122 research outputs found

    General Classification of the Authenticated Encryption Schemes for the CAESAR Competition

    Get PDF
    An Authenticated encryption scheme is a scheme which provides privacy and integrity by using a secret key. In 2013, CAESAR (the ``Competition for Authenticated Encryption: Security, Applicability, and Robustness\u27\u27) was co-founded by NIST and Dan Bernstein with the aim of finding authenticated encryption schemes that offer advantages over AES-GCM and are suitable for widespread adoption. The first round started with 57 candidates in March 2014; and nine of these first-round candidates where broken and withdrawn from the competition. The remaining 48 candidates went through an intense process of review, analysis and comparison. While the cryptographic community benefits greatly from the manifold different submission designs, their sheer number implies a challenging amount of study. This paper provides an easy-to-grasp overview over functional aspects, security parameters, and robustness offerings by the CAESAR candidates, clustered by their underlying designs (block-cipher-, stream-cipher-, permutation-/sponge-, compression-function-based, dedicated). After intensive review and analysis of all 48 candidates by the community, the CAESAR committee selected only 30 candidates for the second round. The announcement for the third round candidates was made on 15th August 2016 and 15 candidates were chosen for the third round

    Avalanche Effect in Improperly Initialized CAESAR Candidates

    Get PDF
    Cryptoprimitives rely on thorough theoretical background, but often lack basic usability features making them prone to unintentional misuse by developers. We argue that this is true even for the state-of-the-art designs. Analyzing 52 candidates of the current CAESAR competition has shown none of them have an avalanche effect in authentication tag strong enough to work properly when partially misconfigured. Although not directly decreasing their security profile, this hints at their security usability being less than perfect. Paper details available at crcs.cz/papers/memics201

    A Comprehensive Performance Analysis of Hardware Implementations of CAESAR Candidates

    Get PDF
    Authenticated encryption with Associated Data (AEAD) plays a significant role in cryptography because of its ability to provide integrity, confidentiality and authenticity at the same time. Due to the emergence of security at the edge of computing fabric, such as, sensors and smartphone devices, there is a growing need of lightweight AEAD ciphers. Currently, a worldwide contest, titled CAESAR, is being held to decide on a set of AEAD ciphers, which are distinguished by their security, run-time performance, energy-efficiency and low area budget. For accurate evaluation of CAESAR candidates, it is of utmost importance to have independent and thorough optimization for each of the ciphers both for their corresponding hardware and software implementations. In this paper, we have carried out an evaluation of the optimized hardware implementation of AEAD ciphers selected in CAESAR third round. We specifically focus on manual optimization of the micro-architecture, evaluations for ASIC technology libraries and the effect of CAESAR APIs on the performances. While these has been studied for FPGA platforms and standalone cipher implementation - to the best of our knowledge, this is the first detailed ASIC benchmarking of CAESAR candidates including manual optimization. In this regard, we benchmarked all prior reported designs, including the code generated by high-level synthesis flows. Detailed optimization studies are reported for NORX, CLOC and Deoxys-I. Our pre-layout results using commercial ASIC technology library and synthesis tools show that optimized NORX is 40.81% faster and 18.02% smaller, optimized CLOC is 38.30% more energy efficient and 20.65% faster and optimized Deoxys-I is 35.16% faster, with respect to the best known results. Similar or better performance results are also achieved for FPGA platforms

    Looting the LUTs : FPGA Optimization of AES and AES-like Ciphers for Authenticated Encryption

    Get PDF
    In this paper, we investigate the efficiency of FPGA implementations of AES and AES-like ciphers, specially in the context of authenticated encryption. We consider the encryption/decryption and the authentication/verification structures of OCB-like modes (like OTR or SCT modes). Their main advantage is that they are fully parallelisable. While this feature has already been used to increase the throughput/performance of hardware implementations, it is usually overlooked while comparing different ciphers. We show how to use it with zero area overhead, leading to a very significant efficiency gain. Additionally, we show that using FPGA technology mapping instead of logic optimization, the area of both the linear and non linear parts of the round function of several AES-like primitives can be reduced, without affecting the runtime performance. We provide the implementation results of two multi-stream implementations of both the LED and AES block ciphers. The AES implementation in this paper achieves an efficiency of 38 Mbps/slice, which is the most efficient implementation in literature, to the best of our knowledge. For LED, achieves 2.5 Mbps/slice on Spartan 3 FPGA, which is 2.57x better than the previous implementation. Besides, we use our new techniques to optimize the FPGA implementation of the CAESAR candidate Deoxys-I in both the encryption only and encryption/decryption settings. Finally, we show that the efficiency gains of the proposed techniques extend to other technologies, such as ASIC, as well

    JHAE: A Novel Permutation-Based Authenticated Encryption Mode Based on the Hash Mode JH

    Get PDF
    In this paper JHAE, an authenticated encryption (AE) mode, was presented based on the JH hash mode. JHAE is an on-line and single-pass dedicated AE mode based on permutation that supports optional associated data (AD). It was proved that this mode, based on ideal permutation, achieved privacy and integrity up to O(2n=2) queries where the length of the used permutation was 2n. To decrypt, JHAE did not require the inverse of its underlying permutation and therefore saved area space. JHAE has been used by Artemia, one of the CAESAR candidates

    Design and Analysis of Cryptographic Algorithms for Authentication

    Get PDF
    During the previous decades, the upcoming demand for security in the digital world, e.g., the Internet, lead to numerous groundbreaking research topics in the field of cryptography. This thesis focuses on the design and analysis of cryptographic primitives and schemes to be used for authentication of data and communication endpoints, i.e., users. It is structured into three parts, where we present the first freely scalable multi-block-length block-cipher-based compression function (Counter-bDM) in the first part. The presented design is accompanied by a thorough security analysis regarding its preimage and collision security. The second and major part is devoted to password hashing. It is motivated by the large amount of leaked password during the last years and our discovery of side-channel attacks on scrypt – the first modern password scrambler that allowed to parameterize the amount of memory required to compute a password hash. After summarizing which properties we expect from a modern password scrambler, we (1) describe a cache-timing attack on scrypt based on its password-dependent memory-access pattern and (2) outline an additional attack vector – garbage-collector attacks – that exploits optimization which may disregard to overwrite the internally used memory. Based on our observations, we introduce Catena – the first memory-demanding password-scrambling framework that allows a password-independent memory-access pattern for resistance to the aforementioned attacks. Catena was submitted to the Password Hashing Competition (PHC) and, after two years of rigorous analysis, ended up as a finalist gaining special recognition for its agile framework approach and side-channel resistance. We provide six instances of Catena suitable for a variety of applications. We close the second part of this thesis with an overview of modern password scramblers regarding their functional, security, and general properties; supported by a brief analysis of their resistance to garbage-collector attacks. The third part of this thesis is dedicated to the integrity (authenticity of data) of nonce-based authenticated encryption schemes (NAE). We introduce the so-called j-IV-Collision Attack, allowing to obtain an upper bound for an adversary that is provided with a first successful forgery and tries to efficiently compute j additional forgeries for a particular NAE scheme (in short: reforgeability). Additionally, we introduce the corresponding security notion j-INT-CTXT and provide a comparative analysis (regarding j-INT-CTXT security) of the third-round submission to the CAESAR competition and the four classical and widely used NAE schemes CWC, CCM, EAX, and GCM.Die fortschreitende Digitalisierung in den letzten Jahrzehnten hat dazu geführt, dass sich das Forschungsfeld der Kryptographie bedeutsam weiterentwickelt hat. Diese, im Wesentlichen aus drei Teilen bestehende Dissertation, widmet sich dem Design und der Analyse von kryptographischen Primitiven und Modi zur Authentifizierung von Daten und Kommunikationspartnern. Der erste Teil beschäftigt sich dabei mit blockchiffrenbasierten Kompressionsfunktionen, die in ressourcenbeschränkten Anwendungsbereichen eine wichtige Rolle spielen. Im Rahmen dieser Arbeit präsentieren wir die erste frei skalierbare und sichere blockchiffrenbasierte Kompressionsfunktion Counter-bDM und erweitern somit flexibel die erreichbare Sicherheit solcher Konstruktionen. Der zweite Teil und wichtigste Teil dieser Dissertation widmet sich Passwort-Hashing-Verfahren. Zum einen ist dieser motiviert durch die große Anzahl von Angriffen auf Passwortdatenbanken großer Internet-Unternehmen. Zum anderen bot die Password Hashing Competition (PHC) die Möglichkeit, unter Aufmerksamkeit der Expertengemeinschaft die Sicherheit bestehender Verfahren zu hinterfragen, sowie neue sichere Verfahren zu entwerfen. Im Rahmen des zweiten Teils entwarfen wir Anforderungen an moderne Passwort-Hashing-Verfahren und beschreiben drei Arten von Seitenkanal-Angriffen (Cache-Timing-, Weak Garbage-Collector- und Garbage-Collector-Angriffe) auf scrypt – das erste moderne Password-Hashing-Verfahren welches erlaubte, den benötigten Speicheraufwand zur Berechnung eines Passworthashes frei zu wählen. Basierend auf unseren Beobachtungen und Angriffen, stellen wir das erste moderne PasswordHashing-Framework Catena vor, welches für gewählte Instanzen passwortunabhängige Speicherzugriffe und somit Sicherheit gegen oben genannte Angriffe garantiert. Catena erlangte im Rahmen des PHC-Wettbewerbs besondere Anerkennung für seine Agilität und Resistenz gegen SeitenkanalAngriffe. Wir präsentieren sechs Instanzen des Frameworks, welche für eine Vielzahl von Anwendungen geeignet sind. Abgerundet wird der zweite Teil dieser Arbeit mit einem vergleichenden Überblick von modernen Passwort-Hashing-Verfahren hinsichtlich ihrer funktionalen, sicherheitstechnischen und allgemeinen Eigenschaften. Dieser Vergleich wird unterstützt durch eine kurze Analyse bezüglich ihrer Resistenz gegen (Weak) Garbage-Collector-Angriffe. Der dritte teil dieser Arbeit widmet sich der Integrität von Daten, genauer, der Sicherheit sogenannter Nonce-basierten authentisierten Verschlüsselungsverfahren (NAE-Verfahren), welche ebenso wie Passwort-Hashing-Verfahren in der heutigen Sicherheitsinfrastruktur des Internets eine wichtige Rolle spielen. Während Standard-Definitionen keine Sicherheit nach dem Fund einer ersten erfolgreich gefälschten Nachricht betrachten, erweitern wir die Sicherheitsanforderungen dahingehend wie schwer es ist, weitere Fälschungen zu ermitteln. Wir abstrahieren die Funktionsweise von NAEVerfahren in Klassen, analysieren diese systematisch und klassifizieren die Dritt-Runden-Kandidaten des CAESAR-Wettbewerbs, sowie vier weit verbreitete NAE-Verfahren CWC, CCM, EAX und GCM

    Can Caesar Beat Galois?

    Get PDF
    The Competition for Authenticated Encryption: Security, Applicability and Robustness (CAESAR) has as its official goal to “identify a portfolio of authenticated ciphers that offer advantages over [the Galois-Counter Mode with AES]” and are suitable for widespread adoption.” Each of the 15 candidate schemes competing in the currently ongoing 3rd round of CAESAR must clearly declare its security claims, i.e. whether it can tolerate nonce misuse, and what is the maximal data complexity for which security is guaranteed. These claims appear to be valid for all 15 candidates. Interpreting “Robustness” in CAESAR as the ability to mitigate damage when security guarantees are void, we describe attacks with 64-bit complexity or above, and/or with nonce reuse for each of the 15 candidates. We then classify the candidates depending on how powerful does an attacker need to be to mount (semi-)universal forgeries, decryption attacks, or key recoveries. Rather than invalidating the security claims of any of the candidates, our results provide an additional criterion for evaluating the security that candidates deliver, which can be useful for e.g. breaking ties in the final CAESAR discussions

    Under Pressure: Security of Caesar Candidates beyond their Guarantees

    Get PDF
    The Competition for Authenticated Encryption: Security, Applicability and Robustness (CAESAR) has as its official goal to ``identify a portfolio of authenticated ciphers that offer advantages over AES-GCM and are suitable for widespread adoption.\u27\u27 Each of the 15 candidate schemes competing in the currently ongoing 3rd round of CAESAR must clearly declare its security claims, i.a. whether or not it can tolerate nonce misuse, and what is the maximal data complexity for which security is guaranteed. These claims appear to be valid for all 15 candidates. Interpreting Robustness in CAESAR as the ability to mitigate damage even if security guarantees are void, we describe attacks with birthday complexity or beyond, and/or with nonce reuse for each of the 15 candidates. We then sort the candidates into classes depending on how powerful does an attacker need to be to mount (semi-)universal forgeries, decryption attacks, or key recoveries. Rather than invalidating the security claims of any of the candidates, our results provide an additional criterion for evaluating the security that candidates deliver, which can be useful for e.g. breaking ties in the final CAESAR discussions

    Design and Analysis of Cryptographic Algorithms for Authentication

    Get PDF
    During the previous decades, the upcoming demand for security in the digital world, e.g., the Internet, lead to numerous groundbreaking research topics in the field of cryptography. This thesis focuses on the design and analysis of cryptographic primitives and schemes to be used for authentication of data and communication endpoints, i.e., users. It is structured into three parts, where we present the first freely scalable multi-block-length block-cipher-based compression function (Counter-bDM) in the first part. The presented design is accompanied by a thorough security analysis regarding its preimage and collision security. The second and major part is devoted to password hashing. It is motivated by the large amount of leaked password during the last years and our discovery of side-channel attacks on scrypt – the first modern password scrambler that allowed to parameterize the amount of memory required to compute a password hash. After summarizing which properties we expect from a modern password scrambler, we (1) describe a cache-timing attack on scrypt based on its password-dependent memory-access pattern and (2) outline an additional attack vector – garbage-collector attacks – that exploits optimization which may disregard to overwrite the internally used memory. Based on our observations, we introduce Catena – the first memory-demanding password-scrambling framework that allows a password-independent memory-access pattern for resistance to the aforementioned attacks. Catena was submitted to the Password Hashing Competition (PHC) and, after two years of rigorous analysis, ended up as a finalist gaining special recognition for its agile framework approach and side-channel resistance. We provide six instances of Catena suitable for a variety of applications. We close the second part of this thesis with an overview of modern password scramblers regarding their functional, security, and general properties; supported by a brief analysis of their resistance to garbage-collector attacks. The third part of this thesis is dedicated to the integrity (authenticity of data) of nonce-based authenticated encryption schemes (NAE). We introduce the so-called j-IV-Collision Attack, allowing to obtain an upper bound for an adversary that is provided with a first successful forgery and tries to efficiently compute j additional forgeries for a particular NAE scheme (in short: reforgeability). Additionally, we introduce the corresponding security notion j-INT-CTXT and provide a comparative analysis (regarding j-INT-CTXT security) of the third-round submission to the CAESAR competition and the four classical and widely used NAE schemes CWC, CCM, EAX, and GCM.Die fortschreitende Digitalisierung in den letzten Jahrzehnten hat dazu geführt, dass sich das Forschungsfeld der Kryptographie bedeutsam weiterentwickelt hat. Diese, im Wesentlichen aus drei Teilen bestehende Dissertation, widmet sich dem Design und der Analyse von kryptographischen Primitiven und Modi zur Authentifizierung von Daten und Kommunikationspartnern. Der erste Teil beschäftigt sich dabei mit blockchiffrenbasierten Kompressionsfunktionen, die in ressourcenbeschränkten Anwendungsbereichen eine wichtige Rolle spielen. Im Rahmen dieser Arbeit präsentieren wir die erste frei skalierbare und sichere blockchiffrenbasierte Kompressionsfunktion Counter-bDM und erweitern somit flexibel die erreichbare Sicherheit solcher Konstruktionen. Der zweite Teil und wichtigste Teil dieser Dissertation widmet sich Passwort-Hashing-Verfahren. Zum einen ist dieser motiviert durch die große Anzahl von Angriffen auf Passwortdatenbanken großer Internet-Unternehmen. Zum anderen bot die Password Hashing Competition (PHC) die Möglichkeit, unter Aufmerksamkeit der Expertengemeinschaft die Sicherheit bestehender Verfahren zu hinterfragen, sowie neue sichere Verfahren zu entwerfen. Im Rahmen des zweiten Teils entwarfen wir Anforderungen an moderne Passwort-Hashing-Verfahren und beschreiben drei Arten von Seitenkanal-Angriffen (Cache-Timing-, Weak Garbage-Collector- und Garbage-Collector-Angriffe) auf scrypt – das erste moderne Password-Hashing-Verfahren welches erlaubte, den benötigten Speicheraufwand zur Berechnung eines Passworthashes frei zu wählen. Basierend auf unseren Beobachtungen und Angriffen, stellen wir das erste moderne PasswordHashing-Framework Catena vor, welches für gewählte Instanzen passwortunabhängige Speicherzugriffe und somit Sicherheit gegen oben genannte Angriffe garantiert. Catena erlangte im Rahmen des PHC-Wettbewerbs besondere Anerkennung für seine Agilität und Resistenz gegen SeitenkanalAngriffe. Wir präsentieren sechs Instanzen des Frameworks, welche für eine Vielzahl von Anwendungen geeignet sind. Abgerundet wird der zweite Teil dieser Arbeit mit einem vergleichenden Überblick von modernen Passwort-Hashing-Verfahren hinsichtlich ihrer funktionalen, sicherheitstechnischen und allgemeinen Eigenschaften. Dieser Vergleich wird unterstützt durch eine kurze Analyse bezüglich ihrer Resistenz gegen (Weak) Garbage-Collector-Angriffe. Der dritte teil dieser Arbeit widmet sich der Integrität von Daten, genauer, der Sicherheit sogenannter Nonce-basierten authentisierten Verschlüsselungsverfahren (NAE-Verfahren), welche ebenso wie Passwort-Hashing-Verfahren in der heutigen Sicherheitsinfrastruktur des Internets eine wichtige Rolle spielen. Während Standard-Definitionen keine Sicherheit nach dem Fund einer ersten erfolgreich gefälschten Nachricht betrachten, erweitern wir die Sicherheitsanforderungen dahingehend wie schwer es ist, weitere Fälschungen zu ermitteln. Wir abstrahieren die Funktionsweise von NAEVerfahren in Klassen, analysieren diese systematisch und klassifizieren die Dritt-Runden-Kandidaten des CAESAR-Wettbewerbs, sowie vier weit verbreitete NAE-Verfahren CWC, CCM, EAX und GCM

    Provably Secure Authenticated Encryption

    Get PDF
    Authenticated Encryption (AE) is a symmetric key cryptographic primitive that ensures confidentiality and authenticity of processed messages at the same time. The research of AE as a primitive in its own right started in 2000. The security goals of AE were captured in formal definitions in the tradition in the tradition of provable security (such as NAE, MRAE, OAE, RAE or the RUP), where the security of a scheme is formally proven assuming the security of an underlying building block. The prevailing syntax moved to nonce-based AE with associated data (which is an additional input that gets authenticated, but not encrypted). Other types of AE schemes appeared as well, e.g. ones that supported stateful sessions. Numerous AE schemes were designed; in the early years, these were almost exclusively blockcipher modes of operation, most notably OCB in 2001, CCM in 2003 and GCM in 2004. At the same time, issues were discovered both with the security and applicability of the most popular AE schemes, and other applications of symmetric key cryptography. As a response, the Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR) was started in 2013. Its goals were to identify a portfolio of new, secure and reliable AE schemes that would satisfy the needs of practical applications, and also to boost the research in the area of AE. Prompted by CAESAR, 57 new schemes were designed, new types of constructions that gained popularity appeared (such as the Sponge-based AE schemes), and new notions of security were proposed (such as RAE). The final portfolio of the CAESAR competition should be announced in 2018. In this thesis, we push the state of the art in the field of AE in several directions. All of them are related to provable security, in one way, or another. We propose OMD, the first provably secure dedicated AE scheme that is based on a compression function. We further modify OMD to achieve nonce misuse-resistant security (MRAE). We also propose another provably secure variant of OMD called pure OMD, which enjoys a great improvement of performance over OMD. Inspired by the modifications that gave rise to pure OMD, we turn to the popular Sponge-based AE schemes and prove that similar measures can also be applied to the keyed Sponge and keyed Duplex (a variant of the Sponge), allowing a substantial increase of performance without an impact on security. We then address definitional aspects of AE. We critically evaluate the security notion of OAE, whose authors claimed that it provides the best possible security for online schemes under nonce reuse. We challenge these claims, and discuss what are the meaningful requirements for online AE schemes. Based on our findings, we formulate a new definition of online AE security under nonce-reuse, and demonstrate its feasibility. We next turn our attention to the security of nonce-based AE schemes under stretch misuse; i.e. when a scheme is used with varying ciphertext expansion under the same key, even though it should not be. We argue that varying the stretch is plausible, and formulate several notions that capture security in presence of variable stretch. We establish their relations to previous notions, and demonstrate the feasibility of security in this setting. We finally depart from provable security, with the intention to complement it. We compose a survey of universal forgeries, decryption attacks and key recovery attacks on 3rd round CAESAR candidates
    corecore