6 research outputs found

    Fuzzy Rule-Based Domain Adaptation in Homogeneous and Heterogeneous Spaces

    Full text link
    © 2018 IEEE. Domain adaptation aims to leverage knowledge acquired from a related domain (called a source domain) to improve the efficiency of completing a prediction task (classification or regression) in the current domain (called the target domain), which has a different probability distribution from the source domain. Although domain adaptation has been widely studied, most existing research has focused on homogeneous domain adaptation, where both domains have identical feature spaces. Recently, a new challenge proposed in this area is heterogeneous domain adaptation where both the probability distributions and the feature spaces are different. Moreover, in both homogeneous and heterogeneous domain adaptation, the greatest efforts and major achievements have been made with classification tasks, while successful solutions for tackling regression problems are limited. This paper proposes two innovative fuzzy rule-based methods to deal with regression problems. The first method, called fuzzy homogeneous domain adaptation, handles homogeneous spaces while the second method, called fuzzy heterogeneous domain adaptation, handles heterogeneous spaces. Fuzzy rules are first generated from the source domain through a learning process; these rules, also known as knowledge, are then transferred to the target domain by establishing a latent feature space to minimize the gap between the feature spaces of the two domains. Through experiments on synthetic datasets, we demonstrate the effectiveness of both methods and discuss the impact of some of the significant parameters that affect performance. Experiments on real-world datasets also show that the proposed methods improve the performance of the target model over an existing source model or a model built using a small amount of target data

    CO2 emission based GDP prediction using intuitionistic fuzzy transfer learning

    Get PDF
    The industrialization has been the primary cause of the economic boom in almost all countries. However, this happened at the cost of the environment, as industrialization also caused carbon emissions to increase exponentially. According to the established literature, Gross Domestic Product (GDP) is related to carbon emissions (CO2) which could be optimally employed to precisely estimate a country's GDP. However, the scarcity of data is a significant bottleneck that could be handled using transfer learning (TL) which uses previously learned information to resolve new tasks, more specifically, related tasks. Notably, TL is highly vulnerable to performance degradation due to the deficiency of suitable information and hesitancy in decision-making. Therefore, this paper proposes ‘Intuitionistic Fuzzy Transfer Learning (IFTL)’, which is trained to use CO2 emission data of developed nations and is tested for its prediction of GDP in a developing nation. IFTL exploits the concepts of intuitionistic fuzzy sets (IFSs) and a newly introduced function called the modified Hausdorff distance function. The proposed IFTL is investigated to demonstrate its actual capabilities for TL in modeling hesitancy. To further emphasize the role of hesitancy modelled with IFSs, we propose an ordinary fuzzy set (FS) based transfer learning. The prediction accuracy of the IFTL is further compared with widely used machine learning approaches, extreme learning machines, support vector regression, and generalized regression neural networks. It is observed that IFTL capably ensured significant improvements in the prediction accuracy over other existing approaches whenever training and testing data have huge data distribution differences. Moreover, the proposed IFTL is deterministic in nature and presents a novel way for mathematically computing the intuitionistic hesitation degree.© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Unsupervised Heterogeneous Domain Adaptation via Shared Fuzzy Equivalence Relations

    Full text link
    © 1993-2012 IEEE. Unsupervised domain adaptation (UDA) aims to recognize newly emerged patterns in target domains, which may be unlabeled, by leveraging knowledge from patterns learnt from source domains. However, existing UDA models and algorithms still suffer from heterogeneous domains, known as the heterogeneous unsupervised domain adaptation (HeUDA) issue. To address this issue, this paper presents a novel HeUDA model via n-dimensional fuzzy geometry and fuzzy equivalence relations, called F-HeUDA. The n-dimensional fuzzy geometry is used to propose a metric to measure the similarity between features on one domain. Then, based on this metric, shared fuzzy equivalence relations (SFER) are proposed. The SFER can allow two domains to use the same α to get the same number of clustering categories. Through these clustering categories, knowledge from the heterogeneous source domain can be transferred to the unlabeled target domain. Different to existing HeUDA models, the proposed F-HeUDA model does not need that two domains must have the same number of instances. As a result, the proposed model has a better ability to handle the issue of small datasets. Experiments distributed across four real datasets were conducted to validate the proposed model. This testing regime demonstrates that the proposed model outperforms the state-of-The-Art models, especially when the target domain has very few instances

    Generalized hidden-mapping ridge regression, knowledge-leveraged inductive transfer learning for neural networks, fuzzy systems and kernel methods

    No full text
    2013-2014 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptRGCPolyU5134/12EPublishe

    Multistep Fuzzy Bridged Refinement Domain Adaptation Algorithm and Its Application to Bank Failure Prediction

    Full text link
    © 2015 IEEE. Machine learning plays an important role in data classification and data-based prediction. In some real-world applications, however, the training data (coming from the source domain) and test data (from the target domain) come from different domains or time periods, and this may result in the different distributions of some features. Moreover, the values of the features and/or labels of the datasets might be nonnumeric and involve vague values. Traditional learning-based prediction and classification methods cannot handle these two issues. In this study, we propose a multistep fuzzy bridged refinement domain adaptation algorithm, which offers an effective way to deal with both issues. It utilizes a concept of similarity to modify the labels of the target instances that were initially predicted by a shift-unaware model. It then refines the labels using instances that are most similar to a given target instance. These instances are extracted from mixture domains composed of source and target domains. The proposed algorithm is built on a basis of some data and refines the labels, thus performing completely independently of the shift-unaware prediction model. The algorithm uses a fuzzy set-based approach to deal with the vague values of the features and labels. Four different datasets are used in the experiments to validate the proposed algorithm. The results, which are compared with those generated by the existing domain adaptation methods, demonstrate a significant improvement in prediction accuracy in both the above-mentioned datasets
    corecore