold Charatonik, Emanuel Kieroński, Rastislav Len-

hardt, Filip Mazowiecki, and James Worrell. Complexity of two-variable logic on finite
trees. In ICALP (2), pages 74–88, 2013. doi:10.1007/978-3-642-39212-2_10.

2 R. Berger. The undecidability of the domino problem. Memoirs of the American Mathem-
atical Society, 66:369–395, 1966.

3 Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspect-
ives in Mathematical Logic. Springer, 1997.

4 Witold Charatonik and Piotr Witkowski. Two-variable logic with counting and trees. In
LICS, pages 73–82. IEEE Computer Society, 2013. doi:10.1109/LICS.2013.12.

5 A. Durand, J. Kontinen, and H. Vollmer. Expressivity and Complexity of Dependence Logic,
in Dependence Logic: Theory and Applications. Springer, In Press, 2016.

6 Pietro Galliani. Inclusion and exclusion dependencies in team semantics – on some logics of
imperfect information. Ann. Pure Appl. Logic, 163(1):68–84, 2012. doi:10.1016/j.apal.
2011.08.005.

7 Pietro Galliani and Lauri Hella. Inclusion logic and fixed point logic. In proceedings of CSL
2013, pages 281–295, 2013.

8 Erich Grädel. Model-checking games for logics of imperfect information. Theor. Comput.
Sci., 493:2–14, 2013. doi:10.1016/j.tcs.2012.10.033.

MFCS 2016

http://dx.doi.org/10.1007/978-3-642-39212-2_10
http://dx.doi.org/10.1109/LICS.2013.12
http://dx.doi.org/10.1016/j.apal.2011.08.005
http://dx.doi.org/10.1016/j.apal.2011.08.005
http://dx.doi.org/10.1016/j.tcs.2012.10.033

60:14 Decidability of Predicate Logics with Team Semantics

9 Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for
two-variable first-order logic. The Bulletin of Symbolic Logic, 3(1):53–69, 1997. URL:
http://www.jstor.org/stable/421196.

10 Erich Grädel, Martin Otto, and Eric Rosen. Undecidability results on two-variable logics.
In Proceedings of STACS’97, pages 249–260, London, UK, 1997. Springer-Verlag.

11 Erich Grädel and Jouko Väänänen. Dependence and independence. Studia Logica,
101(2):399–410, 2013. doi:10.1007/s11225-013-9479-2.

12 Miika Hannula. Hierarchies in inclusion logic with lax semantics. In Mohua Banerjee
and Shankara Narayanan Krishna, editors, Logic and Its Applications: 6th Indian Confer-
ence, ICLA 2015, Mumbai, India, January 8-10, 2015. Proceedings, pages 100–118, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg. doi:10.1007/978-3-662-45824-2_7.

13 Lauri Hella and Antti Kuusisto. One-dimensional fragment of first-order logic. In Advances
in Modal Logic 10, invited and contributed papers from the tenth conference on “Advances
in Modal Logic,” held in Groningen, The Netherlands, August 5-8, 2014, pages 274–293,
2014. URL: http://www.aiml.net/volumes/volume10/Hella-Kuusisto.pdf.

14 Jaakko Hintikka and Gabriel Sandu. Informational independence as a semantical phe-
nomenon. In J. E. Fenstad, I. T. Frolov, and R. Hilpinen, editors, Logic, Methodology and
Philosophy of Science VIII, volume 126, pages 571–589. Elsevier, Amsterdam, 1989.

15 Wilfrid Hodges. Compositional semantics for a language of imperfect information. Log. J.
IGPL, 5(4):539–563 (electronic), 1997.

16 Emanuel Kieroński, Jakub Michaliszyn, Ian Pratt-Hartmann, and Lidia Tendera. Two-
variable first-order logic with equivalence closure. SIAM Journal of Computing, 43(3):1012–
1063, 2014.

17 Jarmo Kontinen. Coherence and computational complexity of quantifier-free dependence
logic formulas. Studia Logica, 101(2):267–291, 2013. doi:10.1007/s11225-013-9481-8.

18 Juha Kontinen, Antti Kuusisto, Peter Lohmann, and Jonni Virtema. Complexity of two-
variable dependence logic and IF-logic. Inf. Comput., 239:237–253, 2014. doi:10.1016/j.
ic.2014.08.004.

19 Juha Kontinen, Antti Kuusisto, and Jonni Virtema. Decidability of predicate logics with
team semantics. CoRR, abs/1410.5037, 2016. URL: http://arxiv.org/abs/1410.5037.

20 Antti Kuusisto. A double team semantics for generalized quantifiers. Journal of Logic,
Language and Information, 24(2):149–191, 2015. doi:10.1007/s10849-015-9217-4.

21 Per Lindström. First order predicate logic with generalized quantifiers. Theoria, 32:186–195,
1966.

22 Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera. Complexity of two-variable logic
with counting. In Proceedings of LICS’97, pages 318–327, 1997. doi:10.1109/LICS.1997.
614958.

23 Ian Pratt-Hartmann. Complexity of the two-variable fragment with counting quantifi-
ers. Journal of Logic, Language and Information, 14(3):369–395, 2005. doi:10.1007/
s10849-005-5791-1.

24 Wieslaw Szwast and Lidia Tendera. FO2 with one transitive relation is decidable. In
STACS, pages 317–328, 2013.

25 Jouko Väänänen. Dependence logic: A new approach to independence friendly logic. Num-
ber 70 in London Mathematical Society student texts. Cambridge University Press, 2007.

26 Jonni Virtema. Approaches to Finite Variable Dependence: Expressiveness and Computa-
tional Complexity. PhD thesis, University of Tampere, 2014.

http://www.jstor.org/stable/421196
http://dx.doi.org/10.1007/s11225-013-9479-2
http://dx.doi.org/10.1007/978-3-662-45824-2_7
http://www.aiml.net/volumes/volume10/Hella-Kuusisto.pdf
http://dx.doi.org/10.1007/s11225-013-9481-8
http://dx.doi.org/10.1016/j.ic.2014.08.004
http://dx.doi.org/10.1016/j.ic.2014.08.004
http://arxiv.org/abs/1410.5037
http://dx.doi.org/10.1007/s10849-015-9217-4
http://dx.doi.org/10.1109/LICS.1997.614958
http://dx.doi.org/10.1109/LICS.1997.614958
http://dx.doi.org/10.1007/s10849-005-5791-1
http://dx.doi.org/10.1007/s10849-005-5791-1

	Introduction
	Preliminaries
	Logics based on team semantics
	Generalized atoms

	Satisfiability problems of logics FO2(A)
	Undecidability via non-tiling
	The validity problem of D2 is undecidable
	Satisfiability of exists*forall*-formulas
	Conclusion

