4 research outputs found

    M-Channel Fast Hartley Transform Based Integer DCT for Lossy-to-Lossless Image Coding

    Get PDF
    This paper presents an M-channel (M=2n (n ∈ N)) integer discrete cosine transforms (IntDCTs) based on fast Hartley transform (FHT) for lossy-to-lossless image coding which has image quality scalability from lossy data to lossless data. Many IntDCTs with lifting structures have already been presented to achieve lossy-to-lossless image coding. Recently, an IntDCT based on direct-lifting of DCT/IDCT, which means direct use of DCT and inverse DCT (IDCT) to lifting blocks, has been proposed. Although the IntDCT shows more efficient coding performance than any conventional IntDCT, it entails many computational costs due to an extra information that is a key point to realize its direct-lifting structure. On the other hand, the almost conventional IntDCTs without an extra information cannot be easily expanded to a larger size than the standard size M=8, or the conventional IntDCT should be improved for efficient coding performance even if it realizes an arbitrary size. The proposed IntDCT does not need any extra information, can be applied to size M=2n for arbitrary n, and shows better coding performance than the conventional IntDCTs without any extra information by applying the direct-lifting to the pre- and post-processing block of DCT. Moreover, the proposed IntDCT is implemented with a half of the computational cost of the IntDCT based on direct-lifting of DCT/IDCT even though it shows the best coding performance

    Dual-DCT-Lifting-Based Lapped Transform with Improved Reversible Symmetric Extension

    Get PDF
    We present a lifting-based lapped transform (L-LT) and a reversible symmetric extension (RSE) in the boundary processing for more effective lossy-to-lossless image coding of data with various qualities from only one piece of lossless compressed data. The proposed dual-DCT-lifting-based LT (D2L-LT) parallel processes two identical LTs and consists of 1-D and 2-D DCT-liftings which allow the direct use of a DCT matrix in each lifting coefficient. Since the DCT-lifting can utilize any existing DCT software or hardware, it has great potential for elegant implementations that are dependent on the architecture and DCT algorithm used. In addition, we present an improved RSE (IRSE) that works by recalculating the boundary processing and solves the boundary problem that the DCT-lifting-based L-LT (DL-LT) has. We show that D2L-LT with IRSE mostly outperforms conventional L-LTs in lossy-to-lossless image coding

    CORDIC-ТЕХНИКА ДЛЯ ФИКСИРОВАННОГО УГЛА ВРАЩЕНИЯ В ОПЕРАЦИИ УМНОЖЕНИЯ КВАТЕРНИОНОВ

    Get PDF
    The article contains a number of solutions for the key element of paraunitary filter banks based on quaternionic algebra (Q-PUBF) – the multiplier of quaternions with usage of CORDIC (Coordinate Rotation Digital Computer) techniques for the fixed angle of rotation where, unlike known solutions, 4D rotation control parameters are represented by nonlinear function of shifts number of input operands of the microrotation operation. Suggested approach of the multiplier designing on a quaternion-constant allows reaching the maximum performance of the multiplier scheme with low use of resources, for example, of FPGA.Предлагается ряд решений ключевого элемента параунитарного банка фильтров на основе алгебры кватернионов – умножителя кватернионов с использованием CORDIC (Coordinate Rotation Digital Computer)-техники для фиксированного угла вращения, в которых в отличие от известных решений параметры управления 4D-вращением представляются нелинейной функцией числа сдвигов входных операндов операции микровращения. Предложенный подход проектирования умножителя на кватернион-константу позволяет достигать максимальной производительности схемы умножителя при скромном использовании ресурсов, например FPGA

    リフティング構造を利用した非分離型ウェーブレット変換のノイズ低減に関する研究

    Get PDF
    国立大学法人長岡技術科学大
    corecore