43 research outputs found

    A Taxonomy of Deep Convolutional Neural Nets for Computer Vision

    Get PDF
    Traditional architectures for solving computer vision problems and the degree of success they enjoyed have been heavily reliant on hand-crafted features. However, of late, deep learning techniques have offered a compelling alternative -- that of automatically learning problem-specific features. With this new paradigm, every problem in computer vision is now being re-examined from a deep learning perspective. Therefore, it has become important to understand what kind of deep networks are suitable for a given problem. Although general surveys of this fast-moving paradigm (i.e. deep-networks) exist, a survey specific to computer vision is missing. We specifically consider one form of deep networks widely used in computer vision - convolutional neural networks (CNNs). We start with "AlexNet" as our base CNN and then examine the broad variations proposed over time to suit different applications. We hope that our recipe-style survey will serve as a guide, particularly for novice practitioners intending to use deep-learning techniques for computer vision.Comment: Published in Frontiers in Robotics and AI (http://goo.gl/6691Bm

    Keeping the Human in the Loop: Towards Automatic Visual Monitoring in Biodiversity Research

    Get PDF
    More and more methods in the area of biodiversity research grounds upon new opportunities arising from modern sensing devices that in principle make it possible to continuously record sensor data from the environment. However, these opportunities allow easy recording of huge amount of data, while its evaluation is difficult, if not impossible due to the enormous effort of manual inspection by the researchers. At the same time, we observe impressive results in computer vision and machine learning that are based on two major developments: firstly, the increased performance of hardware together with the advent of powerful graphical processing units applied in scientific computing. Secondly, the huge amount of, in part, annotated image data provided by today's generation of Facebook and Twitter users that are available easily over databases (e.g., Flickr) and/or search engines. However, for biodiversity applications appropriate data bases of annotated images are still missing. In this presentation we discuss already available methods from computer vision and machine learning together with upcoming challenges in automatic monitoring in biodiversity research. We argue that the key element towards success of any automatic method is the possibility to keep the human in the loop - either for correcting errors and improving the system's quality over time, for providing annotation data at moderate effort, or for acceptance and validation reasons. Thus, we summarize already existing techniques from active and life-long learning together with the enormous developments in automatic visual recognition during the past years. In addition, to allow detection of the unexpected such an automatic system must be capable to find anomalies or novel events in the data. We discuss a generic framework for automatic monitoring in biodiversity research which is the result of collaboration between computer scientists and ecologists of the past years. The key ingredients of such a framework are initial, generic classifier, for example, powerful deep learning architectures, active learning to reduce costly annotation effort by experts, fine-grained recognition to differentiate between visually very similar species, and efficient incremental update of the classifier's model over time. For most of these challenges, we present initial solutions in sample applications. The results comprise the automatic evaluation of images from camera traps, attribute estimation for species, as well as monitoring in-situ data in environmental science. Overall, we like to demonstrate the potentials and open issues in bringing together computer scientists and ecologist to open new research directions for either area

    Pairwise Confusion for Fine-Grained Visual Classification

    Full text link
    Fine-Grained Visual Classification (FGVC) datasets contain small sample sizes, along with significant intra-class variation and inter-class similarity. While prior work has addressed intra-class variation using localization and segmentation techniques, inter-class similarity may also affect feature learning and reduce classification performance. In this work, we address this problem using a novel optimization procedure for the end-to-end neural network training on FGVC tasks. Our procedure, called Pairwise Confusion (PC) reduces overfitting by intentionally {introducing confusion} in the activations. With PC regularization, we obtain state-of-the-art performance on six of the most widely-used FGVC datasets and demonstrate improved localization ability. {PC} is easy to implement, does not need excessive hyperparameter tuning during training, and does not add significant overhead during test time.Comment: Camera-Ready version for ECCV 201

    Local Temporal Bilinear Pooling for Fine-grained Action Parsing

    Full text link
    Fine-grained temporal action parsing is important in many applications, such as daily activity understanding, human motion analysis, surgical robotics and others requiring subtle and precise operations in a long-term period. In this paper we propose a novel bilinear pooling operation, which is used in intermediate layers of a temporal convolutional encoder-decoder net. In contrast to other work, our proposed bilinear pooling is learnable and hence can capture more complex local statistics than the conventional counterpart. In addition, we introduce exact lower-dimension representations of our bilinear forms, so that the dimensionality is reduced with neither information loss nor extra computation. We perform intensive experiments to quantitatively analyze our model and show the superior performances to other state-of-the-art work on various datasets.Comment: 11 pages, 2 figures. Cam.
    corecore