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Abstract  

 JPEG 2000, a compression standard based on the Discrete Wavelet 

Transformation (DWT) with entropy coding by a one-dimensional signal 

processing vertically and horizontally (a separation type structure), offers many 

novel features than its conventional standard JPEG especially for high-

resolution multimedia. The implementation in second generation wavelet 

transform is composed of the lifting steps which are computed in cascaded 

style. Hence, the main bottleneck in the scheme is the delay time taken for 

completion of each step. Presently, several non-separable factorization 

researches have been proposed as these can be utilized in minimizing the lifting 

scheme of the WT. In addition, the compatibility of the structure for both 

lossless and lossy image compression is restricted to three-dimensional data or 

higher. On the other hand, there is the particular issue related to noise within the 

lifting steps or on reduction of them is still an on-going interest. This 

dissertation firstly proposed non-separable lifting structure for three-

dimensional lossless and lossy compression. Afterwards, the noise in the lifting 

structure was analyzed and, the precise noise minimization methods are 

proposed. 

 As for the first proposal, this dissertation introduced 5/3 non-separable 

lifting structure for 3D lossless compression. By applying the two basic 



 

 

properties, the scheme reduced the lifting steps in the existing, separable lifting 

structure to non-separable lifting structure. Based on the evaluation result, the 

proposed non-separable method has higher PSNR in both frequency and the 

spatial domain. Also, the approach has better coding performance in both 

lossless and lossy coding within the same bit-rate. 

 Subsequently, 9/7 non-separable lifting structure for 3D lossy 

compression with minimum rounding noise was introduced. Comparing in 

lifting structure, non-separable 3D has minimum lifting step. However, 

rounding noise in non-separable 3D is larger than separable 3D. To clarify the 

minimum rounding noise structure, 6 rules were introduced for identifying non-

separable candidates with minimum rounding noise. After the observation of 

rounding noise in non-separable candidate and comparison between separable 

3D and non-separable 3D, the results showed that rounding noise of non-

separable 2D structure is minimum. 

 However, the reduction of lifting steps together with rounding operators 

in 9/7 non-separable structure caused the amplification in the rounding noise. In 

that case, the research further focuses on the rounding noise by introducing the 

scaling method which could also improve the reconstructed image quality.  

 Finally, for the moderating of the word length of the coefficient filter in 

the lifting structure which could increase the hardware complexity, the 

truncation method to the word length of the coefficient applied in the lifting 

structure is initiated. As a consequence, this leads to the truncation noise 

affecting the PSNR of the reconstructed image. To tackle the particular issue, an 

optimization procedure for the word length of the each coefficient was lastly 

proposed. 
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Chapter 1 

1. Introduction 

1.1. Background of Image Compression 

Presently, by cause of the widely usage of digital information or digital data for 

daily life,   the concern for data storage and data bandwidth is raising for storage and 

transmission of the voluminous data. This much, the compression algorithm plays an 

important role in compression reduction of the desire information. On the other hand, 

in the age of today’s electronic world, the digital imaging such as digital photography, 

medical image processing and satellite imaging plays a vital role and, many image 

compression algorithms are emerged and, they become one of the attracting fields in 

the research area.  

There has been two general categories in image compression algorithms [1], lossy 

and lossless compression. Lossy compression algorithm has high compression ratios 

trade off with the perception loss, the distortion that human eye can accept. 

Differently, in lossless compression algorithms decoded image has the same quality as 

an original image without any loss although there is a low compression ratio. In that 

sense, lossy compression algorithms are well suited for the applications that can 

accept the perception loss such as multimedia data, streaming media and online 

telephony. Comparatively, lossless compression is required for the real time 

application that requires high quality such as medical image and satellite image. The 
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system flow of the lossy and lossless compression system can be described as shown 

in Figure 1. 

Lossless 

Encoder 

Lossless 

Decoder

original 

image

Reconstructed 

signal

original

image
FILE

1. LOSSLESS COMPRESSION SYSTEM

Lossy

Encoder 

Lossy

Decoder

original 

image

Reconstructed 
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original

imageFILE

2. LOSSY COMPRESSION SYSTEM

 

Figure. 1 Lossless and Lossy compression system. 

 

Recently, JPEG 2000 [2] international standard become the extensively used 

standard compression which is suitable for compression of images the in specific 

fields such as medical image, digital cinema and high resolution image. In the first 

international compression standard for continuous-tone still images, the JPEG 

Standard, the DCT was used as a basic transformation tool.  Afterwards, as digital 

imagery equipment became more widely used, its extension standard JPEG 2000 

which offers many novel features than that of it, has led. The standard is based on 

Discrete Wavelet Transformation (DWT) with arithmetic entropy coding which can be 

achieved by a one-dimensional signal processing vertically and horizontally (a 

separation n type structure) based on the line memory. And, each process is 

implemented by cascading several lifting calculations. The wavelet transform is used 

especially to remove redundancy of information before encoding. Comparison to old 
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standard JPEG with DCT (Discrete Cosine Transform), JPEG2000 is better than JPEG 

in image quality and compression ratio as show in Figure 2. 
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Figure. 2 Comparison between JPEG and JPEG 2000 in image quality and 

compression ratio. 

An example of the lifting structure in the wavelet transform that compatible with 

JPEG2000 is illustrated in Figure 3. Due to the direction of calculation in each step is 

separate, so, this lifting structure can be named as “separable”. 
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Figure. 3 Lifting structure for 2D data (image) or separable. 
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Separable has many lifting step which has rounding operators which are used in 

the process of transforming the floating point numbers to integer numbers, whereas 

the rounding errors occur in every rounding operator. For that reason, many studies try 

to focus on the reduction of rounding error where one of them is Non-separable 

approach. Several evidences studied about “Non-separable” for minimizing rounding 

errors are based on the lifting steps compensation. Figure 4 shows an example of non-

separable lifting structure for image compression. 
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V1H1 H1

V2H1

V1 V2

-V2H2

H2V1
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step

1

step

2

step

3
 

Figure. 4 Non-separable lifting structure for image compression. 

For image compression, 2D non-separable lifting structure can be used as shown in 

Figure 4. But there is some limitation for this lifting. It can use only in 2D data such 

as image. Non-separable for 3D data has not been much researched yet.  And also 

noise in lifting structure such as rounding noise and coefficient noise has not been 

clarified yet.  

In this dissertation, we focus on the non-separable lifting structure of the wavelet 

transform. And our proposal exhibited the non-separable lifting structure for 3D data 
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that compatible with JPEG2000 for lossless and lossy compression respectively. And 

the deep analysis is about rounding noise and coefficient noise and finally the 

algorithm for the reduction of that of noise is proposed. 

1.2. Overview of Research Topic 

In this dissertation, we presented four proposals for solve the issues that we 

mentioned above as,   

 Non-separable 3D integer wavelet transform for lossless data compression 

 Integer Implementation of 3D Wavelet Transform for Lossy Data 

Compression 

 Channel Scaling for Integer Implementation of Minimum Lifting 2D 

Wavelet Transform 

 Word Length Allocation for Multiplier Coefficients of Minimum Lifting 

Non-Separable 2D Wavelet  

1.2.1. Overview of Non-separable 3D integer wavelet transform for 

lossless data compression 

The 5/3 non-separable lifting structure for 3D lossless compression was proposed 

by two basic properties which reduced lifting step of existing, separable lifting 

structure to non-separable lifting structure. For the evaluation of the noise in lifting 

structure, the proposed, Non-separable has maximum PSNR in both frequency domain 
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and pixel domain. Also, non-separable has gain the better coding performance when 

compared with the same bitrate in lossless and lossy coding. 

1.2.2. Overview of Integer Implementation of 3D wavelet transform for 

lossy data compression 

The 9/7 non-separable lifting structure for 3D lossy compression with minimum 

rounding noise was proposed in this dissertation. From separable 3D, the previous 

proposed method, non-separable 3D has minimum in lifting step. However, the 

rounding noise in Non-separable 3D is larger than separable 3D. To clarify the better 

structure than non-separable 3D, 6 rules were created to find the non-separable 

candidates with minimum rounding noise. The results showed that rounding noise in 

non-separable 2D structure is minimum after observation. 

1.2.3. Overview of channel scaling for integer implementation of 

minimum lifting 2D wavelet transform 

In the previous our proposed method, reduction of the lifting steps and rounding 

operators of the 9/7 non-separable lifting structure is introduced however rounding 

noise was amplified. For that reason, scaling method was proposed not only to reduce 

rounding noise but also to improve the quality of the decoded images. 
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1.2.4. Overview of word length allocation for multiplier coefficients of 

minimum lifting non-separable 2d wavelet 

Based on the consideration of the design complexity in hardware perceptive, the 

word length of coefficient filter in lifting structure is also a concerned and such, this 

needs to be truncated. As a result, the truncation noise has occurred so that the 

coefficients have a different effect to PSNR of the reconstructed image. In 

consequence, this method was proposed for how to optimize word length of each 

coefficient while maintain PSNR of reconstructed image.  

1.3. Outline of the Dissertation 

There are 7 chapters in this dissertation which can be divided as shown in Figure 5. 

CH 2: Basic Theory

CH 5: Rounding Noise

CH 6: Coefficient Noise

CH 3: Lossless compression

CH 4: Lossy compression 

CH 7: Conclusion

Extend non-separable to 3D Noise Reducing 

 

 

  Figure. 5 Outline of this Dissertation 
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Chapter 2 

2. Basic theory 

2.1. JPEG2000 

The development of data compression algorithms is occurred in a variety of 

approaches for tackling the issues of voluminous data transmission and storage. From 

the view of 2D signal image encoding, JPEG, JPEG XR and JPEG2000 [2] standards 

are widely used today. Again for the compatibility with 3D signal, for instance, video, 

the encoder standards, such as, H.261, MPEG2, H.264 and HEVC, are considered. In 

this dissertation, our analyzed and proposed methods are based on the examination of 

medical images where there is the higher resolution is voluntary as well as the 

compression practices. The most appropriate encoder in such cases is JPEG2000 as 

shown in Figure 6.  

 

Figure. 6 The signal and encoder compatibility. 

JPEG2000 is an image compression standard and coding system which is used for 

encoding the images in some specific areas such as digital cinema, geographic 
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information systems and medical imaging. The standard was developed by the JPEG 

(Joint Photographic Experts Group) committee in 2000 as the next generation of the 

JPEG standard that created in 1992.The wavelet transform is adopted in this standard 

for reduction of redundancy information data before encoding. For lossless mode, the 

5/3 lifting structure is used to applied and the 9/7 lifting structure for the lossy mode. 

2.2. Wavelet transform 

According to the concept of data compression in wavelet transform [3], data need 

to be divided into 2 categories as low frequency and high frequency. At low 

frequency, the variance of data is large yet in high frequency, the variance of that of 

data is small which cause the separate inputs to the transform as shown in Figure 7.  

 

Figure. 7 Compressing input data by wavelet transform. 

While comparing the DCT (discrete cosine transform) [4] which used in prior 

JPEG standard, wavelet transform in JPEG2000 more flexible and better in 

compression ratio (lossless compression) and reconstruct image quality (lossy 

compression). This is by because of the fact that the longer basis of wavelet is done in 

low frequency and short in high frequency while basis of DCT are the same length as 

shown in Figure 8. Due to the flexible property of representing image, the wavelet 
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transform in JPEG 2000 is well suited for much image application areas for the reason 

that the image data is mixed with low and high frequency.  

 

Figure. 8 Comparison between DCT and Wavelet basis. 

Wavelet can decompose image data by using high pass filter h[n] and low pass 

filter g[n]. The output from high pass and low pass filter are written in detail and 

approximation coefficients, respectively as show in Figure 9. 

 

Figure. 9 Block diagram of filter analysis. 

From Figure 9, it can be clearly seen that the output sample will become double 

because of the signal input n sample process with low pass g[n] and high pass h[n] 

filter. By applying down sampling by 2 to tackle this problem, the output can be 

express as equation (1)  
















k

high

k

low

kngkxny

knhkxny

]2[][][

]2[][][

    (1) 
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2.3. Lifting structure and integer implementation 

For the purpose of studying the wavelet transform in simplest form for better 

modification [4], we focus on the lifting scheme that utilized in designing wavelet 

transform as show in Figure. 10. 

 

Figure. 10 Wavelet transform in general form and lifting form. 

 Figure 10 showed the general form and lifting scheme with 2 channels whereas 

the input signal is divided into low and high frequency. As the input value is image 

which has a value between 0-255 and it can be treated as an integer value for the 

encoding part. However as long as the coefficient of every wavelet filter includes the 

values that are not integer so that the output values of wavelet transform become non-

integer result.  

 For the aforementioned case, the rounding operator is introduced as shown in 

Figure 11 to this lifting structure in every lifting step for the purpose of transforming 
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the floating point to integer so that the output signals become integer values. In that 

case, the perfect reconstruction of lifting structure properties still remains.  

 

Figure. 11 Rounding operator applied to lifting structure. 

 However, the rounding noise occurred from the rounding operators in forward 

transform can be definitely canceled again by the rounding noise in backward 

transform as shown in Figure 12. Then the output signal which came out from 

backward transform was same as input signal before coming to forward transform. 

This was called “perfect reconstruction” 

 

Figure. 12 Noise is canceled in backward transform. 



13 

 

2.4. Separable and Non-Separable 

 

(a)                                          (b) 

Figure. 13 Comparison in filter direction between separable (a) and 

non-separable (b). 

Separable and Non-separable are the terms that use to distinguish filters in the 

lifting structure of wavelet transform. Separable means the filter in lifting structure 

process one direction per each lifting structure while non-separable filter process two 

directions per each lifting structure. Examples of 2D separable and 2D non-separable 

filter are shown in Figure 13.  

Figure 13 (a), perform the lifting steps process from neighboring pixels one 

direction per one lifting steps. Figure 13 (b), perform every direction has process 

together in one time per lifting steps. And non-separable has reduce lifting step from 4 

(100%) to 3 (75%). 
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2.5. Derivation process 

The derivation from separable structure to non-separable can be done by using two 

basic properties for derivation process, properties I (PI) and properties II (PII). PI and 

PII are expressed as shown in equation (2) and (3), respectively. 
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PI and PII from equation (2) and (3) can be described in lifting structure as shown 

in Figure 14. 
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Figure. 14 Basic properties for modification. 

2.6. Rounding operator and its errors 

Handling the rounding operators and their characteristics plays important role in 

concern with the wavelet transform. Which exists next to coefficient inside the lifting 

steps for rounding floating value to integer value with which the rounding errors 

occurred from each of these rounding operators.  

 

 

Figure. 15 Rounding process. 

Figure 15 shows example of the rounding error from within the range -0.1 and 0.1. 

Rounding errors can be defined by following equation. The probability density 

function (PDF) of the rounding error is, as shown in Figure 16. 

 

 

 
 

1 1.1 

1 0.9 
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Figure. 16 PDF of rounding error. 

e stands for the rounding error and p(e) means PDF of rounding error. Figure 16 

shows the values that average of rounding error is 0 and variance of rounding error is 

1/12. Variance of rounding error is calculated by equation (6) [5]. Ve[R] is variance of 

rounding error value. 

  




 deeepRVe

2)(      (6) 

2.7. Lagrange multiplier 

Lagrange multiplier [6] is used for finding the minimum or maximum of a 

multivariate function ),...,,( 21 nxxxf subject to the constraint 0),...,,( 21 nxxxg , where f 

and g are continuous function. And 0g  at any point on the curve 

0),...,,( 21 nxxxg  (where   is the gradient). 

For the minimum or maximum of f on g, the gradient of f must line up with 

the gradient of g. If the two gradients (f and g) are in the same direction, then it can be 

express in equation (7) 

 )(ep

e2/12/1

1

0

http://mathworld.wolfram.com/Gradient.html
http://mathworld.wolfram.com/Gradient.html
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gf         (7) 

The two vectors are equal, so all of their components are similar, giving 

0
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
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



kk x

g

x

f


     (8) 

Where k = 1,…,n, and the constant   is called the Lagrange multiplier.  

2.8. Basic measurement tools 

In this section, evaluation tools and how to comparison between the proposal 

method and the existing method are explained as shown below. 

2.8.1. The-peak-signal-to-noise-ratio (PSNR) 

PSNR is a tool which is widely used to measure image reconstructed quality. 

PSNR is the ratio between the maximum power of a signal and the power of 

corrupting noise that affects to image. Due to the range is very widespread, so, PSNR 

is expressed in logarithm term. The power of corrupting noise can be express as mean 

square error (MSE) in equation (9). 


 


m

i

n

j

jiOjiI
mn

MSE
1 1

2)],(),([
1

    (9) 

I is input image and O is output image, where “i” and “j” is position of image pixel 

in vertical and horizontal, respectively. The PSNR is determined as  
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(log10
2

10
MSE

IMax
PSNR   [dB]    (10) 

Max(I) in equation (10) is the maximum pixel value of input image. For example if 

input image are 8 bit gray scale image then Max(I) is 255. 

2.8.2. Rounding Noise 

In image compression, lifting scheme of the wavelet transform is for the purpose 

of separating image input to low and high frequency bands. Lifting structure contains 

lifting steps and in the each of lifting step, there has been rounding operators which 

produce rounding errors that effected to the output. The rounding noise in image 

compression can be evaluated in 2 ways, rounding noise in frequency domain and 

rounding noise in pixel. 

      2.8.2.1 Rounding noise in frequency domain 

Rounding noise in frequency domain can be illustrated as shown in Figure 17 
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
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Figure. 17 Rounding noise in frequency domain. 

For example, rounding noise in channel LLL can be express as 
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LLLRLLLOLLL FTFTE )()(       (11) 

Where ELLL is rounding noise of channel LLL and FT(O)LLL and FT(R)LLL is forward 

transform in channel LLL without rounding and with rounding respectively.  

     2.8.2.2 Rounding noise in pixel domain 

In Figure 18, rounding noise in pixel domain can be described as below; 

X


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Figure. 18 Rounding noise in pixel domain. 

which can be expressed as  


 


m

j

n

i

RO jiBTjiFTE
1 1

)()( )],(),([    (12) 

Where Ep is rounding noise in pixel domain, FT(o) is forward transform without 

rounding and FT(o) is backward transform with rounding. “i” and “j” is position of 

image pixel in vertical and horizontal, respectively. 
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2.8.3. Entropy rate 

In the image compression, entropy rate is use for measurement of the randomness 

[7] which is used to represent symbol of input image. Entropy rate can be defined as 

minimum bit rate per each symbol in input image which can be express as 





n

i

ii ppH
1

2log      (13) 

Where H represents the entropy of grayscale image, Pi is the probability of pixel 

value at indexes i.  

2.8.4. Sum of Power of Two (SPT) 

SPT [8] is used to represent decimal number to binary number which is the very 

basic for digital communication. For example, SPT can show in equation (14) as 

shown below. 

  3210

2 21202121101.1      (14) 

1.101 is binary number and term in the right is SPT. In this dissertation, we 

use the format SPT to represent complexity of coefficient. 

2.8.5. Rate distortion curve 

The rate distortion curve is the measurement matrix for the comparison 

between PSNR and bit rate of the reconstructed image for evaluating the coding 

SPT 
SPT  
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performance. For instance, Figure 19 shows an example of rate distortion curve 

of Separable (Sep) and Non separable (Nsp) at which bit rate higher than 2.1 

bpp that coding performance of Nsp is better than Sep.  
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Figure. 19 Example of rate distortion curve. 

2.9. Three dimensions input data   

Because of the main of this dissertation discussed about 3D wavelet lifting 

structure. Therefore, 3D input data was used for evaluating the proposal method 

performance and efficiency. The 3 input data were shown as list below. 
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- MRI (Magnetic Resonance Image) data, resolution 256 x 256, total 8 slices.  

 

Figure. 20 MRI data input. 

- Random data, resolution 256 x 256, total 8 slices.  

In this dissertation, the stochastic process that we utilize is normal distribution for 

random numbers. In Figure. 21, the instance of the random data can be expressed as  

 

Figure. 21 Example one slide of random data input. 

- AR model data, resolution 256 x 256, total 8 slices.  

The data distribution for the random data input is in uniform distribution still 

practical image data distribution is commonly in normal or Gaussian distribution. 
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For that case, the AR model is applied for the transform process of the uniform to 

normal distribution in the image data. Figure 22 shows Example of AR model data 

where the model can be expressed as in equation (15). 

11

)(
)(




z

zW
zH


      (15) 

Where W(z) is white noise or random signal, H(z) is AR model signal and    

is parameter for control distribution if it is close to 1 then we got normal 

distribution signal in the output.   

 

Figure. 22 Example one slide of AR model data input
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Chapter 3 

3. Non-separable 3D integer wavelet transform for 

lossless data compression 

3.1. Motivation of this proposal 

Recently, the image affection has been dramatically increased with respect to pixel 

resolution, frame rate and dynamic range of pixel values. So that the amount of image 

data increases as the quality rises. As a result, the image compression techniques have 

been playing an essential role for storage and communications of digital media data.  

The two-dimensional (2D) transform like discrete cosine transform (DCT) and the 

wavelet transform are mainly stand for still images. Latterly, numerous types of three-

dimensional (3D) transforms have been examined for video, hyper spectral images, 

integral images and medical volumetric data [9-12]. In this chapter, we are dealing 

with a ‘3D’ wavelet transform together with reduction of the rounding noise within 

the transform for high exploitation ‘lossless’ data compression. 

Still, there is an extensive development of a category of ‘separable’2D wavelet for 

various applications and, it is also adopted by the JPEG 2000 international standard 

[13,14] which has been applied in  digital cinema [15,16]. On account of the transfer 

function of the class of transform is constructed with a product of the horizontal 1D 

transfer function and the vertical one, it can derive legacy of previously designed 1D 
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structure suitable for hardware implementations [17-19]. Besides, it might have the 

regularity and low sensitivity to various noises [20, 21]. Nonetheless, most of them 

are designed for ‘lossy’ coding of images for practically reasonable data compression 

rate. 

While considering the ‘lossless’ coding of images, it is essential that transformed 

values need to be integers for entropy coding, and also for the case of inverse 

transform for reconstructing the original integer pixel values without any loss. And 

there have been an implementation of this type of transform in the lifting structure in 

the wavelet transform with rounding operations as the integer and, extensions have 

been investigated based on the international standard [22, 23]. For the reversible color 

transform and the integer DCT, the radar network has also been utilized [24-30]. 

Absolutely, those are ‘lossless’ where a set of forward and backward transform 

assured lossless reconstruction of the initial values of the pixel in integer. Still there is 

an occurrence of rounding noise’ subsequently the forward transform. For reduction of 

those noise occurs at each of the lifting steps, a ‘non-separable’ structure was 

proposed for the condensation of the total number of lifting steps along with the 

rounding operations [31]. 

Almost all of these have been initially increase the precision of the prediction in 

adaptation of the local context of neighboring pixels [32-34].Based on sparse criteria, 

the other general designing problem has been investigated [35]. Again, there has been 

a utilization of directionality in a generalized poly-phase representation [36, 37]. 
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Nearly all of these methods were addressed on designing adaptive high pass filters of 

the wavelet transform. 

In [38-41], a new form of non-separable 2D structure has been reported with which 

transfer function can be expressed as a product of 1D function so that its transform is 

‘compatible’ to the separable transform. After all, the implementation of the 

aforementioned scheme is not a cascade of 1D signal processing in the 1D structure 

which requires multi-dimensional memory accessing. Yet the mechanism has some 

drawbacks relating to the unadapting to local context of pixels, it has advantage over 

reduction of the total number of lifting steps together with the rounding operations. 

In this chapter, we examined a ‘3D’ integer wavelet transform for ‘lossless’ coding 

of 3D signals with the minimization of the rounding noise which is the deviation from 

the previous studies. A non-separable 3D lifting structure was proposed in the case of 

reducing the total number of lifting steps [42] without regard to the huge 

computational complexity for the requirement of 3D memory accessing. On account 

of video signal processing, it requires inter-frame memory accessing which costs huge 

memory space. Accordingly, we discuss the non-separable 2D structures to construct 

the 3D integer wavelet transform as a newly proposed method as in the chapter. 

Further, investigation on the performance of the 3D integer wavelet transform was 

limited to noise variance in frequency domain only along with the limitation of the 

input signal to only one MRI data set [42]. Regarding this, we first try to clarify 

variance of the noise in frequency domain and those in pixel domain then we extend 

our scope on the rate distortion curve in lossy coding mode and the entropy rate in 
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lossless coding mode by means of computational time of the transforms, and conceive 

the feature comparison with other methods. Apart from the MRI data set, various 

kinds of input data are tested in this division. 

The proposed wavelet transform discussed here has a merit that its output signals, 

apart from the rounding noise, are exactly the same as a conventional 

transform .Based on this compatibility, it becomes possible to utilize legacy of 

previously designed 1D wavelet transforms. The total amount of the rounding noise is 

significantly reduced additionally and contributes to increase coding performance of 

data compression system based on the 3D wavelet transform. 

This chapter is organized as in two main sections; section 2 describes the existing 

method and section 3 for the proposed method from the architectural background to 

experimental result.  

3.2. Existing Method 

3.2.1. One-Dimensional (1D) Wavelet Transform 

One-dimensional (1D) integer wavelet transform for lossless coding of discrete 1D 

signal is illustrated in Figure 23. The input signal X is fed into the forward transform 

at the encoding side and then outputs low frequency band signal YL and high 

frequency band signal YH. Each of them is coded with an entropy encoder to generate 

a bit stream for storage and communications and again the band signals are decoded 

and inversely transformed at the decoding side. 
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Figure. 23 One-dimensional (1D) integer wavelet transform. 

 

The arrangement can be referred to as the ‘integer’ wavelet transform for ‘lossless’ 

coding since the original signal X can be reconstructed without any loss for the reason 

that all the signal values inside the transform are rounded to integers, and the rounding 

noise generated by the rounding operation is cross out at the output of the backward 

transform. 

Precisely, two half-length sequences X0 and X1are resulted from spilling the 

original signal X given in integer values with length as 









)12()(

)2()(

1

0

mxmx

mxmx
      (16) 

Form=0, 1,…, M-1 where 















])1()1()0([

])1()1()0([

])1()1()0([

1111

0000

MxxxX

MxxxX

NxxxX







    (17) 

And M=N/2. In the 1st lifting step, X1 is predicted from X0 as  

      )]([)()( 011 mxVRmxmyH       (18) 
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With which R[x] denotes an integer rounded from the original value x, and   

denotes convolution which can be defined as 

 )1()()( 00101  mxmxhmxV
     (19) 

for h1 is a filter coefficient. At 2nd lifting step, X0 is updated from YH as 

)]([)()( 20 myVRmxmy HL 
    (20) 

Where the convolutionV2 is defined as 

 )1()()( 22  mymyhmyV HHH    (21) 

where h2 is a filter coefficient. As the rounding operations R[  ] are applied, all the 

signal values are expressed as integers inside this integer wavelet transform. 

In the previous researches, filter coefficients within the lifting wavelet transforms, 

have been carefully determined. For instance, a set (h1,h2)=(-1/2,1/4) is utilized in 

JPEG 2000 international standard [13,14] where as a low pass filter of the forward 

transform has unity gain for a constant signal, and zero gain for an alternating signal. 

Those properties are indicated as 
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and a high pass filter has 
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It is enticing to apply the positive properties like (22) and (23), and other 

properties such as the vanishing moment in designing a multi-dimensional transform. 

3.2.2. Two-Dimensional (2D) Wavelet Transform 

X
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H1 H2

SH ↓2H

↓2H YHL

YHH  

Figure. 24 Two-Dimensional (2D) Wavelet Transform. 

A two-dimensional (2D) integer wavelet transform has been illustrated in Figure. 

24. Such transform applies the 1D transform vertically to the 2D input image X and 

afterwards, the same 1D transform horizontally. Four frequency band signals YLL, YLH, 

YHL and YHH are generated as resultant factors. As it is a product of 1D transforms, it is 

referred to as the ‘separable’ transform. 
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Figure. 25 Separable 2D structure for 2D wavelet transform. 

In Figure 25, there is an illustration of the other expression of Figure 24 which 

outputs the same band signals that of Figure 24. In this, the 2D input signal x(n1,n2) is 

split into 4 groups as 
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wherem1=0, 1,…, M1-1and m2=0,1,…,M2-1 for M1=N1/2 and M2=N2/2. In the 1st 

lifting step, X10 and X11 are predicted from X00 and X01 respectively as 
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Along with the variable m1the convolution is performed vertically. Likewise, in the 

2nd lifting step, X00 and X01 are updated from X10 and X11 respectively as 


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Also, the process is repeated horizontally along with the variable m2 in the 3rd and 

4th lifting steps, For example, the horizontal convolutions are given as 
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It can be clearly seen that this kind of ‘separable’ 2D lifting structure has a total of 

8 rounding operations since each of 8 lifting step has one rounding operation. They 

are the source of the rounding noise to be reduced by introducing a non-separable 

structure discussed detailed in the chapter. 

3.2.3. Non-separable 2D Structure 

Figure 26 demonstrates a ‘non-separable’ 2D lifting structure. Unlike the separable 

architecture, it has multi-input single-output lifting steps. Besides, it has less lifting 

steps comparing to the separable one. As a result, there have been less rounding 
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operations as well as rounding noise. While comparing with the Figure 25, the overall 

lifting steps can be compensated from 4 to 3 (75 %), and the total number of rounding 

operations is reduced from 8 to 4 (50 %) in Figure 26. Additionally, the total amount 

of rounding noise [41] is minimized. Note that this transform has the properties of the 

1D structure in (22) and (23) since its transfer function is the same as that of the 

‘separable’ transform. 
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Figure. 26 Non-separable 2D structure for 2D wavelet transform. 

Particularly, from multi-inputs X00, X01 and X10, the 1st lifting step predicts X11 as 
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for (m)=(m1, m2). In this prediction, a diagonal prediction 
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is utilized. In the 2nd lifting step, two predictions 
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and 

])()([)()( 200110 mmmm HHHL yHxVRxy    (33) 

are applied whereas the two steps can be executed simultaneously with a parallel 

processor as there is no need to waiting for the calculation results. Finally, the 3rd 

lifting step completes the transform as  

].)()(

)([)()(
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200

mm

mmm
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
   (34) 

Correspondingly, the same band signals generated from this non-separable 

structure as the separable 2D transform apart from the rounding noise which can be 

referred to as ‘compatibility’. In the next section, this theory is extended to 3D case. 

3.2.4. Separable 3D Structure 

In, figure 27 a ‘separable’3D lifting structure is illustrated. Single-input single-

output lifting steps are applied to generate 8 frequency band signals group where they 

are resulting from the splitting of a 3D input signal X. This structure has 6 lifting steps 

and 24 rounding operations which are reduced by the proposed method in this chapter. 

In detail, the 3D input signal x(n1,n2,n3) is split into 8groups as 
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Figure. 27 Separable 3D structure ‘Sep3D’ for 3D wavelet transform. 
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for (m)=(m1,m2,m3).In the 1st lifting step, the vertical prediction is applied as  









































































)]([

)]([

)]([

)]([

)(

)(

)(

)(

)(

)(

)(

)(

0111

0101

0011

0001

111

110

101

100

)1(
111

)1(
110

)1(
101

)1(
100

m

m

m

m

m

m

m

m

m

m

m

m

xVR

xVR

xVR

xVR

x

x

x

x

x

x

x

x

   (36) 

where ‘V1’ denotes the vertical convolution along with the variable m1 similar to 

(26). After the updating  
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in the 2nd lifting step, the horizontal prediction  
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is applied at‘H1’ and ‘H2’ denote the horizontal convolution along with the 

variable m2 similar to (29). In the 5th and 6th lifting steps, the convolution ‘D1’ and 

‘D2’ are performed along with the variable m3. 

As per this separable structure, the Nth lifting step must wait for calculation results 

of its previous N-1th lifting step which causes delay from the input to the output steps. 

First the lifting steps are reduced by the initiating of the non-separable structures 

composed of multi-dimensional memory accessing. 

3.3. Proposed Method 

3.3.1. Symmetrically derive to Non-separable 3D Structure 

Based on the two basic properties which is described in chapter 2, the 5/3 

separable 3D structure in figure 27 can be symmetrically derived to minimum lifting 

structure or non-separable 3D structure in figure 39 as follow: 
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First, lifting in the same direction (figure 28) were moved together in the nearby 

position (figure 29) 
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Figure. 28 Before moving V1, H1 and D1. 
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Figure. 29 After moved V1, H1 and D1 (24 rounding operators) 

Second, by using the basic properties PI and PII, and we move forward the lifting 

H1 V1  and H2 D2 in figure 30 and then backward. Finally it can be expressed lifting 

scheme which is shown in figure 31. 
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Figure. 30 Before move in second step. 
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Figure. 31 After move in second step (18 rounding operators) 

Third, shifting V1H1, V1 and the other V1 backward based on PI and V2 another V2 

and –V2H2 forward by PII.  
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Figure. 32 Before move in third step. 
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Figure. 33 After move in third step (14 rounding operators) 

In the fourth stage, shift D1 forward by PI, D2 backward by PII.  
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Figure. 34 Before moving in forth step. 
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Figure. 35 After move in forth step (10 rounding operators). 

Fifth, shift D1 forward again by PI after that D2 backward by PII.  
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Figure. 36 Before moving in fifth step 
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Figure. 37 After moving in fifth step (10 rounding operators) 

Sixth, brings D1 to the lifting H2 V2 and –V2H2 and then bring D2 to V1, H1 and 

V1H1. Eventually, we can get the non-separable lifting structure in Figure. 39. 
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Figure. 38 D1 and D2 before moved. 
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Figure. 39 After moving D1 and D2 we got Non separable structure  

(8 rounding operators). 

3.3.2. Non-separable 3D Structure 
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Figure. 40 Non-separable 3D structure ‘Ns3D’ for 3D wavelet transform. 

Figure 40 illustrates the ‘non-separable’3D lifting structure in [42]. In this 

structure, multi-input single-output lifting steps are introduced. It means 3D memory 

accessing. Comparing to the existing separable structure, the total number of lifting 

steps is reduced from 6 to 4 (66.7 %). Therefore it is expected to reduce the delay due 
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to waiting for results of the previous lifting step utilizing parallel signal processing. 

The total number of rounding operations is also decreased from 24 to 8 (33.3 %). We 

experimentally demonstrate that it contributes to reducing total amount of the 

rounding noise in 5. 

In detail, the 1st stage predicts X111 from all of the remaining groups as 
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where there is a convolution with multi-dimensional memory accessing is 

included. The convolution ‘V1H1D1’ is defined for instance as 
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where 

1,1,1 332211   mmmmmm .    (41) 

Then there are three predictions in the 2nd lifting step, 
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Each of these steps can be done simultaneously on a parallel signal processing 

platform for there is no need to for calculation results from the particular step. 

Updating in the 3rd and 4th lifting steps is performed as the same manner.  

It can be observed that there is no difference between the separable structure in 

Figure 27 and the non-separable structure in figure 40 in respect of signals. We can 

denote that both these methods are expressed with the same transfer function which is 

a product of 1D function. Based on that particular fact, the transform to be 

implemented is ‘separable ’yet in respect of noise, those are different. The structure in 

figure 40 is expected to have less rounding noise as it has less rounding operations.  
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Figure. 41 Non-separable 2D structure ‘Ns2D(1)’ for 3D wavelet transform 

A newly introduced structure ‘Ns2D (1)’ for the 3D lifting wavelet transform is 

illustrated Figure 41. In this, although the 3rd, 4th, 5th 6th lifting steps are 

implemented as the non-separable ‘2D’ structure, the 1st and the 2nd lifting steps are 

the same as those of the ‘separable’ structure in Figure 27. That is in contribution for 

the reduction of hardware complexity comparing to ‘Ns3D’ in Figure 40 for it does 

not utilize the 3D memory accessing. 

 

 

 

 

 

X000

X001

X010

X011

X100

X101

X110

X111

YLLL

YLLH

YLHL

YLHH

YHLL

YHLH

YHHL

YHHH

H1

V1H1 H1

V2

V1

D1 D2

D1 D2

D1 D2

D1 D2

H2

-H2V2H2

V1

V2

H1

V1H1 H1

V2

V1

H2

-H2V2H2

V1

V2

step

1

step

2

step

3

step

4

step

5



45 

 

Figure. 42 Non-separable 2D structure ‘Ns2D(2)’ for 3D wavelet transform. 

Figure 42 illustrates another variation ‘Ns2D (2)’ for the 3D transform. Similar to 

the scheme in Figure 41, yet the 4th and the 5th lifting steps are the same as those of 

the ‘separable’ structure in figure 27, the 1st, the 2nd and the 3rd lifting steps are 

implemented as the non-separable ‘2D’ structure.  

In brief, the structures discussed in this chapter are expressed as 
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1 2 1 2 1 2

1 2 1 2 1 2

3 ( .5)

3 [ ] ( .6)

2 (1) ( ) ( .7)
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Ns D VV H H D D Fig

Ns D VV H H D D Fig

Ns D VV H H D D Fig






    (45) 

where [] in ‘Ns3D’ and () in ‘Ns2D’ denote the non-separable 3D structure and the 

non-separable 2D structure.  

3.3.3. Comparison of Structures 

The summary the variations of the structure of the 3D integer wavelet transform is 

described in Table 1. In the newly introduced structures ‘Ns2D(1) and ‘Ns2D(2)’ 

there is no utilization of inter-frame memory accessing which requires huge memory 

space which is different from the  ‘Ns3D’ and in place of the total number of lifting 

steps is increased comparing to ‘Ns3D’. The number of rounding operations is in the 

middle between ‘Sep3D’ and ‘Ns3D’. Here, we compare the variations in (42) for 

various input signals from various aspects in 5. 
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Table. 1 Comparison of the structures. 

 Sep3D Ns3D Ns2D(1) Ns2D(2) 

Rounding operations 24 8 16 16 

Lifting steps 6 4 5 5 

Memory accessing 1D 3D 2D 2D 

 
 

3.4. Experimental Result 

A set of MRI volumetric data in Figure 43 provided by MATLAB is tested in the 

following experiments while each of frame has 256 256 pixels and each pixel is 

expressed with an 8 bit depth integer. The results of applying the 3D wavelet 

transform to the 8 frames of the MRI data are illustrated in figure 44. In that, each 

frequency band signals are normalized to the range of [0,255] for display purpose in 

this figure 

In this proposed method, there is no limitation to the input signal to the MRI data 

like [42], and a random 3D input signal is included. Moreover, the 3D auto-regressive 

model can be demonstrated as  
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  (46) 

is included into our experiments. Note that ρ is set to 0.9 in the experiments in this 

chapter.  
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Figure. 43 Tested data set ‘MRI’. 

 

Figure. 44 Results of the 3D wavelet transform. 

3.4.1. Evaluation of Rounding Noise 

First of all, the methods summarized in table 1 are compared in respect of the 

rounding noise. Figure 45 (a), (b) and (c) show the variance of the rounding noise in 

each frequency bands for MRI data, AR model, and random input, respectively. In all 

of these cases, variance of the noise in ‘HHH’ band of ‘Ns3D’ is 0.08 due to the fact 

that the noise is not amplified. As the value of the rounding noise is within the range 

of [-0.5, 0.5], its variance is 1/12=0.08 just after each of the rounding operation.  
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Figure. 45 Rounding noise in each frequency band. 

Vice versa, the noise variance in ‘LLL’ band of ‘Ns3D’ is greater than 0.08 as a 

result of multiple noise amplified though convolutions are summed up in YLLL. In 

‘LHH’ band and ‘HHH’ band of ‘Sep’, the highest noise variance is observed. The 

variance of the noise is amplified approximately 0.45/0.08=5.6 times in those 

frequency bands in the separable structure in Figure 27. 

The averaged variance over all frequency bands in peak-signal to noise ratio 

(PSNR) in figure 46 defined as 
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Where σ2 stands for variance of the rounding error and also observing that ‘Ns3D’ 

and ‘Ns2D’ increase PSNR by 5 (dB) and 2 (dB) respectively comparing to ‘Sep’. 
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Figure. 46 Rounding noise in frequency domain. 

The variance of the rounding noise measured in pixel domain is described Figure 

47. Without the rounding operation, the input signal is transformed and unlikely 

transformed backward with the rounding operations. Similarly to Figure 47, ‘Ns3D’ is 

the best and ‘Ns2D’ is the second. There is no significant difference among input 

signals. 
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Figure. 47 Rounding noise in pixel domain. 

3.4.2. Evaluation of Coding Performance 

As per the second evaluation, the entropy rate is examined for the evaluation of the 

lossless coding performance. The comparison of the structures in terms of lossless 

data compression rate for various bit depth of the input signal ‘MRI’ can be seen in 

figure 45. The compression rate is defined as 

(%)100
Sep

Str

H

H


    (48) 

for Str{Ns3D, Ns2D(1), Ns2D(2)} where H denotes the entropy rate in bit per 

pixel (bpp) averaged over all frequency band signals which approximates the average 

code length of the compressed data volume of the transformed signal. 

As to the Figure 48 we observed that there is no significant difference between the 

three methods for the original 8 bit depth signal. Although the bit depth of the input 

signal is reduced to 4 (bit), the ratio of the entropy rate is decreased to 91.9 (%) and 
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96.2 (%) by ‘Ns3D’ and ‘Ns2D(1)’ respectively. It might be noted that the bit depth of 

pixel values in the range of [0, 2B-1] is defined as B (bit). To summarize, performance 

in lossless coding mode is improved by 8.1 (%) and 3.8 (%) by ‘Ns3D’ and ‘Ns2D(1)’ 

respectively for 4 bit depth ‘MRI’ volumetric data. 

 

 

 

 

 

Figure. 48 Performance in lossless coding mode. 

In Figure 49, rate-distortion curve of ‘Sep’ and that of ‘Ns3D’ is indicated where 

the horizontal axis indicates the entropy rate and the vertical axis PSNR of the 

reconstructed signal, respectively. The quantization is originated just after the forward 

transform and these curves indicate performance of the methods in lossy coding mode 

while observing that ‘Ns3D’ is higher than ‘Sep’ by approximately 1.5 (dB) at 6.5 

(bpp). It can be summarized that superiority of the non-separable structure over the 

conventional separable structure was observed. 
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Figure. 49 Performance in lossy coding mode. 

3.4.3. Evaluation of Computational Time 

From the view point of computational time of the structures for the 3D transform 

was investigated as the third evaluation. The computational time summary of 

‘Sep3D’, ‘Ns3D’, ‘Ns2D (1)’ and ‘Ns2D(2)’ is described in Table 2 . The 

performance of these algorithms were executed with MATLAB program on Dell 

Inspiron 580 PC, Intel Core i3-550 Processor 3.2 GHz, 4GB RAM on Windows 7. 

As stated in the table 2, it was observed that ‘Ns3D’ is the fastest. Both of 

‘Ns2D(1)’ and ‘Ns2D(2)’ are almost the same, and the second in computational speed 

which are still faster than ‘Sep3D’ by 19 (ms). From these results, it can be confirmed 

that less lifting steps mean faster computation of the transform. 

Table. 2 Comparison of computational time. 

 Sep3D Ns3D Ns2D(1) Ns2D(2) 

Computational time 120.7 ms 97.9 ms 101.3 ms 101.4 ms 
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3.5. Summary and Discussion on this Proposal 

This chapter discussed the 3D integer lifting wavelet transform with reduced 

amount of rounding noise. In the chapter, we introduce Non-separable multi-

dimensional lifting structures for the purpose of the minimization of the total number 

of lifting steps as well as the rounding operations. And the proposed method is 

experimentally confirmed that the non-separable 3D structure increases PSNR by 5 

(dB) in frequency for MRI, AR model and random input signals. Also for the case the 

non-separable 2D structure, it increases PSNR by 2 (dB) without using inter-frame 

memory accessing. These improvements in PSNR measures were also observed in 

rate-distortion curves at high bit rates in lossy coding mode. In lossless coding mode, 

data compression performance is improved for low bit depth input images. 

Computational time was also improved by the method outline detailed in the chapter. 
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Chapter 4 

4. Integer Implementation of 3D Wavelet 

Transform for Lossy Data Compression 

4.1. Motivation of this proposal 

As mentioned in the previous chapter, by virtue of that the wavelet transform [13, 

14] is utilized in JPEG 2000 international standard and implementing upon digital 

cinema video signals compression [15, 16] wavelet transforms have been attracting 

researchers’ attention. As for the previous studies, there have been addressing on two 

main areas, one for the (5/3) type transform for lossless coding of images and the 

other (9/7) type transform for lossy coding where the former one is based on the 

lifting structure. Based on the symmetric property of the forward and backward 

transform that makes the rounding noise of integer within the transform to disappear, 

it is possible to decode the original integer input signal without any loss. For that 

reason, (5/3) type transform has been used for lossless coding of images. But it also 

becomes possible to perform lossy coding in that transform by originating 

quantization between the forward transform and entropy coding.  However its 

performance is inferior to the (9/7) type transform in lossy coding mode. 

This chapter concentrated on the lossy coding of 3D signals and, discussed on the 

analysis of the (9/7) type transform based on quadruple lifting steps implementation 

with two aspects.  One is delay from input to output in such case a particular lifting 
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step could be processed only after getting the calculation result of its previous lifting 

step, there is a long delay among many sequential lifting steps from input to output. 

And the next aspect is regarding with the integer implementation of the transform for 

the signal values inside the transform are assumed to be real numbers as an ideal case. 

Per contra, those are rounded into finite word length rational numbers. Such, the 

shorter the word length, the less computational load and the more rounding noise 

might be resulted. The trade-off made the contribution upon memory space reduction 

that challenges with the rounding noise [44] which is independent of coding 

efficiency. However, the quantization noise is closely related to performance in lossy 

coding. 

Relating to the first aspect, studies were made upon a non-separable 2D structure 

introduced to (5/3) type 2D transform [31,45] which was then extended to be adaptive 

to local property of pixels to increase precision of the prediction [33-35]. The 

extended researches ware based on minimization of rounding noise in integer 

implementation of the (5/3) type 2D transform and for the 3D case in [42]. Yet from 

the (9/7) type transform perspective, it is not the case. Despite the introduction of non-

separable structures surely reduces total number of lifting steps [36-37], total amount 

of the rounding noise was not always reduced [40,41] and the issues can still find in 

3D case (existing method) [46]. 

Non-separable 2D structure was introduced instead of the 3D structure in the 

existing method, whereas the order of the lifting steps in the original separable 3D 

transform is preserved. It was investigated by observing all possibilities combination 

which was determined by 6 rules. Accordingly, the total amount of the rounding noise 
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is reduced, although it raises the total number of the rounding operations. Here we 

experimentally confirmed significant reduction of that total amount of the rounding 

noise observed in pixel values of the decoded image. Upper bound of quality of 

decoded images in lossy coding mode is also improved. 

4.2. Existing Method 

4.2.1. Two Types of Wavelet Transform 

A forward transform of (5/3) type wavelet transform developed for ‘lossless’ 

coding of 1D signals for JPEG 2000 standard [13] is illustrated in figure 50 (a) which 

compose of two lifting steps. In figure 50 (b) , a (9/7) type transform developed for 

‘lossy’ coding is describe with which two more lifting steps and scaling with a 

constant k are added.  

X
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↓2 X0
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1 2
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YL

YH
z ↓2

↓2 X0
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V3 V4

1 2 3 4

k+1 2-F

 

(a)  (5/3) type for lossless coding       (b) (9/7) type for lossy coding 

Figure. 50 Two types of wavelet transform. 

The (5/3) type transform decomposes a 1D input signal X into two frequency band 

signals YL and YH with two lifting steps where the input signal x(n), n= 0, 1,  , N-1 is 
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divided into two groups x0(m) and x1(m), m= 0, 1,  , M -1, M=N/2. It is expressed 

with the z transform as 
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Where Q=2 and  
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Then, the 1st lifting step is applied as  
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and the 2nd lifting is applied as 
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where V1(z) and V2(z) are filters given as 
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for (α, β)=(-1/2, 1/4) in the (5/3) type transform in JPEG 2000. Finally the 

frequency band signals are generated as 
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R [ ] in (52) and (53) is the rounding operator which truncates a pixel value in real 

number to an integer which becomes source of the rounding noise to be reduced in 

this chapter. 

4.2.2. Integer Implementation of the Transform 

The (9/7) type transform has two more lifting steps and scaling. Namely, the 3rd 

lifting step 
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and the 4-th lifting step   
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are added where V3(z) and V4(z) are given as  
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in the (9/7) type transform in JPEG 2000. Finally the frequency band signals are 

generated with scaling as 
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Note that the input signal is scaled with 2F beforehand as illustrated in Figure 50 

(b). In the integer implementation, F is set to a positive number as in integer 

implementation. The smaller the F is, the shorter the bit depth of signals inside the 

transform which then contributes to reduce hardware complexity implementation of 

the transform in general.  
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Figure. 51 Lossy coding performance. 
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The comparison of the (5/3) type 3D transform in [25] and the (9/7) type 3D 

transform (F=8) in [32] in respect of ‘lossy’ coding performance is demonstrated in 

Figure 51. The horizontal axis denotes the bit rate (= code length per pixel). The 

frequency band signals are quantized with the optimum bit allocation, and entropy 

coded according to JPEG 2000. The lower the bit rate is, the better the data 

compression ratio becomes. The vertical axis denotes the peak-signal to noise ratio 

(PSNR). Larger value means higher quality of the decoded image. As it is well 

known, it is confirmed that the (9/7) type is better than the (5/3) type in ‘lossy’ coding 

of a 3D signal. Therefore this paper focuses on improving the (9/7) type transform for 

lossy compression of 3D signals. 

4.2.3. Problem in Integer Implementation 

The two structures comparison for the (9/7) type 3D wavelet transform at F=3 is 

illustrated in Figure 52 (a) whereas one of these is the separable 3D structure (Sep) in 

which the 1D transform in Figure 50 (b) is applied three times ,in horizontal direction, 

in vertical direction, and in inter-frames. The other is the non-separable 3D structure 

(Ns3D) reported in [32]. It has advantage that it is composed of the minimum number 

of lifting steps. However it has a problem described as below. 
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(a) F=3                           (b)  F=1 

Figure. 52 Image quality degradation in integer implementation of the (9/7) type 

wavelet transform. 

Figure 52 (b) compares the two structures at F=1. Here, the shorter the setting of 

the value of F, the less the hardware complexity. Yet, it can be concluded from the 

figure, PSNR is lowered which is a proof that quality of the decoded image is 

degraded by the rounding noise. Particularly, the quantization noise generated in the 

lossy encoder after the forward transform contributes in maximization of the 

compression ratio still the rounding noise generated by the rounding operator does 

not. And this factor defines the upper bound of PSNR in the rate distortion curve as 

illustrated in Figure 52. 
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4.2.4. Separable 3D Structure (Sep) 
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Figure. 53 Separable 3D structure ‘Sep’ for (9/7) type 3D transform. 

Figure 53 illustrates the (9/7) type separable 3D wavelet transform (Sep). By 

applying the 1D structure three times, 12 lifting steps have been result which becomes 

bottleneck for fast implementation of the transform due to the aforementioned delay 

with the lifting steps. Signal processing of Sep is detailed as below. Denoting a 3D 

input signal as 
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the input signal is classified into 8 groups as 
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Where Q = 2. Next, the filters  
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are applied in the lifting steps. Finally, the 8 frequency band signals are obtained 

as illustrated in the figure 53. 
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4.2.5. Non-separable 3D Structure (Ns3D) 
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Figure. 54 Non-separable 3D structure ‘Ns3D’ for 3D transform (existing method). 

The illustration of the existing method (Ns3D) reported in [32] in Figure 54 which 

has 8 lifting steps. As Ns3D uses non-separable structure in each lifting step, the total 

number of lifting steps is decreased from 12 to 8 (66.7 %) comparing to Sep. For 

example, the 1st lifting steps is described as 

)]()()(

)()()(

)([)()(

1101101110011

01110101100111

000111111
)1(

111

zzz

zzz

zzz

XDXHXDH

XVXDVXHV

XDHVRXX







   (68) 

where z=(z1, z2, z3) which requires multi-dimensional memory accessing such for 

instance, V1H1D1 and V1H1 require 3D and 2D memory accessing, respectively. 

However, there is a degradation of image quality in its integer implementation which 

is alleviated by the proposed method as explained in the chapter. 
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4.3. Proposed Method 

In the proposed method, instead of the non-separable 3D structure in the existing 

method, another structure with minimum rounding noise when compare with non-

separable 3D and separable 3D need to be found.  

4.3.1. Approach to find the best structure 

The separable 3D (9/7) has many coefficients which can be permutated 12! 

combinations or 479,001,600 combinations as shown in Figure 55 which is really a 

numerous amount of numbers. Moreover, from every individual combination, there 

might be a variety of possibilities to become the candidates of Ns3D and Ns2D 

structures. For the purpose of observing the candidates with minimum rounding noise, 

the rules to exclude unnecessary combination are determined. In this dissertation, 6 

rules are introduced to find minimum rounding noise structure. 

 

Figure. 55 Permutation of separable 3D (9/7).  

- Rule 1 

Permutation of Vi Hj, Vi Dj and Hi Dj for i  {1, 2, 3, 4} are excluded as shown in 

the example, figure 56. Because they have the same rounding noise 
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Figure. 56 Example case for the rule 1. 

- Rule 2 

Permutation of Vi Hj, Hi Hj and Di Dj for i < j are excluded as shown in the 

example, figure 57. Because they are different from 9/7 wavelet. 

 

Figure. 57 Example case for the rule 2. 

- Rule 3 

Vi Vj are coupled as Vij for ij  {12} or {34}. As well as Hi Hj and Di Dj (As shown 

in the example, figure 58).  Because they can’t be separated. 

 

Figure. 58  Example case for the rule 3. 

 

 



67 

 

- Rule 4 

Vij Hpq can be implemented with Ns2D as (Vij Hpg) for ij,pq {12, 34} as shown in 

example, figure 59. Vij Hpq and Hpq Vij can be implemented to the same Ns2D, also in 

the case of Vij Dpq and Hij Dpq. 

 

Figure. 59  Example case after implemented with Ns2D. 

- Rule 5 

Vij Hpq Dst can be implemented with Ns3D as [Vij Hpg Dst] for ij,pq,st {12, 34} as 

shown in example, figure 60. Also, the same Ns3D [Vij Hpg Dst] can be applied to  

Vij  Dst Hpq, HpqVij Dst, Hpq Dst Vij, Dst Hpq Vij and Dst Vij Hpq.   

 

Figure. 60 Example case after implemented with Ns3D. 

- Rule 6 

In case of the original order (figure 55) is permutated, it was experimentally found 

that the structure has large rounding noise. Because the rounding noise is amplified by 

large coefficient values. Therefore, the original order must be preserved. 
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After applied all these aforementioned rules, there exist only 4 candidates left as 

shown in Figure 61. Observing rounding noise from these 4 candidates, it was found 

that the structure in candidate 4 has the minimum rounding noise. 

 

Figure. 61 Four candidates for investigating the best structure.   

4.3.2. Non-separable 2D structure (Ns2D). 
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Figure. 62 Combination with non-separable 2D structure ‘Ns2D’ for 3D transform 

(proposed method). 

From section 4.3.1, non-separable 2D structure ‘Ns2D’ was proposed. Figure 62 

illustrates the proposed method, composed of non-separable 2D structures in 

combination with 1D separable structure, differed from the existing method Ns3D. In 
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which, yet the number of lifting steps is increased comparing to Ns3D but it is not 

exceeded to the Sep. Nonetheless, total amount of the rounding noise is reduced 

The 1st and the 2nd lifting steps are 1D structures can be expressed as 
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Where c2, c3{0,1}. The 3rd, 4th and 5th lifting steps are non-separable 2D 

structures. For example, the 1st step is expressed as 
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   (70) 

Where c3{0,1}. A set of the 6th, 7th and 8th lifting steps is a non-separable 2D 

structure. The final set of the 9th and 10th lifting steps is the 1D structure again. Thus, 

the proposed method is a combination of non-separable 2D structures and a product of 

1D structures (= separable structure). 

4.3.3. Comparison of the Structures 

Table. 3 Comparison of the methods 

(9/7) type Sep Ns3D Ns2D 

rounding operations 72 24 40 

lifting steps 12 8 10 

memory accessing 1D 3D 2D 
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The comparison of the three structures: Sep, Ns3D and Ns2D is summarized in the 

Table 3 where total number of the lifting steps of the proposed Ns2D is increased 

from 8 to 10 comparing to the existing Ns3D. However, although the total number of 

the rounding operations is still fewer than Sep, it is raised than the existing method so 

that no merit in reducing the rounding noise. However the proposed method surely 

reduces total amount of the rounding noise as confirmed in 4.4. This is considered to 

be due to the difference between Ns3D and Ns2D described below. 

Sep illustrated in figure 53, is composed of the lifting steps V1, V2,  ,D4 is 

expressed as 

432143214321 DDDDHHHHVVVVSep .   (71) 

Firstly, order of the lifting steps in the existing method is changed as  

434343212121' DDHHVVDDHHVVSep ,  (72) 

And, a part of it is implemented in the non-separable 3D structure as  

]][[3 434343212121 DDHHVVDDHHVVDNs   (73) 

Where the [  ] part denotes the non-separable 3D structure. Differ from the existing 

method in (72), the proposed method can be expressed as 

432143214321 ))((2 DDDDHHHHVVVVDNs  (74) 

Does not change the order of (71) where the (  ) part denotes the non-separable 2D 

structure.  
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4.4. Experimental Result 

4.4.1. Evaluation of rounding noise 

A set of MRI volumetric image tested for the method in this chapter is illustrated 

Figure 43 which compose of 8 frames, 256 256 pixels for each particular frame 

whereas the individual pixel has 8 bit depth integer value; x(n)[0,255].  

In, figure 63 we summarizes variance of the rounding noise observed in each 

frequency band signals as F=0. In all bands, although the existing Ns3D is the biggest 

(=worst), the proposed Ns2D is apparently better than Ns3D. Figure 64 summarized 

the variance averaged over all frequency bands. An auto-regressive (AR) model and a 

random signal are added as the input signal. It can be clearly detected that the 

proposed method is the best in respect of variance of the rounding noise in frequency 

domain. 
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Figure. 63 Rounding noise in each frequency band. 
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Figure. 64 Rounding noise averaged over all frequency bands. 

For the variance of the rounding noise in pixel domain, we summarizes in Figure 

65. There is no rounding operation is applied in the forward transform as well as the 

quantization for lossy coding. In the backward transform, signals are rounded at F=0. 

In this domain, difference between the decoded signal and the input signal is defined 

also. Its variance is measured with the PSNR defined as 

2
1010 log10255log20 RndPSNR      (75) 

Where σRnd denotes the standard deviation of the rounding noise in pixel domain. 

Based on the figure 65, it can be confirmed the proposed method significantly reduces 

total amount of the rounding noise, and has the best quality of the decoded signal. 
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Figure. 65 Rounding noise in pixel domain. 

4.4.2. Evaluation of Lossy Coding Performance 

Figure 66 illustrates the rate-distortion curves which compare performance of the 

methods in lossy coding mode. In Figure 66 (a) at F=0, the existing Ns3D is the worst 

at high bit rate. Obviously, the proposed Ns2D is observed to be the best. Whereas the 

degradation of the PSNR is related to the rounding noise in pixel domain in Figure 65 

that  determines the upper bound of the PSNR in figure 66. It can be modelled as 

)(log10255log20 22
1010 QntRndPSNR      (76) 

Where σRnd and σQnt denotes the standard deviation of the rounding noise and the 

quantization noise, respectively.  

As for the case σQnt>>σRnd holds, it can be clearly observed that the quantization 

noise is related to the bit rate Bit as 

02.6
log10 2

10











BitBit

PSNR Qnt
    (77) 
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where Δ denotes deviation of the value. Particularly, one bit increase of Bit 

provides 6.02 (dB) increase of the PSNR which from decrease of standard deviation of 

the quantization noise σQnt. In such case, it can be concluded that degradation of 

quantization noise raises PSNR whereas the total amount of the rounding noise is 

independent of PSNR. In case of σQnt<<σRnd holds, (76) becomes  

2
1010 log10255log20 RndPSNR     (78) 

which determines the upper bound of PSNR in the rate distortion curves. 
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(b)                                                                 (d) 

Figure. 66 Performance in lossy coding mode. 
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The relation between the bit depth F and the standard deviation of the rounding 

noise σRnd as an another aspect can be modelled as  

F
Rnd

 22 .               (79) 

For that reason, as long as larger F is used, the upper bound increases which is 

confirmed according to Figure 66 (b), (c) and (d). At F=3, there is almost no 

difference among the existing method and the method discussed in this chapter as 

indicated in Figure 66 (d). Also, it can be clearly seen as the proposed method is 

superior to the existing method in respect of PSNR at high bit rate in short length 

integer implementation of the transform.  

4.5. Summary 

In this chapter, non-separable 2D structures, which was found by 6 rules, was 

introduced. Comparing to the 3D structures existing method, total number of lifting 

steps was increased. However, total amount of rounding noise due to integer 

expression of signal values inside the transform (integer implementation) was 

minimized. It was confirmed that it contributes to increasing upper bound (quality of 

decoded images) in the rate distortion curve in lossy coding mode. 
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Chapter 5 

5. Channel Scaling for Integer Implementation of 

Minimum Lifting 2D Wavelet Transform 

5.1. Motivation of this proposal 

In the integer implementation within the wavelet transform, signal values inside 

the transform are rounded to integers so that shorter word length of the integer 

contributes to smaller memory space and faster calculation [48-53] which is beneficial 

for hardware implementation of WT. However it generates noise due to the rounding 

(rounding noise).  

Unlike the quantization noise, the rounding noise is independent of the bit rate 

(compression ratio). Therefore the rounding noise appears as the upper bound of the 

rate distortion curve (the bit rate versus the peak signal to noise ratio) in high bit rate 

lossy coding of images. In this chapter, we focus on the reduction the rounding noise 

of the minimum lifting WT by introducing the channel scaling. 

More precisely, we focus on the reduction of the rounding noise of the minimum 

lifting WT based on the 9/7 WT for 2D case in integer implementation by introducing 

the channel scaling. There have been four channels in 2D WT and, in all channels; the 

maximum absolute value (MAV) of signals inside the transform is limited by word 

length of signals in integer implementation. Based on the fact that MAV in each 
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channel is not the same, different scaling in each channel maintaining the original 

signal value at output of the transform is introduced. The scaling parameters are 

defined for the case that MAV of all channels become the same. This expressed that 

the dynamic range given by the word length is fully utilized in each channel. 

Accordingly, the rounding noise is reduced without altering the signal at output of 

WT.  

5.2. Existing Method 

A problem of the minimum lifting WT in the integer implementation is addressed 

based on the explanation of the Integer implementation of WT.  

5.2.1. Lifting Wavelet and its Integer Implementation 

 

    

                             (a)      (b) 

Figure. 67 Lifting wavelet transform for 1D signal. 

In figure 67 (a), a forward transform with the 9/7 WT for a 1D input signal 

sequence is illustrated:  
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where x(n) denotes a D bit depth signal value at location n. The decomposition of 

the transform X(z) into two channels is mentioned as 
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where 

  12/12/1 2)()()]([2 
  zXzXzX .   (82) 

X2(z) in channel 2 (Ch2) is predicted from X1(z) in channel 1 (Ch1) with an FIR 

filter V1(z) for the first lifting step. Then being in four lifting steps, the transform 

outputs two frequency band signals Y1
*(z) and Y2

*(z) as 
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Figure. 68 Integer implementations of the lifting wavelet transform. 

These band signals are quantized and encoded with an entropy encoder such as 

EBCOT [13] to produce a bit stream (compressed data) in a lossy coding. For the 

input signal reconstruction, the backward transform illustrated in Figure 68 (b) is 

applied immediately after the bit stream is decoded with an entropy decoder and 

processed with inverse of the quantization. In such case, the reconstructed signal 

contains noise due to the quantization (quantization noise) so that the more the volume 

of noise, the less the amount of data Figure 69 illustrates an integer implementation of 

the transform in Figure 68 (a). After each filter, a rounding operation is introduced. In 

the 1st lifting step, Ch2 is predicted from Ch1 as 

)]()([)()( )0(
11

)0(
2

)1(
2 zXzVRzXzX       (86) 

where a rounding operator R[x]  rounds a rational number x to the nearest integer. 

Similarly, Ch1 is updated from Ch2 as  
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1

)1(
1 zXzVRzXzX  .       (87) 

After two more lifting steps:  
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and 
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two frequency band signals are generated as 


































)]([

)]([

)(

)(
)2(

2
1

)2(
1

1

2

1

zXkR

zXkR

zY

zY
.          (90) 

Again, an integer implementation case where the bit depth of signals inside the 

transform is limited to B (bit) is considered in this chapter which is then described as  

  1)( 2,|)(|max  Bs
c cszX      (91) 

where the maximum absolute value (MAV) of signal values of the signal sequence 

Xc
(s)(z) in the left hand side. Yet the smaller values B causes the lower numerical 

complexity, the band signals in the integer implementation contain noise due to the 

rounding operation (rounding noise) even though there is no quantization noise.  

5.2.2. Standard Lifting Wavelet for 2D Signal 
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Figure. 69 Channel decomposition of a 2D signal. 
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For a 2D input signal X(z), the transform splits the input signal into four channels 

as illustrated in Figure 69. It is denoted as 
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where 
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and 
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where z=(z1,z2) and n=(n1,n2).  

By applying the 1st, 2nd, 3rd and 4th lifting steps vertically with  
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and the 5th, 6th, 7th and 8th lifting steps horizontally with  
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to the channel signals in (92), the transform outputs four frequency band signals 

Y1(z), Y2(z), Y3(z) and Y4(z) as illustrated in Figure 70 which is  referred to as 

Separable structure (Sep).  
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Figure. 70 The standard wavelet transform based on  

the separable 2D structure (Sep). 

5.2.3. Minimum Lifting Wavelet and its Problem 
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Figure. 71 The minimum lifting wavelet transform based on  

the non-separable 2D structure (Nsp).  
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The minimum lifting steps in WT based on the non-separable structure (Nsp) has 

reduced number of lifting steps in contrast to Sep. In Figure 71, Nsp with 6 lifting 

steps is illustrated by the introduction of 2D memory accessing. The signal in Ch4 is 

produced as (for instance); 
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in the 1st lifting step. In this step, a 2D filtering with 2D memory accessing 

V1(z)H1(z) is used. In the 2nd lifting step, the calculation of Ch2 and Ch3:  






























)]([)(

)]([)(

)(

)(
)1(

33

)1(
22

)1(
3

)1(
2

zz

zz

z

z

PRX

PRX

X

X
    (100) 

for 


































)(

)(

)()(

)()(

)(

)(
)1(

4

1

21

21

)1(
3

)1(
2

z

z

zz

zz

z

z

X

X

HV

VH

P

P
     (101) 

can be done simultaneously without necessary to wait for calculation results each 

other.  
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Figure. 72 Problem of the existing method in lossy coding. 

Nonetheless, there is a problem remaining in the existing method in lossy coding. 

As indicated by the rate distortion curve in Figure 72, the  horizontal axis for the 

average code length (data volume in bit per pixel) and the vertical axis the peak-signal 

to noise ratio (PSNR) as follows; 
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where V[E(z)] stands for the variance of the noise E(z). As illustrated in the figure 

72, PSNR is saturated in high bit rates especially in Nsp.  

   The root cause of the issue is explained as below. The difference between the 

original input signal X(z) and the reconstructed signal (output of the backward 

transform) contains two noises uncorrelated each other. One is the quantization noise 

NQ(z) and the other is the rounding noise NR(z). Namely variance of E(z) becomes 
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where the quantization noise dominates over the rounding noise in case A and vice 

versa in case B. Such, the logarithm of the variance of the quantization noise is 

proportional to the bit rate. On the other hand, the variance of the rounding noise is 

independent of the bit rate so that upper bound of PSNR is determined by the 

rounding noise. Namely, 


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
BcaseU

AcaseT
PSNR        (104) 

where 

)]([log)],([log zz RQ NVUNVT  .    (105) 

whereas T denotes the bit rate and U is a constant which is independent of T.  

5.3. Proposed Method 

The primitive concept of the channel scaling explained for 1D case is applied to 

the non-separable 2D structure as the proposed method. 

5.3.1. Channel Scaling in the 1D Transform 

In figure 73, a new integer implementation of the 1D forward transform is 

described while the scaling parameters s1 and s2 are introduced comparing to figure 

68. And the ratios of these are expressed as;  

]//[][ 21122112 ssssss                      (106) 
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This also introduced in each lifting step for having the same signal as those in 

Figure 67 (a) except the rounding noise. Particularly, the filters in Figure 68 are 

replaced as  
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Figure. 73 Channel scaling (Scl) in the 1D transforms. 

in figure 73. In this paper, the scaling parameter sc in channel c{1,2} is 

determined so that the dynamic range of signal values in each channel is fully utilized.  

 

Figure. 74 The maximum absolute value in each channel. 

The maximum absolute value (MAV) in channel c{1,2} defined in instance as  



87 

 

 szXm s
cc  |)(|max )(

      (108) 

are different in general. Figure 74 illustrates m1 and m2 of D=8 bit depth AR(1) 

model signals with different correlation coefficient  .For example, (m1, m2) = (157.86, 

272.08) in average for 64 kind of signals with  = 0.9. Here, we prepare the bit depth 

B which satisfies (91) is prepared for the integer implementation of the transform so 

that the dynamic range of Ch2 is fully utilized under this bit depth yet that of Ch1 is 

not. For that case, we determine the scaling parameters as 
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so that MAV '1m  and '2m after the channel scaling become almost the same under 

the bit depth constraint:  

1
21 2''  Bmm      (110) 

for 

   221121 '' smsmmm  .          (111) 

5.3.2. Proposed Transcoding System II 

In the following, the relationship between the scaling parameters (s1, s2) and the 

variance of the rounding noise in frequency domain is analyzed. By characterizing the 
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rounding noise as the difference between the frequency band signals in figure 67 (a) 

and those in figure 73 as  































)(

)(

)(

)(

)(

)(

*
2

*
1

2

1

2

1

z

z

z

z

z

z

Y

Y

Y

Y

E

E

,         (112) 

Which is described with the rounding noise in each lifting steps denoted as Ri , 

i{1,2, ,8} as 
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where (z) are omitted for simplification of notation. Substituting (106) into (113), 

it is expressed as 
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where 



89 

 


























































 




























1

)1(
,

1

)1(

,
1

,
)1(

)1)(1(

,
1

,
0

1
,

0

0

32

4243
2

32

4243
3

4
5

1321

412143
1

3

43
461

1

VV

VVVV

VV

VVVV

V

VVVV

VVVVVV

V

VV

k

k

GG

GG

GGK

 

with scaling parameters (s1, s2). Defining the total variance of the rounding noise in 

(114) as 

2

][][
),( 21

21

EVEV
ssI


 ,             (115) 

it becomes  

2
22

2
11021 ),(   ssssI       (116) 

under the assumptions that all the rounding noise have the same variance:  

iforRV i  12/1][             (117) 

and those are uncorrelated each other:  

jiforRRV ji  0][ .           (118) 

Consequently, the total variance of the rounding noise to be reduced is expressed 

as a function of the scaling parameters s1 and s2. 
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Figure. 75 Channel scaling (Scl) and rounding noise. 

Figure 75 indicates contours of the total variance I in (115) with solid lines on (s1
-2, 

s2
-2) plane. From (110) and (111), the bit depth constraint is expressed as 

1
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11 22   BB smsm       (119) 

which means the region  
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on the plane (shadowed region in figure 75). From (109), the scaling parameters of 

the proposed method are on the line: 

    0: 2121 
T

P ssmmL    (122) 
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and therefore the proposed method sets the parameters on the point P in figure 75. 

In contrast, the existing method sets on the line:  

    011: 21 
T

E ssL .            (123) 

The existing method sets on the point E in the figure results,  

),(),( 2121 ssIssI PE      (124) 

Holds that the proposed method decreases the total variance of the rounding noise 

with the scaling parameters in (114). 

5.3.3. Channel Scaling in the 2D Transform 

s1
-1 k-2

s2
-1

s3
-1

s4
-1 k+2

s34H1

s21H2s14V1H1 s12H1

s42V2

s24V1

-s41H2V2s43H2

s31V2

s13V1

X1

X2

X3

X4

s1

s2

s3

s4

s34H3

s21H4s14V3H3 s12H3

s42V4

s24V3

-s41H4V4s43H3

s31V4

s13V3

Y1 : Ch1

Y2 : Ch2

Y3 : Ch3

Y4 : Ch4

1st 2nd 3rd 4th 5th 6th
 

Figure. 76 The minimum lifting wavelet transform with the channel scaling 

(Nsp+Scl). 

The proposed method (Nsp+Scl) for 2D signals is shown in Figure 76. The channel 

scaling described in Figure 71 has four scaling parameters  

][ 4321 sssss            (125) 
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and their ratio  

}4,3,2,1{,/  qpforsss pqpq   (126) 

as illustrated in the figure 76 The scaling parameters in the proposed method are 

set to 

  1
4321 ,,,max  cc mmmmms     (127) 

for c{1,2,3,4}. In contrast, the existing method sets the parameters to  

}4,3,2,1{1  cforsc .        (128) 

Based on the fact that the proposed method is expected to reduce the total 

variance: 
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of the rounding noise in frequency band signals for raising the upper bound U in 

(104) in lossy coding of images. 

5.4. Experimental Result 

In this section, effect of the channel scaling is examined. After determining the 

scaling parameters, the total variance of the rounding noise is evaluated together with 

the upper bound in lossy coding. 
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5.4.1. Parameter Setting in Channel Scaling 

First of all, the maximum absolute value of signals inside the transform in the 

existing method (Nsp) in figure 71 is investigated. The bit depth defined as  

 szXB s
cc  |)(|maxlog1 )(

2     (130) 

for each channel c{1,2,3,4} is measured for 10 input images {1.Couple, 2.Boat, 

3.Lena, 4.Cameraman, 5.Girl, 6.Airplane, 7.Woman, 8.Building, 9.Barbara, 10.Text} 

with 8 bit depth each. Bc averaged over the input images is summarizes in figure 77.  

The longest bit depth is in Ch4 which has B4 =10.3  0.2 (bit) where 0.2 denotes the 

standard deviation. Therefore the transform must have the bit depth B in (87) which is 

longer than B4. The shortest bit depth is B1 =8.6  0.2 (bit) in Ch1. Therefore the 

dynamic range provided by B is not fully utilized in Ch1, Ch2 and Ch3 in the existing 

method.  
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Figure. 77 Bit depth of signal values in each channel. 

For absolutely applying the dynamic range of the transform, the scaling parameters 

are determined according to (126). Figure 78 summarizes the parameters averaged 
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over the input images. For example, s4 =1.0  0.0 in Ch4. The largest value was 

observed to be s1 =3.33  0.35 in Ch1. Of all the channels have almost the same bit 

depth by introducing these scaling parameters in our proposed method in this chapter. 
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Figure. 78 Scaling parameters in each channel. 

5.4.2. Effect of Channel Scaling for Various Images 

The lowest bit depth required for the integer implementation of the transform 

illustrated in Figure 79 is defined as  

 cszXB s
c  ,|)(|maxlog1 )(

2min    (131) 

for all the channels and measured for each of the input  images. It can be 

confirmed that the proposed method (Nsp+Scl) has the same Bmin as the existing 

method (Nsp). Note that B1, B2, B3, B4 and Bmin have almost the same value in the 

proposed method and therefore the dynamic range is fully utilized in all the channels.  
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Figure. 79 Bit depth necessary for integer implementation. 

The total variance I(s) in (116) is summarized in figure 79 is converted to PSNR as 

)(
)(

255
log10

2

10 dB
I

PSNR
s


     (132) 

as the same in (102). PSNR for the existing method (Nsp), was observed to be 

48.24  0.11 (dB) in average while that of the proposed method (Nsp+Scl) is improved 

to 52.27  0.33 (dB). We can observe that the channel scaling reduces variance of the 

rounding noise by 4.03 (dB) in average.  
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Figure. 80 Variance of the rounding noise measured in PSNR. 
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5.4.3. Effect of Channel Scaling on Lossy Coding 

The effect of the channel scaling over lossy coding of images is examined lastly. 

The forward transform in the integer implementation in figure 70, in Figure 71 and in 

Figure 76, are utilized for the encoding of the input images respectively. Then, the 

backward transform without rounding operations is applied in decoding process, the 

variance of the difference between the decoded image and the original image is 

measured in PSNR so that the measured value indicates the total variance (in pixel 

domain) of the rounding noise generated in the forward transform. 

The rate distortion curves are summarized in figure 81. The vertical axis represents 

the PSNR described above and the horizontal the compressed data volume measured 

in the bit rate (bpp: bit per pixel) consequently. In lossy coding mode, there is no 

difference between the methods in low bit rate remarked as ‘case A’ in (103).On the 

contrary, for the high bit rate lossy coding mode, ‘case B’ in (103), PSNR is improved 

by the channel scaling. In case of ‘Couple’ input image for example, the existing 

method (Nsp) has approximately 2 (dB) lower PSNR at 5.5 (bpp) comparing to the 

standard wavelet transform (Sep). However, it was observed that the channel scaling 

increases PSNR by approximately 5 (dB) in the proposed method (Nsp+Scl). 
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Figure. 81 Effect of channel scaling on lossy coding. 

5.5. Summary and Discussion on this Proposal 

The channel scaling which was designed for fully utilization of the dynamic range 

of signal values at each channel of the transform in integer implementation was 

introduced to the minimum lifting WT based on the non-separable 2D structure.  The 

fact that the variance of the rounding noise was decreased at output of the transform is 

confirmed in such a case where the rounding noise reduction contributes to improve 

decoded image quality in high quality (= high bit rate) lossy coding of images.  
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Chapter 6 

6. Word Length Allocation for Multiplier 

Coefficients of Minimum Lifting Non-Separable 

2D Wavelet 

6.1. Motivation of this proposal 

When the era of that the lifting wavelet transform was adopted by the JPEG 2000 

international standard [13], various implementation issues have been discussed on this 

transform [15,19,48]. In this standard, there are two types of filters 5/3 filter for the 

lossless coding and 9/7 the lossy coding of images, [19] where each of them are 

composed of cascaded lifting steps.  

According to the cascaded scheme, there is a delay time for waiting the result from 

the previous lifting step. In that case, the more the lifting steps exist, the more the 

delay arises. Such, the decrement in the number of lifting steps can minimize the 

latency of the transform in a parallel processing platform. 

However, considering the case of the minimum lifting step structure, the output 

signal is distorted due to truncation of multiplier coefficient values. As regards, a few 

coefficients are extremely sensitive to the truncation in this structure while some other 

coefficients are relatively tolerant. For this reason, a special treatment to each 
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coefficient is necessary to compensate the implementation cost in the minimum lifting 

structure.  

This chapter deals with the word length of coefficients as reference to an 

implementation cost [60] which is closely related to the sum-of-power-of-two (SPT) 

format [61-65]. [62,63] reports designing multiplier-less adaptive filters to be 

beneficial for. Different number of SPT terms are allocated to each coefficient value 

under a given total number of SPT terms to reduce implementation cost in [64]. 

Inspired by [64], we proposes an optimization procedure for dictating the tolerable 

(the maximum) truncation error (tolerance) for each coefficient of the minimum lifting 

structure. In this method, the noise gain (sensitivity) of each coefficient is taken into 

account for an input signal with colored spectrum. In comparison with the tabu-search 

method in [65], the propose method is simple and stable with satisfactory performance 

for this case.  

In the experiments and discussions, we examined the exploitation of the proposed 

scheme in lossy coding. The tolerance is assigned to each coefficient so that coding 

performance of the transform is maintained. It can be well proved that the proposed 

method can reduce not only the word length cost but also the total number of SPT 

terms maintaining the same lossy coding performance. 

6.2. Existing Method 

Nsp 2D minimum lifting structure and its multiplier coefficients to be expressed in 

SPT format are summarized. 
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6.2.1. Minimum Lifting Structure 
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Figure. 82 The separable (Sep) 2D structure of the 9/7 forward wavelet transform 

in JPEG 2000 standard. This structure has 8 lifting steps. 

In Figure 82, the Sep 2D structure of the forward 9/7 wavelet transform is 

illustrated. Pixel values x(n1,n2) at location n1, n2of the input image is divided into 4 

groups as 


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for m=(m1, m2). For the first step, x3 is predicted from x1 as 
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for c{1,2,3,4}, z=(z1,z2) and V1(z)=(1+z1). x4 is predicted from x2 in the same manner 

concurrently. In (134), h1 denotes a multiplier coefficient. Updating in the second step 

can start after having the result of the first step, As illustrated in figure 82, it has 8 

lifting steps in total where 
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and coefficient values are defined as listed in Table 4 [5]. 

Table. 4 Coefficient values of the 2D wavelet transform with 9/7 filters. 

c coefficient c coefficient

1 h1 -1.586134342059924 6 h22 0.0028068929640050

2 h2 -0.052980118572961 7 h33 0.7795319672951906

3 h3 0.882911075530934 8 h44 0.1966983278099528

4 h4 0.443506852043971 9 k+2 1.5133283284009633

5 h11 2.515822151061868 10 k-2 0.6607951369394080
 

k-2

k+2

h1H1

h2H2h11V1H1 h1H1

h2V2

h1V1

-h22H2V2h2H2

h2V2

h1V1

X1

X2

X3

X4

h3H3

h4H4h33V3H3 h3H3

h4V4

h3V3

-h44H4V4h4H4

h4V4

h3V3

Y1

Y2

Y3

Y4

1st 2nd 3rd 4th 5th 6th

+

+

+

+

+

+

+

+

 

Figure. 83 The non-separable (Nsp) 2D minimum-lifting structure of the forward 

transform. The number of lifting steps is reduced from 8 to 6. 

Figure 83 demonstrates the Nsp 2D structure of the forward transform [39,40]. 

Contrary to the structure in Figure 82, x4 is predicted from x1, x2 andx3 in the first step. 

Then in the next step, x2 and x3 are updated from x1 and x4simultaneously. This 

minimum lifting structure has total of 6 steps which is reduced from 8 to 6 (75 %). 

figure 83 illustrates the backward transform in this structure. The forwardly 

transformed signals Y1, Y2, Y3 and Y4 are backwardly transformed to reconstruct the 

original input signals (from right to the left in figure 84). In this chapter, we addresses 
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on the expressing coefficients of this backward transform in SPT format for reducing 

computational complexity of the decoder. 
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Figure. 84 The backward transform of the non-separable (Nsp) structure. In this 

paper, coefficients are expressed in the Sum-of-Power-of-Two format. 

6.2.2. Truncation of coefficient 

In minimization of the computational complexity, coefficient values are first 

truncated and, then expressed with short word length binary or the SPT format. When 

an original coefficient value hc is truncated as (for instance) 

  cc WW
cc hh


 22' ,                               (137) 

The truncated coefficient h'c in binary expression has Wc [bit] in its fraction part. 

Hence, the truncation error takes values in the range of  

)2,0[' cW
ccc hhh


 .                        (138) 

Accordingly, the shorter the word length Wc is, the larger the truncation error Δhc 

becomes. In this chapter, we use the word length as the implementation cost. hc is 
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expressed in the SPT format by giving the word length or the tolerable truncation 

error,. For example, h1= -(1.100101100000 )2is truncated to h'1= -(1.1001)2 at Wc=4 

and 5, respectively (the same result). In SPT format, it is expressed with 3 terms as  

)222(' 410
1

 h .                        (139) 

From [64], it can be regarded as the less number of terms is preferable for low 

computational cost. 

6.3. Proposed Method 

In the proposed method, different word length (or number of SPT terms) are 

assigned to each coefficient and so the word length cost can be lessen under the same 

coding performance. 

6.3.1. Effect of the Truncation on signal 

We examine the effect of truncating each coefficient value on the reconstructed 

signal (output signal of the backward transform) in Figure 69 first. Here, the effect is 

measured as  

 
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
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mm

mM bb
b

c xcuI      (140) 

for c{1,2,,N} where #M stands for the total number of pixels which indicates 

the standard deviation (SD) of the noise due to the truncation. In (8), ub(m|c) denotes 
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pixel values of the output signals Ub in Figure 69 in which only the coefficient number 

c is truncated. When all the coefficients are truncated, 

 
2/1
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1
)()|( 
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
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is used as a substitution of (140). Relation between (140) and (141) is mentioned 

as 

 


2

1

2
c

N

c
c II       (142) 

where N for the total number of coefficients. When the noise ub(m|c) are 

uncorrelated each other, β becomes zero. 

Second, noise gain G(c) of the coefficient number c is defined as 

11)(   cxc hIcG       (143) 

where σx denotes SD of pixel values of the input image. In Figure 70, the measured 

noise gain for a 2D AR(1) model signal with correlation ρ is illustrated. It is observed 

that the coefficient number 6 has the largest value of G, whereas the number 10 has 

the least effect for ρ=0.99 case. 
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     (a) ρ=0.99             (b) ρ=0.00     

Figure. 85 The noise gain G(c) of the coefficient number c in log scale. The 

coefficient number 6 has the largest effect on the output signal. 

6.3.2. Optimum Word Length Assignment 

In the proposed scheme, the tolerance Δhc in (143) is optically allocated for each 

coefficient. Then the word length cost can be determined as 

c

N

cN
WJ  


1

1

 [bit]                             (144) 

where the word length of a coefficient number c is denoted as Wc. The 

optimization issue discussed in this chapter is described as 

WWItsJ cc  }max{..min 2              (145) 

for a given word length W. The parameter ε is set to the variance in (142) of the 

existing method, so that the addressed scheme does not change the lossy coding 

performance of the existing method. From (142), (143), (144) and -log2(Δhc)>Wc from 

(138), the problem in (145) is expressed with the tolerance Δhc as 
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where λ1 and λ2 the Lagrange multipliers. To alleviate the particular issue, assign 

the tolerance for each coefficient can be assigned as  
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where α is a hyper parameter to be determined experimentally where as α=0 refers 

to the existing method. 

6.4. Experimental Result 

The minimization effect of the proposed method upon the word length cost is 

experimentally confirmed under the same coding performance of the existing method. 

6.4.1. Parameter Setting in Channel Scaling 

Yet our solution in (147) includes the hyper parameter α, it is simple and stable 

comparing to a numerical optimization procedure. Figure 86 (a) indicates that the 

word length cost J decreases as α becomes close to 1 despite that the peak signal to 

noise ratio: 
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Figure. 86 The parameter α>0is determined so that the proposed method has the 

least length cost under the same PSNR as the existing method with α=0. 
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Figure. 87 The proposed method with α=0.7 has less word length cost under the 

same PSNR comparing to the existing method with α=0. 

Decreases for αgreater than approximately 0.7as indicated in figure 86 (b). Such it 

is suggested to set the value of α=0.7. The indication of the proposed method 

decreases the word length cost by approximately 4 [bit] for a given word length W in 
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Figure 87 (a).Again for case of the proposed method has the same PSNR as the 

existing method, it is describe in Figure 87 (b).  

Figure 88 mentions the rate-distortion curves in lossy coding at W=12. It could be 

examined that the proposed method keeps coding performance of the existing method 

under the lower word length cost. Note that the PSNR ceiling (approximately 49 [dB] 

in Figure 88 (b) is increased by 6 [dB] per 1 [bit] increase of W. It's up to the capacity 

of the implementation platform. 
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                      (a) α = 1.0, ρ = 0.9                  (b) α = 0.7, ρ = 0.9 

Figure. 88 The proposed method with α = 0.7 has the same performance in the 

rate-distortion curve as the existing method. 

6.4.2. Expression of Coefficients in SPT format 

The parameters are set to W=12 and α=0.7 for instance in the following 

experiments. The assigned word length Wc for each coefficient is summarized in Table 

5. Each of them satisfies Wc < -log2(Δhc) where the tolerance Δhc is derived by the 

assignment in (147). For example, the tolerance of the existing method is Δhc= 2-12 for 

all coefficients. Since h'1= -(1.100101100000)2 in 12 [bit] and h'1= -(1.1001011)2 in 7 



109 

 

[bit] are the same, Wc is counted as 7 in the Table. It can be proved that the word 

length cost is reduced to 71.8 [%] by the proposed method. Under these tolerances, the 

coefficient values are expressed in SPT format. Table 6 summarize the results where 

Table 7 the total number of the SPT terms which is reduced to 74.5 [%] by the 

proposed method. It can be regard that the number of terms can be decreased by 

setting smaller value of the word length W at the cost of lower ceiling of PSNR 

(illustrated in figure 88). 

Table. 5 The word length Wc of each coefficient (example for W=12). 

-h1 -h2 h3 h4 h11 h22
Existing 7 12 7 9 6 12
Proposed 7 9 7 4 6 12

h33 h44 k+2 k-2 total
Existing 9 12 11 11 96 100 %
Proposed 9 4 7 3 68 71.8%

 

Table. 6 Coefficients in the SPT format (example for W=12). 

Proposed Method

2 0 +2-1 +2-4 +2-6 +2-7

2-5 +2-6 +2-8 +2-9

2-1 +2-2 +2-3 +2-7

2-2 +2-3 +2-4

2 1 +2-1 +2-6

2-9 +2-11+2-12

2-1 +2-2 +2-6 +2-7 +2-8 +2-9

2-3 +2-4

2 0 +2-1 +2-7

2-1 +2-3

Existing method

-h1 2 0 +2-1 +2-4 +2-6 +2-7

-h2 2-5 +2-6 +2-8 +2-9 +2-12

h3 2-1 +2-2 +2-3 +2-7

h4 2-2 +2-3 +2-4 +2-8 +2-9

h11 2+1 +2-1 +2-6

h22 2-9 +2-11+2-12

h33 2-1 +2-2 +2-6 +2-7 +2-8 +2-9

h44 2-3 +2-4 +2-7 +2-10 +2-12

k+2 2 0 +2-1 +2-7 +2-8 +2-10 +2-11

k-2 2-1 +2-3 +2-5 +2-8 +2-11
 

Table. 7 The total number of SPT terms (example for W=12). 

-h1 -h2 h3 h4 h11 h22
Existing 5 5 4 5 3 3
Proposed 5 4 4 3 3 3

h33 h44 k+2 k-2 total
Existing 6 5 6 5 47 100 %
Proposed 6 2 3 2 35 74.5%
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6.5. Summary and Discussion on this Proposal 

A simple and stable allocation method of the word length of coefficients of the 

minimum lifting 2D wavelet transform was proposed and discussed in this chapter. 

Also, the fact that the proposed method reduces the word length cost keeping the same 

PSNR as the existing method in lossy coding was experimentally confirmed. For 12 

bit maximum word length case, an allocation example was indicated in SPT format. 

Since the analysis discussed in this is limited to the truncation of coefficients, the 

rounding of signal values should be also considered as described in [58]. 
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Chapter 7 

7. Conclusion of the Dissertation 

In this dissertation, we provided 4 proposals as; (1-2) Chapter 3 and 4 for non-

separable lifting structure compatibility with 3D data for lossless and lossy 

compression, (3) Chapter 5 for the rounding noise was reduced by channel scaling 

method, and (4) Chapter 6, Coefficient noise which was reduced by word length 

optimization. 

In (1) Chapter 3, our findings showed that the 3D non-separable lifting structure 

for lossless coding is better than the existing separable lifting structure in all ways.  

The rounding noise in frequency domain and pixel domain was also improved. 

Moreover, in coding performance, at low bit rate, our proposal is better than existing 

obviously. Therefore, the lossless 3D non-separable is the best choice for the 

minimum rounding noise and good coding performance. 

In (2) Chapter 4, the non-separable 2D structures for 3D lossy compression, which 

was found by the 6 rules, was proposed. Comparing in lifting structure to the existing, 

the total number of lifting steps was increased. However, the rounding noise that 

caused by integer implementation was minimized and the lossy coding performance 

was also increased when compared to the other lifting structure. 
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In (3) Chapter 5, scaling method was proposed for improvement of rounding error 

of 2D non-separable lifting structure for lossy compression. After applying scaling 

parameter to lifting structure, we found that the rounding error was improved while 

the maximum of each channel does not exceed hardware constraint. 

In the last, (4) Chapter 6, Word length optimization can reduce the coefficient 

noise. When α = 0.7, word length cost was reduced while a little bit drop PSNR 

(reconstructed image quality). Worse, when α = 1.0, word length cost was reduced 

more than α = 0.7 and more coefficient noise occurred and PSNR was done to drop 

from α = 0.7. Therefore, the parameter α = 0.7 is suitable for reduction of the word 

length while it can maintain PSNR for lossy coding.  

The conclusion above can be summarized for advantages and disadvantages as 

shown in Table 8 
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Table. 8 Advantage and disadvantage of each proposed method 

 Chapter 3 Chapter 4 Chapter 5 Chapter 6 

Proposed 

method 

5/3 Non-separable  

3D lifting structure 

9/7 Non-separable  

2D lifting structure 

Channel Scaling 

Word length  

optimization 

Advantage 

Minimum  

lifting steps  

and rounding errors  

Minimum  

rounding errors  

Rounding errors 

reduce 

Word length  

cost reduce 

Disadvantage 

3D memory  

accessing 

(Complexity 

Hardware) 

2D memory 

accessing 

(Complexity 

Hardware) 

Maximum number  

in each channel 

increase 

Reconstruction 

quality  

a little bit drop 
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