530 research outputs found

    On highly regular strongly regular graphs

    Get PDF
    In this paper we unify several existing regularity conditions for graphs, including strong regularity, kk-isoregularity, and the tt-vertex condition. We develop an algebraic composition/decomposition theory of regularity conditions. Using our theoretical results we show that a family of non rank 3 graphs known to satisfy the 77-vertex condition fulfills an even stronger condition, (3,7)(3,7)-regularity (the notion is defined in the text). Derived from this family we obtain a new infinite family of non rank 33 strongly regular graphs satisfying the 66-vertex condition. This strengthens and generalizes previous results by Reichard.Comment: 29 page

    Central aspects of skew translation quadrangles, I

    Full text link
    Except for the Hermitian buildings H(4,q2)\mathcal{H}(4,q^2), up to a combination of duality, translation duality or Payne integration, every known finite building of type B2\mathbb{B}_2 satisfies a set of general synthetic properties, usually put together in the term "skew translation generalized quadrangle" (STGQ). In this series of papers, we classify finite skew translation generalized quadrangles. In the first installment of the series, as corollaries of the machinery we develop in the present paper, (a) we obtain the surprising result that any skew translation quadrangle of odd order (s,s)(s,s) is a symplectic quadrangle; (b) we determine all skew translation quadrangles with distinct elation groups (a problem posed by Payne in a less general setting); (c) we develop a structure theory for root-elations of skew translation quadrangles which will also be used in further parts, and which essentially tells us that a very general class of skew translation quadrangles admits the theoretical maximal number of root-elations for each member, and hence all members are "central" (the main property needed to control STGQs, as which will be shown throughout); (d) we solve the Main Parameter Conjecture for a class of STGQs containing the class of the previous item, and which conjecturally coincides with the class of all STGQs.Comment: 66 pages; submitted (December 2013

    Direct constructions of hyperplanes of dual polar spaces arising from embeddings

    Get PDF
    Let e be one of the following full projective embeddings of a finite dual polar space Delta of rank n >= 2: (i) The Grassmann-embedding of the symplectic dual polar space Delta congruent to DW(2n 1,q); (ii) the Grassmann-embedding of the Hermitian dual polar space Delta congruent to DH(2n-1, q(2)); (iii) the spin-embedding of the orthogonal dual polar space Delta congruent to DQ(2n, q); (iv) the spin-embedding of the orthogonal dual polar space Delta congruent to DQ(-)(2n+ 1, q). Let H-e denote the set of all hyperplanes of Delta arising from the embedding e. We give a method for constructing the hyperplanes of H-e without implementing the embedding e and discuss (possible) applications of the given construction

    On a conjecture of Brouwer involving the connectivity of strongly regular graphs

    Full text link
    In this paper, we study a conjecture of Andries E. Brouwer from 1996 regarding the minimum number of vertices of a strongly regular graph whose removal disconnects the graph into non-singleton components. We show that strongly regular graphs constructed from copolar spaces and from the more general spaces called Δ\Delta-spaces are counterexamples to Brouwer's Conjecture. Using J.I. Hall's characterization of finite reduced copolar spaces, we find that the triangular graphs T(m)T(m), the symplectic graphs Sp(2r,q)Sp(2r,q) over the field Fq\mathbb{F}_q (for any qq prime power), and the strongly regular graphs constructed from the hyperbolic quadrics O+(2r,2)O^{+}(2r,2) and from the elliptic quadrics O(2r,2)O^{-}(2r,2) over the field F2\mathbb{F}_2, respectively, are counterexamples to Brouwer's Conjecture. For each of these graphs, we determine precisely the minimum number of vertices whose removal disconnects the graph into non-singleton components. While we are not aware of an analogue of Hall's characterization theorem for Δ\Delta-spaces, we show that complements of the point graphs of certain finite generalized quadrangles are point graphs of Δ\Delta-spaces and thus, yield other counterexamples to Brouwer's Conjecture. We prove that Brouwer's Conjecture is true for many families of strongly regular graphs including the conference graphs, the generalized quadrangles GQ(q,q)GQ(q,q) graphs, the lattice graphs, the Latin square graphs, the strongly regular graphs with smallest eigenvalue -2 (except the triangular graphs) and the primitive strongly regular graphs with at most 30 vertices except for few cases. We leave as an open problem determining the best general lower bound for the minimum size of a disconnecting set of vertices of a strongly regular graph, whose removal disconnects the graph into non-singleton components.Comment: 25 pages, 1 table; accepted to JCTA; revised version contains a new section on copolar and Delta space
    corecore