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Abstract

Let e be one of the following full projective embeddings of a finite
dual polar space ∆ of rank n ≥ 2: (i) the Grassmann-embedding of the
symplectic dual polar space ∆ ∼= DW (2n− 1, q); (ii) the Grassmann-
embedding of the Hermitian dual polar space ∆ ∼= DH(2n − 1, q2);
(iii) the spin-embedding of the orthogonal dual polar space ∆ ∼=
DQ(2n, q); (iv) the spin-embedding of the orthogonal dual polar space
∆ ∼= DQ−(2n + 1, q). Let He denote the set of all hyperplanes of ∆
arising from the embedding e. We give a method for constructing the
hyperplanes of He without implementing the embedding e and discuss
(possible) applications of the given construction.
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1 Introduction

1.1 Basic definitions

Let Π be a non-degenerate polar space of rank n ≥ 2. With Π, there is
associated a point-line geometry ∆ whose points are the maximal singular
subspaces of Π, whose lines are the next-to-maximal singular subspaces of Π
and whose incidence relation is reverse containment. We call ∆ a dual polar
space (Cameron [4]). The dual polar space ∆ is a near polygon (Shult and
Yanushka [31]; De Bruyn [13]) which means that for every point p and every
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line L, there exists a unique point πL(p) on L nearest to p. Here, distances
d(·, ·) are measured in the point or collinearity graph of ∆. For every point x
of ∆, for every non-empty subset X of the point-set P of ∆ and for every i ∈
N, we define ∆i(x) := {y ∈ P | d(x, y) = i}, ∆≤i(x) := {y ∈ P | d(x, y) ≤ i},
x⊥ := ∆≤1(x), d(x,X) = min{d(x, y) | y ∈ X}, ∆i(X) = {y ∈ P | d(y,X) =
i}. If X1 and X2 are two non-empty sets of points of ∆, then we define
d(X1, X2) := min{d(x1, x2) |x1 ∈ X1 and x2 ∈ X2}. One of the following
two cases occurs for two lines K1 and K2 of ∆: (1) there exist unique points
x1 ∈ K1 and x2 ∈ K2 such that d(y1, y2) = d(y1, x1) + d(x1, x2) + d(x2, y2)
for every (y1, y2) ∈ K1 × K2; (2) for every (y1, y2) ∈ K1 × K2, d(y1, K2) =
d(y2, K1) = d(K1, K2). If case (2) occurs, then the lines K1 and K2 are called
parallel (notation K1‖K2).

There exists a bijective correspondence between the non-empty convex
subspaces of a dual polar space ∆ of rank n ≥ 2 and the possibly empty
singular subspaces of its associated polar space Π. If α is a singular subspace
of Π, then the set of all maximal singular subspaces containing α is a convex
subspace of ∆. Conversely, every convex subspace of ∆ is obtained in this
way. The maximal distance between two points of a convex subspace A is
called the diameter of A. The convex subspaces of diameter 2, 3, respectively
n − 1, are called the quads, hexes, respectively maxes, of ∆. The convex
subspaces through a given point x of ∆ determine a projective space of
dimension n − 1 which we will denote by Res∆(x). If x and y are two
points of ∆, then 〈x, y〉 denotes the smallest convex subspace containing
x and y, i.e. 〈x, y〉 is the intersection of all convex subspaces containing
x and y. More generally, if ∗1, . . . , ∗k are objects of ∆ like points or sets
of points, then 〈∗1, ∗2, . . . , ∗k〉 denotes the smallest convex subspace of ∆
containing ∗1, ∗2, . . . , ∗k. If x is a point and A is a non-empty convex subspace
of ∆, then A contains a unique point πA(x) nearest to x and d(x, y) =
d(x, πA(x))+d(πA(x), y) for every point y of A. We call πA(x) the projection
of x on A.

A hyperplane of a point-line geometry S is a proper subspace of S meeting
each line of S. Suppose now that ∆ is a dual polar space. If x is a point of
a hyperplane H of ∆, then ΛH(x) denotes the set of all lines of ∆ through
x contained in H. Notice that we can regard ΛH(x) as a set of points of the
projective space Res∆(x). A point x of a hyperplane H of ∆ is called deep
if x⊥ ⊆ H, or equivalently, if ΛH(x) coincides with the whole point-set of
Res∆(x). Since ∆ is a near polygon, the set of points of ∆ at non-maximal
distance from a given point x is a hyperplane of ∆. We call this hyperplane
the singular hyperplane of ∆ with deepest point x. By Shult [30, Lemma 6.1],
every hyperplane of a thick dual polar space ∆ is a maximal subspace of ∆,
or equivalently, the complement of a hyperplane of ∆ is connected. If ∆ is a
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thick dual polar space and if Q is a quad of ∆, then either Q ⊆ H or Q∩H
is a hyperplane of Q. By Payne and Thas [26], one of the following cases
then occurs:

(i) Q ⊆ H,
(ii) Q ∩H = x⊥ ∩Q for some point x of Q,
(iii) Q ∩H is a proper subquadrangle of Q, or
(iv) Q ∩H is an ovoid of Q, i.e. a set of points of Q meeting each line of

Q in a unique point.
If case (i), (ii), (iii), respectively (iv), occurs, then Q is called deep, sin-

gular, subquadrangular, respectively ovoidal, with respect to H. If every non-
deep quad is singular with respect to H, then H is called locally singular.

A full (projective) embedding of a dual polar space ∆ is an injective map-
ping e from the point-set P of ∆ to the point-set of a projective space Σ
satisfying (i) 〈e(P )〉Σ = Σ; (ii) e(L) := {e(x) |x ∈ L} is a line of Σ for
every line L of ∆. For every hyperplane α of Σ, the set e−1(e(P ) ∩ α) is
a hyperplane of ∆. We say that the hyperplane e−1(e(P ) ∩ α) arises from
the embedding e. If H is a hyperplane of a thick dual polar space ∆ arising
from an embedding e, then since H is a maximal subspace of ∆, 〈e(H)〉Σ is
a hyperplane of Σ and 〈e(H)〉Σ ∩ e(P ) = e(H).

In this paper we will meet four classes of dual polar spaces and embed-
dings.

(I) Let Π = W (2n− 1, q) be the polar space of the subspaces of PG(2n−
1, q), n ≥ 2, which are totally isotropic with respect to a given symplectic
polarity of PG(2n − 1, q). Let ∆ = DW (2n − 1, q) denote the associated
symplectic dual polar space. It is well-known that DW (2n − 1, q) has a
full embedding into the projective space PG(

(
2n
n

)
−

(
2n

n−2

)
− 1, q), see e.g.

Cooperstein [11] or De Bruyn [15]. This embedding is called the Grassmann-
embedding of DW (2n− 1, q).

(II) Let Π = H(2n−1, q2) be the polar space of the subspaces of PG(2n−
1, q2), n ≥ 2, which are totally isotropic with respect to a given Hermitian
polarity of PG(2n − 1, q2). Let ∆ = DH(2n − 1, q2) denote the associated
Hermitian dual polar space. The dual polar space DH(2n− 1, q2) has a nice
full embedding into PG(

(
2n
n

)
− 1, q), see Cooperstein [10] and De Bruyn [16].

This embedding is called the Grassmann-embedding of DH(2n− 1, q2).
(III) Let Π = Q(2n, q) denote the polar space of the subspaces of PG(2n, q),

n ≥ 2, which lie on a given nonsingular parabolic quadricQ(2n, q) of PG(2n, q).
Let ∆ = DQ(2n, q) denote the associated orthogonal dual polar space. It is
well-known that DQ(2n, q) ∼= DW (2n − 1, q) if and only if q is even. The
dual polar space DQ(2n, q) has a nice full embedding into PG(2n− 1, q), see
Chevalley [9] or Buekenhout & Cameron [3]. This embedding is called the
spin-embedding of DQ(2n, q).
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(IV) Let Π = Q−(2n + 1, q) denote the polar space of the subspaces
of PG(2n + 1, q), n ≥ 2, which lie on a given nonsingular elliptic quadric of
PG(2n+1, q). Let ∆ = DQ−(2n+1, q) denote the associated orthogonal dual
polar space. The dual polar space DQ−(2n+ 1, q) has a nice full embedding
into PG(2n−1, q2), see Cooperstein and Shult [12]. This embedding is called
the spin-embedding of DQ−(2n+ 1, q).

1.2 The Main Theorem

Suppose one of the following cases occurs:
(I) e : ∆→ Σ is the Grassmann-embedding of the symplectic dual polar

space ∆ ∼= DW (2n− 1, q), n ≥ 2, into Σ ∼= PG(
(

2n
n

)
−

(
2n

n−2

)
− 1, q);

(II) e : ∆→ Σ is the Grassmann-embedding of the Hermitian dual polar
space ∆ ∼= DH(2n− 1, q2), n ≥ 2, into Σ ∼= PG(

(
2n
n

)
− 1, q);

(III) e : ∆→ Σ is the spin-embedding of the orthogonal dual polar space
∆ ∼= DQ(2n, q), n ≥ 2, into Σ ∼= PG(2n − 1, q);

(IV) e : ∆→ Σ is the spin-embedding of the orthogonal dual polar space
∆ ∼= DQ−(2n+ 1, q), n ≥ 2, into Σ ∼= PG(2n − 1, q2).

In each of the considered cases, let P denote the point-set of ∆. Let He

denote the set of all hyperplanes of ∆ arising from e and let H′e be the
following set of hyperplanes of ∆.

In case (I), a hyperplane H of ∆ belongs to H′e if for every quad Q of ∆
which is ovoidal with respect to H, Q ∩ H is a classical ovoid of Q, i.e. an
elliptic quadric Q−(3, q) on Q ∼= Q(4, q).

In case (II), every hyperplane of ∆ belongs to H′e.
In case (III), the hyperplanes of H′e are precisely the locally singular

hyperplanes of ∆.
In case (IV), a hyperplane H of ∆ belongs to H′e if for every quad Q of

∆ which is ovoidal with respect to H, Q ∩H is a classical ovoid of Q, i.e. a
unital H(2, q2) on Q ∼= H(3, q2).

In all four cases, we have He ⊆ H′e. In cases (III) and (IV), He = H′e by
De Bruyn [14]. In case (II), He = H′e if q > 2 and He 6= H′e if q = 2, see
Cardinali, De Bruyn and Pasini [8, Corollary 1.6]. In case (I), He = H′e if
q > 2 and He 6= H′e if q = 2, see De Bruyn [18].

In some of the above-mentioned cases, the set H′e coincides with the set
of all hyperplanes of ∆. By definition this is the case if e is the Grassmann-
embedding of DH(2n − 1, q2) (Case (II)). It is never the case if e is the
spin-embedding of DQ−(2n + 1, q) (Case (IV)), see De Bruyn [14, Section
1.4]. It is the case for the spin-embedding of DQ(2n, q) (Case (III)) if and
only if q is odd. (By Payne and Thas [26], all hyperplanes of the quads
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(∼= W (q)) of DQ(2n, q) are singular if and only if q is odd.) It is the case for
the Grassmann-embedding of the dual polar space DW (2n−1, q) if and only
if all ovoids of the quads of DW (2n− 1, q) are classical. As remarked above
such quads are isomorphic to Q(4, q). Now, all ovoids of Q(4, q) are classical
if q is prime ([1]), q = 4 ([2], [24]) or q = 16 ([22], [23]). Non-classical ovoids
of Q(4, q) are known to exist for every q = ph where p is an odd prime and
h ≥ 2 ([21], [27], [32]) and for every q = 22n+1 where n ≥ 1 ([33]).

Definitions. If H1 and H2 are two distinct hyperplanes of He, then [H1, H2]
denotes the set of all hyperplanes of ∆ of the form e−1(e(P ) ∩ Π), where Π
is a hyperplane of Σ through 〈e(H1)〉Σ ∩ 〈e(H2)〉Σ. (Notice that 〈e(H1)〉Σ 6=
〈e(H2)〉Σ, since 〈e(Hi)〉Σ ∩ e(P ) = e(Hi) for every i ∈ {1, 2}.) We define
[H1, H2]′ := [H1, H2] \ {H1, H2}.

Let Q be a quad of ∆ and let eQ : Q→ 〈e(Q)〉Σ be the projective embedding
of Q induced by e. Then the pair (Q, eQ) has the same type as (∆, e) (i.e.
(I), (II), (III) or (IV)). Let HQ := HeQ

denote the set of all hyperplanes of
Q arising from eQ. If G1 and G2 are two distinct hyperplanes of HQ and x ∈
Q\(G1∪G2), then we show in Section 2 that there exists a unique hyperplane
Gx ∈ HQ through x satisfying G1 ∩ Gx = G1 ∩ G2 = G2 ∩ Gx. Notice that
Gx ∈ [G1, G2]′ since there exists a hyperplane of [G1, G2]′ satisfying that
property.

Let H1 and H2 be two distinct hyperplanes of He. We define a graph
Γ(H1, H2) with vertex set P \ (H1 ∪ H2). Two vertices x and y are adja-
cent if one of the following two conditions holds:

(i) d(x, y) = 1 and the line xy meets H1 ∩H2;
(ii) d(x, y) = 2, 〈x, y〉 ∩ H1 6= 〈x, y〉 ∩ H2 and the unique element of

[〈x, y〉 ∩ H1, 〈x, y〉 ∩ H2]′ containing x coincides with the unique element of
[〈x, y〉 ∩H1, 〈x, y〉 ∩H2]′ containing y.

Let C denote the set of all connected components of Γ(H1, H2) and put

H := {C ∪ (H1 ∩H2) |C ∈ C}.

The following is the main result of this paper. We will prove it in Section 4.

Main Theorem. Every element of H is a hyperplane of ∆. Moreover, the
following statements are equivalent for a hyperplane H of ∆:

(1) H ∈ H;
(2) H is a hyperplane of H′e satisfying H ∩H1 = H1 ∩H2 = H2 ∩H;
(3) H ∈ [H1, H2]′.
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Remarks. (1) The conclusions of the Main Theorem are also valid if e is
the spin-embedding of the dual polar space DQ(2n,K), n ≥ 2, where K is
an arbitrary possibly infinite field (with the same proof). Since for the three
other cases, we could not completely omit the finiteness assumption, we have
chosen to state all results in the finite case.

(2) The conclusions of the Main Theorem were already known if e is the
spin-embedding of the dual polar space DQ(2n,K), n ≥ 2, or the Grassmann-
embedding of the Hermitian dual polar space DH(5, q2), see respectively De
Bruyn [14, Proposition 2.2] and De Bruyn & Pralle [20, Section 4.2]. We
have decided to include also these cases in our discussion, since we will give
a unified treatment for the cases (I), (II), (III) and (IV).

1.3 (Possible) Applications of the Main Theorem

Consider one of the possibilities for (∆, e) mentioned in Section 1.2. The set
He carries the structure of a projective space isomorphic to Σ if one takes
the sets [H1, H2] with H1, H2 ∈ He and H1 6= H2 as lines. Suppose G ⊆ He

is a set of points of He which generates He. In cases (II), (III) and (IV),
one can take for G the set of all singular hyperplanes of ∆, see Cardinali, De
Bruyn and Pasini [7, Section 4]. In case (I) it is not always true that the set
of all singular hyperplanes of ∆ generates He. (If q is even, it is even never
the case.)

We list three (possible) applications of the Main Theorem.

(1) If H1 and H2 are two given distinct elements of He, then by the
Main Theorem we can give a construction of all the hyperplanes of [H1, H2]′

without implementing the embedding e: these hyperplanes are precisely the
sets (H1∩H2)∪C, where C is a connected component of the graph Γ(H1, H2).
So, we obtain a direct construction of the hyperplanes of [H1, H2]′, i.e. a
construction which only refers to properties of the hyperplanes H1, H2 and
the dual polar space ∆ and not to properties of the embedding e and its
associated embedding space Σ.

(2) In practical applications it might be possible to classify certain hy-
perplanes H ∈ H′e by first constructing two hyperplanes H1, H2 ∈ He and
subsequently showing that H ∩ H1 = H1 ∩ H2 = H2 ∩ H. This method
was used in the paper [14] to show that all locally singular hyperplanes of
DQ(2n,K) arise from its spin-embedding, and in the paper [20] (together
with other techniques) to classify the hyperplanes of the dual polar space
DH(5, q2), q 6= 2.
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(3) Suppose one wants to show that all hyperplanes ofHe satisfy a certain
property (P). Then one can proceed as follows: (1) Show that all hyperplanes
of G satisfy Property (P); (2) Show by using the explicit construction of the
graph Γ(H1, H2) that if two distinct hyperplanes H1 and H2 of He satisfy
Property (P), then also every member of [H1, H2]′ satisfies Property (P).
This method was used in the paper [17] to show that all locally singular
hyperplanes of DQ(2n,K) satisfy a certain property.

2 A common property of the hyperplanes of

some classical generalized quadrangles

In this section, we will prove a common property of the hyperplanes of the
classical generalized quadrangles W (q) = W (3, q) ∼= DQ(4, q), Q−(5, q) ∼=
DH(3, q2), Q(4, q) ∼= DW (3, q) and H(3, q2) ∼= DQ−(5, q).

Lemma 2.1 If G1 and G2 are two distinct singular hyperplanes of the gen-
eralized quadrangle W (q), then through every point x ∈ W (q) \ (G1 ∪ G2),
there exists a unique singular hyperplane Gx satisfying Gx ∩G1 = G1 ∩G2 =
G2 ∩Gx.

Proof. Let W (q) be embedded in the projective space PG(3, q). We regard
the singular hyperplanes of W (q) as hyperplanes of PG(3, q). Then G1 ∩G2

is a line of PG(3, q) which is either an ordinary line or a hyperbolic line of
the symplectic generalized quadrangle W (q). If Gx is a singular hyperplane
through x satisfying Gx ∩ G1 = G1 ∩ G2 = G2 ∩ Gx, then Gx (regarded as
hyperplane of PG(3, q)) is necessarily equal to 〈x,G1 ∩G2〉. This proves the
lemma. 2

Lemma 2.2 If G1 and G2 are two distinct hyperplanes of the generalized
quadrangle Q−(5, q), then through every point x ∈ Q−(5, q)\ (G1∪G2), there
exists a unique hyperplane Gx satisfying Gx ∩G1 = G1 ∩G2 = G2 ∩Gx.

Proof. Let Q−(5, q) be embedded in the projective space PG(5, q). By
Payne and Thas [26], every hyperplane of Q−(5, q) is either a singular hy-
perplane or a subquadrangle isomorphic to Q(4, q). In each of the two cases,
the hyperplane arises from a hyperplane of PG(5, q). Let Πi, i ∈ {1, 2}, de-
note the unique hyperplane of PG(5, q) such that Πi ∩Q−(5, q) = Gi. Since
dim(Π1 ∩ Π2) = 3 and Q−(5, q) does not contain planes, Π1 ∩ Π2 intersects
Q−(5, q) in one of the following: (i) an elliptic quadric Q−(3, q); (ii) a hyper-
bolic quadric Q+(3, q); (iii) a cone pQ(2, q); (iv) a line L. Notice that G1∩G2
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is a hyperplane of both G1 and G2 (regarded as point-line geometries). So, if
case (iv) occurs, then G1 and G2 are necessarily singular hyperplanes whose
deepest points lie on L.

Suppose now that G is a hyperplane of Q−(5, q) through x satisfying
G ∩ G1 = G1 ∩ G2 = G2 ∩ G and let Π denote the unique hyperplane of
PG(5, q) containing all the points of G. In cases (i), (ii) and (iii), Π must
contain the 3-space Π1 ∩Π2 and hence coincides with 〈Π1 ∩Π2, x〉. In these
cases, Gx := 〈Π1 ∩ Π2, x〉 ∩ Q−(5, q) is the unique hyperplane of Q−(5, q)
through x satisfying Gx∩G1 = G1∩G2 = G2∩Gx. Suppose case (iv) occurs.
As remarked above, G1 and G2 are singular hyperplanes whose deepest points
lie on L. Since G∩G1 = L, also G must be a singular hyperplane with deepest
point on L. Since x ∈ G, G must be the singular hyperplane with deepest
point πL(x). From the uniqueness of G, it now follows that G = 〈Π1∩Π2, x〉∩
Q−(5, q). So, also in case (iv) Gx := 〈Π1 ∩ Π2, x〉 ∩ Q−(5, q) is the unique
hyperplane of Q−(5, q) through x satisfying Gx ∩G1 = G1 ∩G2 = G2 ∩Gx.

2

Definition. By Payne and Thas [26], every hyperplane of the generalized
quadrangle Q(4, q) is either a singular hyperplane, a (q+1)×(q+1)-subgrid or
an ovoid. A hyperplane of Q(4, q) is called classical if it is either a singular
hyperplane, a (q + 1) × (q + 1)-subgrid or a classical ovoid. The classical
hyperplanes of Q(4, q) are precisely those hyperplanes of Q(4, q) which arise
from an embedding.

Lemma 2.3 If G1 and G2 are two distinct classical hyperplanes of Q(4, q),
then through every point x ∈ Q(4, q)\(G1∪G2), there exists a unique classical
hyperplane Gx through x satisfying Gx ∩G1 = G1 ∩G2 = G2 ∩Gx.

Proof. Let Q(4, q) be embedded in the projective space PG(4, q). Let Πi,
i ∈ {1, 2}, be the unique hyperplane of PG(4, q) such that Gi = Πi ∩Q(4, q).
Since dim(Π1∩Π2) = 2 and Q(4, q) does not contain planes, Π1∩Π2 intersects
Q(4, q) in one of the following: (i) a point p; (ii) a line L; (iii) the union of two
distinct lines; (iv) a nondegenerate conic. If case (i) occurs, then since G1∩G2

is a hyperplane of both G1 and G2, there exists an i ∈ {1, 2} such that Gi is
a classical ovoid of Q(4, q) containing p and G3−i is either a classical ovoid of
Q(4, q) containing p or the singular hyperplane of Q(4, q) with deepest point
p. If case (ii) occurs, then since G1 ∩G2 is a hyperplane of both G1 and G2,
G1 and G2 are necessarily singular hyperplanes with deepest points on L.
Suppose now that G is a classical hyperplane of Q(4, q) through x satisfying
G1 ∩ G = G1 ∩ G2 = G2 ∩ G and let Π denote the unique hyperplane of
PG(4, q) containing G.
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If case (iii) or (iv) occurs, then Π is necessarily equal to 〈Π1 ∩ Π2, x〉. It
follows that Gx := 〈Π1 ∩ Π2, x〉 ∩ Q(4, q) is the unique classical hyperplane
of Q(4, q) satisfying Gx ∩G1 = G1 ∩G2 = G2 ∩Gx.

If case (i) occurs, then without loss of generality, we may suppose that G1

is a classical ovoid of Q(4, q) containing p. Since G1∩G2 is a point, Π1∩Π2 is
the tangent hyperplane at the point G1∩G2 of the elliptic quadric Π1∩Q(4, q)
of Π1. Similarly, since G ∩ G1 = G1 ∩ G2 is a point, Π ∩ Π1 must be the
tangent hyperplane at the point G1 ∩G2 of the elliptic quadric Π1 ∩Q(4, q)
of Π1. Since Π∩Π1 = Π1∩Π2, we necessarily have Π = 〈Π1∩Π2, x〉. Hence,
Gx := 〈Π1 ∩ Π2, x〉 ∩ Q(4, q) is the unique classical hyperplane of Q(4, q)
satisfying Gx ∩G1 = G1 ∩G2 = G2 ∩Gx.

If case (ii) occurs with G1 ∩ G2 = L, then G1 and G2 must be singular
hyperplanes with deepest point on L. Since G ∩ G1 = G1 ∩ G2 = L, also
G must be a singular hyperplane with deepest point on L. Since x ∈ G, G
necessarily is the singular hyperplane of Q(4, q) with deepest point πL(x).
So, also in this case, there exists a unique classical hyperplane Gx in Q(4, q)
satisfying Gx ∩G1 = G1 ∩G2 = G2 ∩Gx. This hyperplane Gx coincides with
〈Π1 ∩ Π2, x〉 ∩Q(4, q). 2

Definition. By Payne and Thas [26], every hyperplane of the generalized
quadrangle H(3, q2) is either a singular hyperplane or an ovoid. A hyperplane
of H(3, q2) is called classical if it is either a singular hyperplane or a classical
ovoid. The classical hyperplanes of H(3, q2) are precisely those hyperplanes
of H(3, q2) which arise from an embedding.

Lemma 2.4 If G1 and G2 are two distinct classical hyperplanes of H(3, q2),
then through every point x ∈ H(3, q2) \ (G1 ∪ G2), there exists a unique
classical hyperplane Gx satisfying Gx ∩G1 = G1 ∩G2 = G2 ∩Gx.

Proof. Let H(3, q2) be embedded in the projective space PG(3, q2). Let Πi,
i ∈ {1, 2}, be the unique plane of PG(3, q2) such that Gi = Πi ∩ H(3, q2).
Since dim(Π1 ∩Π2) = 1, Π1 ∩Π2 intersects H(3, q2) in either a point, a Baer
subline of Π1 ∩ Π2 or the whole line Π1 ∩ Π2. If Π1 ∩ Π2 ∩ H(3, q2) is a
point p, there exists an i ∈ {1, 2} such that Gi is a classical ovoid of H(3, q2)
containing p and G3−i is either a classical ovoid of H(3, q2) containing p
or the singular hyperplane of H(3, q2) with deepest point p. Suppose now
that G is a classical hyperplane of H(3, q2) through x satisfying G1 ∩ G =
G1 ∩G2 = G2 ∩G and let Π denote the unique hyperplane of PG(3, q2) such
that G = Π ∩H(3, q2).

If Π1 ∩ Π2 intersects H(3, q2) in either a Baer subline of Π1 ∩ Π2 or the
whole line Π1 ∩Π2, then Π necessarily coincides with 〈Π1 ∩Π2, x〉. Hence, in
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these cases Gx := 〈Π1 ∩ Π2, x〉 ∩H(3, q2) is the unique classical hyperplane
of H(3, q2) satisfying Gx ∩G1 = G1 ∩G2 = G2 ∩Gx.

Suppose Π1 ∩ Π2 intersects H(3, q2) in a point. Then without loss of
generality, we may suppose that G1 is a classical ovoid of H(3, q2). Since
G1∩G2 is a point, the line Π1∩Π2 is the tangent line at the point G1∩G2 of
the unital Π1 ∩H(3, q2) of Π1. Similarly, since G ∩G1 = G1 ∩G2 is a point,
Π∩Π1 must be the tangent line at the point G1∩G2 of the unital Π1∩H(3, q2)
of Π1. Since Π∩Π1 = Π1∩Π2, we necessarily have Π = 〈Π1∩Π2, x〉. Hence,
Gx := 〈Π1 ∩ Π2, x〉 ∩ H(3, q2) is the unique classical hyperplane of H(3, q2)
satisfying Gx ∩G1 = G1 ∩G2 = G2 ∩Gx. 2

3 The structure of the sets ΛH(x), x ∈ H
Recall that if H is a hyperplane of a dual polar space ∆ and if x ∈ H, then
ΛH(x) denotes the set of lines through x contained in H. We can regard
ΛH(x) as a set of points of the projective space Res∆(x).

Lemma 3.1 If H is a hyperplane of the dual polar space ∆ = DQ(2n, q),
n ≥ 2, arising from its spin-embedding, then for every point x of H, ΛH(x)
is either a hyperplane of Res∆(x) or the whole set of points of Res∆(x).

Proof. Every hyperplane of DQ(2n, q), n ≥ 2, arising from its spin-
embedding is locally singular, see e.g. De Bruyn [14, Proposition 1.2]. Now,
by Lemma 3.2 of Cardinali, De Bruyn and Pasini [6], if x is a point of a locally
singular hyperplane H of ∆ = DQ(2n, q), then ΛH(x) is either a hyperplane
of Res∆(x) or the whole set of points of Res∆(x). 2

For a proof of the following two lemmas (3.2 and 3.3), we refer to Cardinali
and De Bruyn [5, Corollary 1.5] or Pasini [25, Theorem 9.3].

Lemma 3.2 If H is a hyperplane of the dual polar space ∆ = DW (2n−1, q),
n ≥ 2, arising from its Grassmann-embedding, then for every point x of H,
ΛH(x) is a possibly degenerate quadric of Res∆(x).

Remark. In Lemma 3.2, we have considered the whole point-set ofRes∆(x) ∼=
PG(n − 1, q) as a degenerate quadric of Res∆(x). There are indeed hyper-
planes of DW (2n−1, q), n ≥ 2, arising from its Grassmann-embedding which
have deep points, e.g. the singular hyperplanes of DW (2n− 1, q).

Lemma 3.3 If H is a hyperplane of the dual polar space ∆ = DH(2n−1, q2),
n ≥ 2, arising from its Grassmann-embedding, then for every point x of H,
ΛH(x) is a possibly degenerate Hermitian variety of Res∆(x).
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Remark. In Lemma 3.3, we have considered the whole point-set ofRes∆(x) ∼=
PG(n−1, q2) as a degenerate Hermitian variety of Res∆(x). There are indeed
hyperplanes of DH(2n−1, q2), n ≥ 2, arising from its Grassmann-embedding
which have deep points, e.g. the singular hyperplanes of DH(2n− 1, q2).

We now prove the following lemma.

Lemma 3.4 If H is a hyperplane of the dual polar space ∆ = DQ−(2n +
1, q), n ≥ 2, arising from its spin-embedding, then for every point x ∈ H,
ΛH(x) is a subspace of co-dimension at most 2 of Res∆(x).

Proof. The proof is divided into several steps.

Step 1. ΛH(x) is a subspace of Res∆(x).
Proof. Let L1 and L2 be two distinct lines through x contained in H, and
let Q ∼= H(3, q2) be the quad 〈L1, L2〉. Since the generalized quadrangle
H(3, q2) does not admit proper subquadrangles (see Payne and Thas [26]),
Q ∩ H is either Q, an ovoid of Q or a singular hyperplane of Q. Since
L1 ∪ L2 ⊆ H, there are two possibilities. Either Q ⊆ H or Q ∩ H is the
singular hyperplane of Q with deepest point x. In either case, every line of
Q through x is contained in H. This proves that ΛH(x) is a subspace of
Res∆(x).

Step 2. The lemma holds if n = 2.
Proof. Obviously, every subspace of Res∆(x) ∼= PG(1, q) has co-dimension
at most 2.

Step 3. The lemma holds if n = 3.
Proof. By De Bruyn [14, Theorem 1.5], there are three types of hyperplanes
in DQ−(7, q) which arise from its spin-embedding: the singular hyperplanes,
the so-called extensions of the classical ovoids in the quads and the so-called
hexagonal hyperplanes.

(1) Suppose H is the singular hyperplane of DQ−(7, q) with deepest point
x and let y be an arbitrary point of H. If d(x, y) ≤ 1, then ΛH(y) is the
whole set of points of Res∆(y). If d(x, y) = 2, then ΛH(y) is a hyperplane of
Res∆(y).

(2) Suppose H is the extension of a classical ovoid O in a quad Q of
DQ−(7, q). Then H is the hyperplane O∪∆1(O) of ∆. Let y be an arbitrary
point of H. If y 6∈ Q, then the subspace ΛH(y) of Res∆(y) has co-dimension
2. If y ∈ Q \ O, then ΛH(y) is a hyperplane of Res∆(y) and if y ∈ O, then
ΛH(y) coincides with the whole set of points of Res∆(y).

(3) Let Q(6, q) be a nonsingular parabolic quadric which is obtained by
intersecting Q−(7, q) with a hyperplane of the ambient projective space of
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Q−(7, q). Let G be a set of generators (= maximal subspaces) of Q(6, q)
which defines a so-called hexagonal hyperplane G of the dual polar space
DQ(6, q) associated with Q(6, q). [The hyperplane G of DQ(6, q) satisfies the
following properties (see Shult [29]): (i) every quad of DQ(6, q) is singular
with respect to G; (ii) the points and lines of DQ(6, q) contained in G define
a split-Cayley hexagon H(q) (see Van Maldeghem [34] for the definition of
this generalized polygon); (iii) for every point x ∈ G, there exists a unique
quad Q of DQ(6, q) through x such that x⊥ ∩ G = x⊥ ∩ Q.] Let G ′ denote
the set of generators α of Q−(7, q) not contained in Q(6, q) such that every
generator of Q(6, q) through α ∩ Q(6, q) belongs to G. Then by Pralle [28],
H := G ∪ G ′ is a hyperplane of DQ−(7, q). We call G ∪ G ′ a hexagonal
hyperplane of DQ−(7, q).

Now, let α be an arbitrary point of H, i.e. a generator of Q−(7, q) be-
longing to G ∪ G ′.

If α ∈ G ′, then the line ofDQ−(7, q) corresponding with the line α∩Q(6, q)
of Q−(7, q) is completely contained in H. So, the subspace ΛH(α) of Res∆(α)
has co-dimension at least 2. It has co-dimension precisely 2 since every point
of α \ Q(6, q) corresponds with a quad of DQ−(7, q) which is ovoidal with
respect to H, see Pralle [28, Section 5.2].

If α ∈ G, then by property (iii) mentioned above there exists a unique
point x ∈ α such that every generator of Q(6, q) which intersects α in a line
through x belongs to G. Then every generator of Q−(7, q) which intersects
α in a line through x belongs to H, in other words, every line of DQ−(7, q)
through α contained in the quad Qx of DQ−(7, q) corresponding with x is
contained in H. So, the subspace ΛH(α) of Res∆(α) has co-dimension at
most 1. It has co-dimension precisely 1, since a hexagonal hyperplane of
DQ−(7, q) does not admit deep points, see Pralle [28, Section 5.2].

Step 4. The lemma holds if n ≥ 4.
Proof. In view of Step 1, it suffices to show that every plane of Res∆(x)
has at least one point in common with ΛH(x). Now, a plane of Res∆(x)
corresponds with a hex through x which by Step 3 contains at least one line
through x which is contained in H. [If F is a hex, then the embedding of F
induced by the spin-embedding of ∆ is isomorphic to the spin-embedding of
F . So, if F is not contained in H, then the hyperplane H ∩ F of F arises
from the spin-embedding of F .] 2

4 Proof of the Main Theorem

Let (∆, e) be as in (I), (II), (III) or (IV) of Section 1.2. Put Ne := 3 if case
(II) or (III) occurs. Put Ne := 5 if case (I) or (IV) occurs.
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Definition. A point x of a hyperplane H of ∆ is called nice (with respect to
H) if the following property is satisfied:

• Case (I): ΛH(x) is a possibly degenerate quadric of Res∆(x);

• Case (II): ΛH(x) is a possibly degenerate Hermitian variety ofRes∆(x);

• Case (III): ΛH(x) is a subspace of co-dimension at most 1 of Res∆(x);

• Case (IV): ΛH(x) is a subspace of co-dimension at most 2 of Res∆(x).

Lemma 4.1 Let F be a convex subspace of diameter δ ≥ 2 of ∆ and let
eF : F → 〈e(F )〉Σ denote the embedding of F induced by e. Then (F, eF )
is of the same type (i.e., (I), (II), (III) or (IV)) as (∆, e). Let H be a
hyperplane of ∆ such that F 6⊆ H, and let x be a point of H ∩ F which is
nice with respect to H. Then x is also nice with respect to the hyperplane
F ∩H of F .

Proof. With F there corresponds a subspace πF of dimension δ − 1 of
Res∆(x). The lemma is a straightforward corollary of the fact that πF in-
tersects every possibly degenerate quadric (possibly degenerate Hermitian
variety, respectively subspace of co-dimension at most µ) of Res∆(x) in a
possibly degenerate quadric (possibly degenerate Hermitian variety, respec-
tively subspace of co-dimension at most µ) of πF . 2

We leave the proof of the following lemma as a straightforward exercise to
the reader.

Lemma 4.2 Let x and y be two points of ∆ at maximal distance n from each
other. For every convex subspace F of diameter δ through x, let θ(F ) denote
the unique convex subspace of diameter n− δ through y which intersects F in
a unique point. Then θ defines an isomorphism between the projective space
Res∆(x) and the dual of the projective space Res∆(y).

Lemma 4.3 Let H be a hyperplane of ∆ and let x and y be two points of H
at distance δ ≥ Ne from each other which are nice with respect to H. Then
there exists a line Lx ⊆ H ∩ 〈x, y〉 through x and a line Ly ⊆ H ∩ 〈x, y〉
through y such that Lx‖Ly and d(Lx, Ly) = δ − 1.

Proof. Put k := 2 if Ne = 3 and k := 3 if Ne = 5. By Lemma 4.1 and the
fact that x is nice with respect to H, there exist k lines L1, L2, . . . , Lk through
x which are contained in 〈x, y〉∩H and for which diam(〈L1, L2, . . . , Lk〉) = k.
Let y′ denote the unique point of 〈L1, L2, . . . , Lk〉 nearest to y. Then 〈y, y′〉
has diameter δ − k. Again by Lemma 4.1 and the fact that y is nice with
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respect to H, there exists a line Ly through y contained in 〈x, y〉 ∩ H, but
not in 〈y, y′〉. For every i ∈ {1, . . . , k}, let Fi denote the unique max of 〈x, y〉
through y meeting Li. Then F1 ∩ F2 ∩ · · · ∩ Fk = 〈y, y′〉 by Lemma 4.2. So,
there exists an i ∈ {1, . . . , k} such that Fi does not contain Ly. For such an
i, put Lx := Li. Then Lx and Ly are parallel lines at distance δ − 1 from
each other. 2

Now, let H1 and H2 be two distinct hyperplanes of He. Define the graph
Γ := Γ(H1, H2) as in Section 1.2. Let C denote the set of all connected
components of Γ and put

H := {C ∪ (H1 ∩H2) |C ∈ C}.

Lemma 4.4 If H is a hyperplane of ∆ such that H∩H1 = H1∩H2 = H2∩H,
then every point x ∈ H \ (H1 ∩H2) is nice with respect to H.

Proof. Since 〈e(Hi)〉Σ ∩ e(P ) = e(Hi) for every i ∈ {1, 2}, 〈e(H1)〉Σ and
〈e(H2)〉Σ are two distinct hyperplanes of Σ and 〈e(H1)〉Σ∩〈e(H2)〉Σ does not
contain the point e(x). Let Π be the hyperplane 〈〈e(H1)〉Σ∩〈e(H2)〉Σ, e(x)〉Σ
of Σ and let H ′ be the hyperplane e−1(Π ∩ e(P )) of ∆. Then x ∈ H ′ and
H ′ ∩ H1 = H1 ∩ H2 = H2 ∩ H ′. The point x is nice with respect to H ′ by
Lemmas 3.1, 3.2, 3.3 and 3.4. Now, a line through x is contained in H if and
only if it contains a point of H ∩H1 = H1 ∩H2. Similarly, a line through x
is contained in H ′ if and only if it contains a point of H ′ ∩H1 = H1 ∩H2. It
follows that ΛH(x) = ΛH′(x). Hence, x is also nice with respect to H. 2

Lemma 4.5 If H is a hyperplane of H′e satisfying H ∩ H1 = H1 ∩ H2 =
H2 ∩H, then H belongs to H.

Proof. Since H is maximal subspace of ∆ and H1∩H2 ⊆ H is not a maximal
subspace of ∆ (H1 ∩H2 is properly contained in the maximal subspaces H1

and H2), there exists a point x∗ ∈ H \ (H1 ∪H2). Let C denote the unique
element of C containing x∗. We will prove that H = C ∪ (H1 ∩H2) ∈ H.

Step 1. C ∪ (H1 ∩H2) ⊆ H.
Proof. In view of the facts that x∗ ∈ C ∩H and H1 ∩H2 ⊆ H, we need to
show the following: if x ∈ H \ (H1 ∩H2) and y is a vertex of Γ adjacent to
x, then also y ∈ H. We distinguish two cases:

Suppose d(x, y) = 1. Then the line xy meets H1 ∩H2 = H ∩H1. Since
H is a subspace, xy ⊆ H. Hence, y ∈ H.

Suppose d(x, y) = 2. Let Q be the unique quad through the points x and
y. Then Q∩H1 6= Q∩H2 and Gx = Gy, where Gx (respectively Gy) denotes
the unique element of [Q ∩H1, Q ∩H2]′ containing x (respectively y). Since
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H ∩H1 = H1 ∩H2 = H2 ∩H, (Q ∩H) ∩ (Q ∩H1) = (Q ∩H1) ∩ (Q ∩H2) =
(Q ∩ H2) ∩ (Q ∩ H). Since H1, H2 ∈ He, H1 ∩ Q and H2 ∩ Q belong to
HQ := HeQ

. Since H ∈ H′e, also H ∩Q belongs to HQ. By Lemmas 2.1, 2.2,
2.3 and 2.4, Q∩H ∈ [Q∩H1, Q∩H2]′. From x ∈ Q∩H, it then follows that
Q ∩H = Gx = Gy. Hence, y ∈ H.

Step 2. H ⊆ C ∪ (H1 ∩H2).
Proof. We will prove the following by induction on i ≥ 1: if x, y ∈ H \
(H1 ∩H2) with d(x, y) = i and x ∈ C, then also y ∈ C. The property then
immediately follows from the fact that x∗ ∈ H ∩ C.

(i) If d(x, y) = 1, then the line xy meets H ∩ H1 = H1 ∩ H2. Hence, x
and y are adjacent points of Γ and y ∈ C.

(ii) Suppose d(x, y) = 2 and consider the quad Q := 〈x, y〉. If Q ∩H1 =
Q ∩ H2, then since Q ∩ H1 = Q ∩ H2 is a maximal subspace of Q and
x ∈ C ∩ (Q \ (Q∩H1)), also y ∈ C by successive application of (i). Suppose
therefore that Q∩H1 6= Q∩H2. As above, the fact that H1∩H = H1∩H2 =
H ∩ H2 implies that Q ∩ H ∈ [Q ∩ H1, Q ∩ H2]′. Since x, y ∈ Q ∩ H and
x ∈ C, also y ∈ C.

(iii) Suppose that there exists a line Lx ⊆ H ∩〈x, y〉 through x and a line
Ly ⊆ H∩〈x, y〉 through y such that every point of Lx has distance d(x, y)−1
from Ly. (Then Lx‖Ly.) Let x′, respectively y′, denote the unique point of
Lx, respectively Ly, contained in H ∩ H1 = H1 ∩ H2. Since |Lx|, |Ly| ≥ 3,
there exists a point x′′ ∈ Lx \ {x′} and a point y′′ ∈ Ly \ {y′} such that
d(x′′, y′′) = d(x, y) − 1. Since x ∈ C, x′′ ∈ C by (i). By the induction
hypothesis, it then follows that y′′ ∈ C. By (i), we finally obtain that y ∈ C.

In the sequel, we suppose that d(x, y) ≥ 3 and that there exists no pair
(Lx, Ly) of lines satisfying (i) x ∈ Lx ⊆ H ∩ 〈x, y〉; (ii) y ∈ Ly ⊆ 〈x, y〉 ∩H;
(iii) every point of Lx has distance d(x, y) − 1 from Ly. By Lemmas 4.3
and 4.4, this implies that d(x, y) < Ne. So, we have that d(x, y) ∈ {3, 4},
n ≥ 3 and e is either the Grassmann-embedding of the dual polar space
DW (2n−1, q) or the spin-embedding of the dual polar space DQ−(2n+1, q).

(iv) Suppose first that d(x, y) = 3. If L is a line through y contained in
〈x, y〉∩H, then since case (iii) does not occur, every line through x contained
in 〈x, y〉∩H is necessarily contained in the unique quad through x meeting L.
If L1 and L2 are two lines through y contained in 〈x, y〉 ∩H, then since case
(iii) does not occur, every line through x contained in 〈x, y〉 ∩H necessarily
coincides with the unique line through x meeting the quad 〈L1, L2〉. [By
Lemma 4.2, this line coincides with the intersection of the two quads through
x which meet either L1 or L2.] So, by Lemmas 4.1 and 4.4, there are three
possibilities:
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(a) x⊥ ∩ 〈x, y〉 ∩H is a line Lx through x and 〈x, y〉 ∩ y⊥ ∩H is a line Ly

through y. Moreover, d(Lx, Ly) = 1.
(b) x⊥ ∩ 〈x, y〉 ∩H is a line Lx through x and 〈x, y〉 ∩ y⊥ ∩H = y⊥ ∩Qy,

where Qy is the unique quad through y meeting Lx in a point.
(c) y⊥ ∩ 〈x, y〉 ∩H is a line Ly through y and 〈x, y〉 ∩ x⊥ ∩H = x⊥ ∩Qx,

where Qx is the unique quad through x meeting Ly in a point.

We first treat case (b). Put {x′} = Lx ∩Qy. Since x′ ∈ H and y⊥ ∩Qy ⊆
H, Qy ⊆ H. If there exists a point z ∈ (x′⊥∩Qy)\(H1∩H2), then by (i) and
(ii) above, z ∈ C and y ∈ C since d(x, z) ≤ 2 and d(z, y) ≤ 2. So, we may
suppose that x′⊥∩Qy ⊆ H1∩H2. Since x⊥∩〈x, y〉∩H is the line Lx, H∩〈x, y〉
is not the singular hyperplane of 〈x, y〉 with deepest point x′. Hence, there
exists a point z′ ∈ 〈x, y〉∩∆3(x′)∩H. [Otherwise, H∩〈x, y〉 ⊆ ∆≤2(x′)∩〈x, y〉
and this would imply that H ∩ 〈x, y〉 = ∆≤2(x′) ∩ 〈x, y〉 since H ∩ 〈x, y〉
is a maximal subspace of 〈x, y〉.] The point z := πQy(z′) has distance 2
from x′ and distance 3 from x. Since H1 ∩H2 ∩ Qy is a proper subspace of

Qy (recall y 6∈ H1 ∩ H2) containing the maximal subspace x′⊥ ∩ Qy of Qy,

H1 ∩H2 ∩Qy = x′⊥ ∩Qy. So, z ∈ H \ (H1 ∩H2). Since zz′ ⊆ H and zz′‖Lx,
it follows that z ∈ C by (iii). So, also y ∈ C by either (i) or (ii).

Next, we treat case (c). Put {y′} = Ly∩Qx. Since y′ ∈ H and x⊥∩Qx ⊆
H, Qx ⊆ H. If there exists a point z ∈ (y′⊥∩Qx)\(H1∩H2), then by (i) and
(ii) above, z ∈ C and y ∈ C since d(x, z) ≤ 2 and d(z, y) ≤ 2. So, we may
suppose that y′⊥∩Qx ⊆ H1∩H2. Since y⊥∩〈x, y〉∩H is a line Ly, H∩〈x, y〉
is not the singular hyperplane of 〈x, y〉 with deepest point y′. Hence, there
exists a point z′ ∈ 〈x, y〉 ∩∆3(y′) ∩H. The point z := πQx(z′) has distance
2 from y′ and distance 3 from y. Moreover, z 6∈ H1 ∪H2. Since x ∈ C, also
z ∈ C by either (i) or (ii). Since zz′ ⊆ H and zz′‖Ly, it follows that y ∈ C
by (iii).

Finally, we treat case (a). Let x′ and y′ be the unique points of Lx and Ly,
respectively, such that d(x′, y′) = 1. Notice that x′y′ ⊆ H. If x′ 6∈ H1 ∩H2,
then x′ ∈ C and y ∈ C since d(x, x′) = 1 and d(x′, y) = 2. Similarly, if
y′ 6∈ H1 ∩ H2, then y′ ∈ C and y ∈ C since d(x, y′) = 2 and d(y′, y) = 1.
So, we may suppose that x′, y′ ∈ H1 ∩H2. Then Lx \ {x′} ⊆ H \ (H1 ∩H2)
and Ly \ {y′} ⊆ H \ (H1 ∩ H2). Since y⊥ ∩ 〈x, y〉 ∩ H = Ly, the quad
〈x′, y〉 is singular with respect to H with deepest point y′. Now, let L be
a line of 〈x′, y〉 through x′ different from x′y′. Then L is not contained in
H. Since x⊥ ∩ 〈x, y〉 ∩ H = Lx, the quad 〈x, L〉 is singular with respect to
H. Let u denote its deepest point. Since x⊥ ∩ 〈x, y〉 ∩H = Lx and L 6⊆ H,
u ∈ xx′ \ {x, x′}. By (i), u ∈ C. Since u⊥ ∩ 〈x, y〉 ∩H is the union of at least
2 lines through u, one of the previous cases applies and we can conclude that
y ∈ C.
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(v) Suppose now that d(x, y) = 4. If L1, L2 and L3 are 3 lines through
x contained in 〈x, y〉 ∩H such that 〈L1, L2, L3〉 is a hex, then since case (iii)
does not occur, every line through y contained in 〈x, y〉 ∩H is contained in
F1 ∩ F2 ∩ F3, where Fi, i ∈ {1, 2, 3} is the unique hex through y meeting
Li. By Lemma 4.2, F1 ∩ F2 ∩ F3 is the unique line through y meeting the
hex 〈L1, L2, L3〉. So, y⊥ ∩ 〈x, y〉 ∩ H is contained in the line F1 ∩ F2 ∩ F3.
This contradicts Lemmas 4.1 and 4.4. Hence, there exists a quad Qx ⊆ 〈x, y〉
through x such that x⊥ ∩ 〈x, y〉 ∩H ⊆ Qx ∩ x⊥. By Lemmas 4.1 and 4.4, it
then follows that x⊥ ∩ 〈x, y〉 ∩H = Qx ∩ x⊥. Similarly, there exists a quad
Qy through y such that y⊥ ∩ 〈x, y〉 ∩H = y⊥ ∩Qy. Since case (iii) does not
occur, Qx and Qy intersect in a unique point z. Let L be an arbitrary line of
Qx through x. Then L contains a unique point of H ∩H1 = H1 ∩H2. Let x′

denote a point of L \ {x} not contained in H1 ∩H2. Then x′ ∈ C by (i). If
d(x′, y) = 3, then y ∈ C by (iii) or (iv). So, we may suppose that d(x′, y) = 4.
Then Qx is the unique quad through x′ meeting Qy (necessarily in the point

z). If x′⊥ ∩ 〈x, y〉 ∩ H 6= x′⊥ ∩ Qx, then by the above discussion y ∈ C.
Suppose therefore that x′⊥ ∩ Qx = x′⊥ ∩ 〈x, y〉 ∩ H. Since x⊥ ∩ Qx ⊆ H
and x′⊥ ∩ Qx ⊆ H, Qx ⊆ H. In particular, we have z ∈ H. Since also
y⊥ ∩ Qy ⊆ H, Qy ⊆ H. If there exists a point u ∈ (z⊥ ∩ Qy) \ (H1 ∩ H2),
then u ∈ C and y ∈ C since x ∈ C, d(x, u) ≤ 3 and d(u, y) ≤ 2. So, we may
assume that z⊥ ∩ Qy ⊆ H1 ∩ H2. A similar reasoning shows that we may
assume that z⊥ ∩ Qx ⊆ H1 ∩ H2. Now, let R be a quad of 〈x, y〉 through
x such that R ∩ Qx = {x}. Then R is ovoidal with respect to H, since
x⊥ ∩ 〈x, y〉 ∩H = x⊥ ∩Qx. In other words, R ∩H is an ovoid of R.

Suppose R∩H \ {x} ⊆ H1 ∩H2. If M is a line of R contained in Hi (i ∈
{1, 2}), then x 6∈M and any line of R through a point of M \ (H ∪{πM(x)})
is contained in Hi as well as any line of R through πM(x) distinct from
xπM(x). So, R ⊆ Hi, in contradiction with the fact that x 6∈ Hi. Hence,
R∩Hi does not contain lines. So, R∩H1 and R∩H2 are ovoids of R containing
R ∩ H \ {x}. This would however imply that R ∩ H1 = R ∩ H2 = R ∩ H,
which is in contradiction with the fact that x 6∈ H1 ∩H2.

Hence, there exists a point v ∈ R∩H \{x} not belonging to H1∩H2. By
(ii), v ∈ C. Now, d(v, z) = d(v, πQx(v)) + d(πQx(v), z) = d(v, x) + d(x, z) =
2+2 = 4. On the other hand, since 4 = d(v, z) = d(v, πQy(v))+d(πQy(v), z),
we have d(v,Qy) = 2 and v′ := πQy(v) lies at distance 2 from z. By (ii),
v′ ∈ C. (Notice that v′ 6∈ H1 ∩ H2 since z⊥ ∩ Qy ⊆ H1 ∩ H2 is a maximal
subspace of Qy and y 6∈ H1 ∩H2.) By (i) or (ii), it then follows that y ∈ C.

2

We can now prove the Main Theorem. Obviously, (3) implies (2) and by
Lemma 4.5, (2) implies (1).
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Now, let H be an arbitrary element of H. Let x be an arbitrary point of
H \ (H1 ∩ H2). Then H = (H1 ∩ H2) ∪ C, where C is the connected com-
ponent of Γ containing x. Let H ′ denote the unique hyperplane of [H1, H2]′

containing x. Then since (3) ⇒ (2) ⇒ (1), H ′ ∈ H. Since x ∈ H ′, we have
H ′ = (H1 ∩H2) ∪ C = H. Hence, H = H ′ ∈ [H1, H2]′. So, (1) also implies
(3) and every element of H is a hyperplane of ∆.

Note. Very recently, see [19], it was shown that the conclusion of Lemma
3.4 is also valid for infinite dual polar spaces of type DQ−(2n + 1,K). The
conclusion of Lemma 2.4 is however not necessarily valid in the infinite case
due to counterexamples. The reasoning given in and after the proof of Lemma
4.5 then allows us to draw the following conclusion: if H1 and H2 are two
distinct hyperplanes of DQ−(2n+ 1,K) arising from its spin-embedding and
H is as defined in Section 1.2, then H = [H1, H2]′.
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