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Abstract. In this paper JHAE, an authenticated encryption (AE) mode, was presented based
on the JH hash mode. JHAE is an on-line and single-pass dedicated AE mode based on per-
mutation that supports optional associated data (AD). It was proved that this mode, based
on ideal permutation, achieved privacy and integrity up to O(2n/2) queries where the length
of the used permutation was 2n. To decrypt, JHAE did not require the inverse of its underly-
ing permutation and therefore saved area space. JHAE has been used by Artemia, one of the
CAESAR candidates.
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1 Introduction

Privacy and authentication are two main goals in information security. In many applications,
these security parameters are established simultaneously. For example, in the widely used
Transport Layer Security (TLS), a generic approach (the MAC-then-Encrypt approach [3])
is used. A cryptographic scheme that provides both privacy and authentication is called au-
thenticated encryption (AE) scheme. The traditional approach for AE is the use of generic
compositions. In this approach, two algorithms are used, one of which provides confiden-
tiality and the other provides authenticity. However, this approach is not efficient for many
applications, because it requires two different algorithms with two different keys as well as
separate passes over the message [3]. Another approach for designing an AE is the use of a
block cipher in a special mode, in which the block cipher is treated as a black box in the
mode [26,36,39]. The most important problem of these modes is the necessity for a running
the full round block cipher to process each message block which is time/resource-consuming.

Dedicated AE schemes resolve the problems of generic compositions and block cipher
based modes. Designing a dedicated AE has recently received great attention in cryptography
community, mostly driven by the NIST-funded CAESAR competition for AE [12]. ASC-
1 [19], ALE [11], AEGIS [41], FIDES [10], CBEAM [37], and APE [2] are some dedicated AE
schemes which were submitted before the CAESAR. A common approach for constructing
a dedicated AE is to iterate a random permutation or random function in a special mode of
operation. Therefore, there are two main stages in designing a new dedicated AE:

1. Designing a new dedicated mode (based on a random permutation or a random function)
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2. Designing a new random permutation or random function to be used in the mode.

A general approach is to design a dedicated AE mode from a hash function mode. For
example, duplex constructions [5], which were used in designing of the CAESAR candi-
dates Ascon [13], ICEPOLE [34], KETJE [35], KEYAK [28], NORX [21], π-Cipher [15],
PRIMATEs-GIBBON [16], PRIMATEs-HANUMAN [16], PRIMATEs-APE [16], PRØST-
APE [17], and STRIBOB [38], are closely related to the sponge construction [6]. Other
examples include FWPAE and FPAE modes [25] that were obtained from FWP [30] and
FP [33] hash function modes, respectively. An important challenge in developing an AE
mode from another mode (e.g. hash mode) is to prove its security to ensure transition to
another application does not make any structural flaws.

Hash Modes. A hash function has two main components, a mode of operation, and a
primitive which is iteratively used by the mode. For example the Merkle-Damg̊ard construc-
tion [14, 27] was used in designing of many famous hash functions such as SHA-0 [31] and
SHA-1 [32]. Some flaws in the construction (e.g. multi-collision attack [22]) leads to devel-
opment of new hash constructions such as Wide-pipe [24], Sponge [6], JH [40], Grøstl [18],
and FP [33]. The last four ones are permutation-based hash modes. JH and Grøstl were two
finalists of the NIST SHA-3 hash function competition and Sponge was used by the hash
function Keccak [8] which was the winner of the competition. A comparison of some hash
function modes was presented in [33]. For the modes Sponge, Grøstl, JH, and FP the com-
parison was summarized in Table 1 where ε is a small fraction due to the preimage attack
on JH presented in [9]. Some of the advantages of permutation-based hash modes were given
as follows:

– The modes do not need any key schedule.
– Easy-to-invert permutations are usually efficient [33].

Table 1. Comparison of some permutation-based hash modes [33].

Mode Mesg-blk Size of π Rate Indiff. bound # of independent Reference
(l) (a) (l/a) lower upper permutations

Sponge n 2n 0.5 n/2 n/2 1 [7]

Grøstl n 2n 0.5 n/2 n 2 [18]

JH n 2n 0.5 n/2 n(1 − ε) 1 [29]

FP n 2n 0.5 n/2 n 1 [33]

Contribution . In this paper JH hash function mode [40] is used to develop a new dedicated
AE mode, called JHAE. The main reasons of using JH mode to design a new AE mode were
given as follows:

– It was a permutation-based mode.
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– Keccak (which used the Sponge construction), Grøstl, and JH were three finalists of
the SHA-3 competition. In comparison by Grøstl, JH used only one permutation and in
comparison by Sponge, it had better indifferentiability upper bound (See Table 1).

– Duplex constructions [5] and FPAE [25] were two AE modes based on the Sponge and
FP hash function modes, respectively, and until now no AE mode is presented based on
the JH hash function mode.

– The important researches on the JH hash mode had done in the duration of SHA-3
competition and shown that there was not any significant vulnerability in the mode.

JHAE is an on-line and single-pass dedicated AE mode that supports optional associated
data (AD). Also, its security relies on using nonces. It was proved in this paper that the
mode achieved privacy (indistinguishability under the chosen plaintext attack or IND-CPA)
and integrity (integrity of ciphertext or INT-CTXT) up to O(2n/2) queries, where the length
of the used permutation was 2n. In addition, it was demonstrated that the integrity bound
of JHAE was reduced to the indifferentiability of JH hash mode, which is at least O(2n/2).

JHAE in the CAESAR Competition. Artemia [20] is a family of the dedicated authen-
ticated encryption scheme which was submitted to the CAESAR competition. Artemia is a
sponge-based authenticated encryption scheme that uses the JHAE mode. Except Artemia,
all of the sponge-based candidates of CAESAR used the duplex constructions [1]. Until now
(in the duration of the CAESAR competition) no flaw has been reported for Artemia. A
comparison between Artemia and other dedicated AE schemes which were submitted to the
CAESAR competition was presented in [1]. With respect to [1], the comparison of Artrmia
and other sponge-based candidates can be summarized as Table 2. The features of the
schemes were inherited from their mode (e.g. the features of Artemia were inherited from
JHAE).

Table 2. Comparison between Artemia and other sponge-based candidates of CAESAR [1].
n.n. means unnamed custom primitive.

Sponge-Based Design Primitive Provable Parallelizable On-Line Nonce Misuse Inverse-Free Refference
AE Security Resistance

Artemia JHAE Artemia Yes No Yes No Yes [20]

Ascon Duplex Ascon No No Yes Yes Yes [13]

ICEPOLE Duplex n.n. Yes Yes Yes Yes Yes [34]

KETJE Duplex Keccak-f Yes No Yes No Yes [35]

KEYAK Duplex Keccak-f Yes Yes Yes No Yes [28]

NORX Duplex n.n. No Yes Yes No Yes [21]

π-Cipher Duplex n.n. No Yes Yes No Yes [15]

PRIMATEs-GIBBON Duplex PRIMATE No No Yes No Yes [16]

PRIMATEs-HANUMAN Duplex PRIMATE No No Yes No Yes [16]

PRIMATEs-APE Duplex PRIMATE Yes No Yes Yes No [16]

PRØST-APE Duplex PRØST Yes No Yes Yes No [17]

STRIBOB Duplex n.n Yes No Yes No Yes [20]
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Organization. The paper is structured as follows: Section 2 gives a specification of JHAE
encryption-authentication and decryption-verification. Security of JHAE is analyzed in Sec-
tion 3. In this section, privacy and integrity of JHAE, are proved in the ideal permutation
model and by reducing to the security of JH hash mode, respectively. In Section 4, the ra-
tionale behind of the JHAE design is briefly described. Finally conclusion is given in Section
5.

2 JHAE Authenticated Encryption Mode

In this section, JHAE mode, depicted in Fig 4, is described. JHAE is developed from JH
hash function mode (Fig 3) [40] and iterates a fixed permutation π : {0, 1}2n → {0, 1}2n. It
is a nonce-based, single-pass, and on-line dedicated AE mode that supports AD. To decrypt,
JHAE does not require the inverse of its underlying permutation and therefore saved area
space.

2.1 Encryption and Authentication

JHAE accepts an n-bit key K, an n-bit nonce N , a message M , an optional AD, A,
and produces ciphertext C and authentication tag T . Pseudo-code of JHAE’s encryption-
authentication is depicted in Table 3. It is assumed that the input message, after padding,
is a multiple of the block size (n). The last block of the original message is concatenated by
the padding data as follows (See Figure 1):

1. The length of nonce (N) is appended to the end of the last block of message.
2. The length of the associated data (A) is appended to the end of the padded message in

1.
3. The length of the message (M) is appended to the end of the padded message in 2.
4. A bit ‘1’ followed by a sequence of ‘0’ is appended to the end of the padded message in

3 such that the padded message is a multiple of the block size n.

If there is the AD in the procedure, it is padded by a bit ‘1’ followed by a sequence of
‘0’ such that the padded AD would be a multiple of the block size n (See Figure 2). The
padded AD is processed in a way which is similar to the process of the message block with
an exception that ciphertext blocks (ci), are not produced for the AD blocks.
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Padded Message:

Message
|Nonce|

≤ log(n)

|AD|

(24 bit)

|Message|

(64 bit)
1000 · · · 000

Fig. 1. Message padding in JHAE
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Padded AD:

AD 10000 · · · 000

Fig. 2. AD padding in JHAE
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Fig. 3. JH hash mode [29]
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Fig. 4. JHAE mode of operation (encryption and authentication), where pad(A) =
m1‖m2‖ . . . ‖ml and pad(M) = ml+1 ‖ ml+2 ‖ ... ‖ mp
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Table 3. Encryption and authentication pseudo code of JHAE

Algorithm1. JHAE − Eπ(K,N,M,A)

Input: Key K of n bits, Nonce N of n bits, Associated data A where pad(A) = m1‖m2‖ . . . ‖ml

and Message M where pad(M) = ml+1 ‖ ml+2 ‖ ... ‖ mp

Output: Ciphertext C, Tag T
IV = 0;m0 = N
x′0 = IV ⊕m0; x0 = K
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

for i = 0 to p− 1 do:
y′i ‖ yi = π(x′i ‖ xi);
x′i+1 = y′i ⊕mi+1;
xi+1 = yi ⊕mi

end for
y′p ‖ yp = π(x′p ‖ xp);
xp+1 = yp ⊕mp

C = x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
T = xp+1 ⊕K
Return (C, T )

2.2 Decryption and Verification

JHAE decryption-verification procedure, depicted in Table 4, accepts an n-bit key K, an
n-bit nonce N , a ciphertext C, a tag T , an optional AD, A, and decrypts the ciphertext to
get message M and tag T ′. If T ′ = T , then it outputs M ; else, it outputs ⊥.

3 Security Proofs

In this section, security of JHAE is proved. First, game playing framework proposed by
Bellare and Rogaway [4] is used and an upper bound is obtained for the advantage of an
adversary that can distinguish the JHAE from a random oracle (IND-CPA) in the ideal
permutation model. Then, it is proved that JHAE provides integrity (INT-CTXT) until JH
hash mode is indifferentiable from a random oracle or tag can not be guessed. These proofs
are followed in two subsections of privacy and integrity.

3.1 Privacy

In this section, privacy’s security bound for JHAE based on ideal permutation π is provided.

Theorem 1. JHAE based on an ideal permutation π : {0, 1}2n → {0, 1}2n, is (tA, σ, ε)-
indistinguishable from an ideal AE based on a random function RO and ideal permutation

π′ with the same domain and range, for any tA; then, ε ≤
σ(σ − 1)

22n−1
+
σ2

22n
+
σ2

2n
, where σ is

the total number of blocks in queries to JHAE encryption function (denoted by JHAE−E),
π, and π−1, by the adversary A.
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Table 4. Decryption and verification pseudo code of JHAE

Algorithm2. JHAE −Dπ(K,N,C, T,A)

Input: Key K of n bits, Nonce N of n bits, Associated Data A where pad(A) = m1‖m2‖ . . . ‖ml

, ciphertext C = c1 ‖ c2 ‖ ... ‖ cp and Tag T
Output: Message M or ⊥
IV = 0;m0 = N
x′0 = IV ⊕m0; x0 = K
x′l+1 ‖ x′l+2 ‖ ... ‖ x′l+p = c1 ‖ c2 ‖ ... ‖ cp
for i = 0 to l − 1 do:

y′i ‖ yi = π(x′i ‖ xi);
x′i+1 = y′i ⊕mi+1;
xi+1 = yi ⊕mi

end for
for i = l to p− 1 do:

y′i ‖ yi = π(x′i ‖ xi);
mi+1 = y′i ⊕ x′i+1;
xi+1 = yi ⊕mi

end for
y′p ‖ yp = π(x′p ‖ xp);
xp+1 = yp ⊕mp

M = ml+1 ‖ ml+2 ‖ ... ‖ mp

T ′ = xp+1 ⊕K
if T ′ = T

Return M
else

Return ⊥
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Proof. To prove the above theorem, a game playing framework based on ten games of G0

to G9 is used where G0 represents JHAE based on ideal permutation π , JHAE − π, π−1,
and G9 represents a random oracle, RO, an ideal permutation π and its inverse π−1. To
determine the adversary’s advantage on distinguishing JHAE from an ideal AE scheme, the
adversary’s advantage moving from a game to the next game is calculated.

Game G0. This game shows the communication of A with JHAE − π, π−1 (see Table 5).
In this game, permutations π and π−1 are exactly the permutations that are used in the real
JHAE mode. Hence:

Pr[AG0 ⇒ 1] = Pr[AJHAE−E ⇒ 1]

Game G1. This game is identical to G0 with an exception that the ideal permutation
(π, π−1) is chosen in a “lazy” manner, oracles O2 and O3 respectively (see Table 6). These
oracles perfectly simulate two ideal permutations and, since it is assumed that π and π−1

in G0 are ideal permutations, then the distribution of the returned values in G0 and G1 are
identical. Therefore we have:

Pr[AG1 ⇒ 1] = Pr[AG0 ⇒ 1].

Game G2. To generate G2, a PRP-PRF switch [4] is done in G1(see Table 7). This means
that the ideal permutations O2 and O3 in G1 are replaced with two random functions in
G2. Therefore, the only difference between G2 and G1 is oracles O2 and O3 ( two ideal
permutations are stimulated in G1; but, two random functions are stimulated in G2). Unlike
the ideal permutation, it is possible to find a collision in a random function. Since in G1,
there is not collision, in G2, There may be a collision in O2 or O3 and the adversary can
differentiate G2 from G1. Hence, a collision is defined in G2 as a bad event and denoted by
bad0. The distribution of the returned values by G2 and G1 are identical until bad0 occurs.
Suppose that the adversary can do at most σ2 and σ3 query for O2 and O3, respectively, and
let σ′ = σ2 + σ3; Then:

Pr[AG2 ⇒ 1]− Pr[AG1 ⇒ 1] = Pr[bad0 ← true] = Pr[Collision in O2 or O3 in G2]

≤ σ2(σ2 − 1)

22n+1
+
σ3(σ3 − 1)

22n+1
≤ σ′(σ′ − 1)

22n+1
≤ σ(σ − 1)

22n+1
.

Game G3. In G3, oracle O1 does not pass any query to the oracle O2; but, it exactly
simulates the behavior of oracle O2(see G3 in Table 8). Thus, the distribution of the returned
values by G3 and G2 are identical from the adversary’s view:

Pr[AG3 ⇒ 1] = Pr[AG2 ⇒ 1].
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Game G4. In G4 ( see Table 9) the purpose is to push the behavior of O1 one step towards
the random oracle. Hence, the queries that are included into O2 by O1 and those that are
directly queried by the adversary of O2 or O3 are separated. In this game, if an intermediate
query generated by O1, that is expected to be queried to O2, has a record on the part of
O2 not included by O1, it is considered a bad event and denoted by bad1. However, the
distribution of responses of queries to O2 and O3 remains identical to G3. Hence, it can be
stated that G3 and G4 are identical until bad1 occurs in G4. Assuming that the adversary
can do at most σ1 query to O1 and σ′ query to O2 or O3, the adversary’s advantage from
G3 to G4 is bounded as follows:

Pr[AG4 ⇒ 1]− Pr[AG3 ⇒ 1] = Pr[bad1 ← true] ≤ σ′(σ1)

22n
≤ σ2

22n
.

Game G5. In G5 ( see Table 10), the responses of O2 or O3 are not compatible with those
of O1. In G5, the purpose is to push the behaviour of O2 and O3 one step towards the
ideal permutations that are independent from RO. For this reason, two auxiliary tables are
generated to keep the input and output of the intermediate tentative queries to O2 generated
by O1 which are denoted by W and Y , respectively. The aim of this game is to not return
any record that has been included in O2 by O1 when the adversary is directly queried to O2

or O3. Hence, in this game, if a query to O2 or O3 has a record in W and Y , respectively,
it is considered a bad event and denoted by bad2. More precisely, on query to O1, when it
generates a local tentative fresh query wi to O2 and generates yi as a response, then wi is
stored in W and yi is stored in Y . However, distribution of the responses to queries to O1

remains identical to G4. Hence, it can be stated that G4 and G5 are identical until bad2
occurs in G4. To bound the probability of bad2, suppose that wj is the j-th block that is
queried to O1 and yj is the response of O1 to the query where 1 ≤ j ≤ σ1, vi is the i-th
query to O2 where 1 ≤ i ≤ σ2, and zl is the l-th query to O3 where 1 ≤ l ≤ σ3. Then:

Pr[bad2 ← true] =

σ2∑
i=1

σ1∑
j=1

Pr[vi = wj ] +

σ3∑
l=1

σ1∑
j=1

Pr[zl = yj ] 6
σ2σ1
2n

+
σ3σ1
2n

.

It must be noted that, in the above calculations, the fact that, given the response of a
query to O1, the adversary can determine half of the bits of each wj ∈ W and yi ∈ Y is
considered. Hence, the adversary’s advantage from G4 to G5 is bounded as follows:

Pr[AG5 ⇒ 1]− Pr[AG4 ⇒ 1] ≤ σ1 × (σ2 + σ3)

2n
6
σ2

2n
.

Game G6. G6 (see Table 11) is identical to G5 with an exception that O1 does not keep
the history of the intermediate queries. However, this modification has no impact on the
distribution of the returned values to the adversary, if there is no bad event in neither of
the games. Hence, in the adversary’s view, for queries to O1, distributions of the returned
values in G5 and G6 are identical as far as there is not an intermediate collision in G5. On
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the other hand, the distribution of responses to queries to O2 and O3 remains identical to
G5. Hence, the adversary’s advantage from G5 to G6 is bounded as follows:

Pr[AG6 ⇒ 1]− Pr[AG5 ⇒ 1] ≤ σ1 × (σ1 − 1)

22n
≤ σ × (σ − 1)

22n
.

Game G7. In Game G7 (see Table 12), the blocks of ciphertext and tag value are gener-
ated randomly. However, it has no impact of the distribution of the returned values to the
adversary. Hence, distributions of the returned values in G6 and G7 are identical:

Pr[AG7 ⇒ 1] = Pr[AG6 ⇒ 1].

Game G8. In Game G8 (see Table 12), a PRF-PRP switch [4] is run; i.e. the ideal random
functions O2 and O3 in G7 are replaced with a random permutation and its inverse in G8.
Therefore, the only difference between G7 and G8 is oracles O2 and O3. Thus, the distribution
of the returned values by G7 and G8 are identical until O2 or O3 has a collision in G7. Hence,
the adversary’s advantage from G7 to G8 is bounded as follows:

Pr[AG8 ⇒ 1]− Pr[AG7 ⇒ 1] = Pr[Collision in O2 or O3 in G7]

≤ σ2(σ2 − 1)

22n+1
+
σ3(σ3 − 1)

22n+1
≤ σ′(σ′ − 1)

22n+1
≤ σ(σ − 1)

22n+1
.

Game G9. In G8 for each message/AD block, an appropriate (regarding the length) random
value is selected as cipher text and similarly a random value is selected as the tag value.
Next, these random values are concatenated and returned to the adversary. However, in G9

(see Table 13) on query to O1, a random string of the length of the desired cipher and tag
is selected and returned to the adversary. However, this modification from G8 to G9 has no
impact on the distribution of the returned values to the adversary. Hence:

Pr[AG9 ⇒ 1] = Pr[AG8 ⇒ 1].

On the other hand, G8 perfectly simulates RO, π, π−1. Then:

Pr[ARO,π,π−1 ⇒ 1] = Pr[AG9 ⇒ 1].

Finally, using the fundamental lemma of game playing [4], the following can be stated:

AdvPrivacyJHAE (A) = Pr[AJHAE−E,π,π−1 ⇒ 1]− Pr[ARO,π,π−1 ⇒ 1]
= Pr[AG0 ⇒ 1]− Pr[AG9 ⇒ 1]

= (Pr[AG0 ⇒ 1]− Pr[AG1 ⇒ 1])
+(Pr[AG1 ⇒ 1]− Pr[AG2 ⇒ 1])
+(Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1])
+(Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1])
+(Pr[AG4 ⇒ 1]− Pr[AG5 ⇒ 1])
+(Pr[AG5 ⇒ 1]− Pr[AG6 ⇒ 1])
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+(Pr[AG6 ⇒ 1]− Pr[AG7 ⇒ 1])
+(Pr[AG7 ⇒ 1]− Pr[AG8 ⇒ 1])
+(Pr[AG8 ⇒ 1]− Pr[AG9 ⇒ 1])

≤ 0 +
σ(σ − 1)

22n+1
+ 0 +

σ2

22n
+
σ2

2n
+
σ(σ − 1)

22n
+ 0 +

σ(σ − 1)

22n+1
+ 0

≤ σ(σ − 1)

22n−1
+
σ2

22n
+
σ2

2n
.

3.2 Integrity

In this section, integrity of ciphertext (INT-CTXT) of JHAE is proved. The INT-CTXT
security bound of a permutation based AE scheme is defined as the maximum advantage
of any adversary to produce a valid triple (N,A‖C, T ) (e.g. a forgery for the AE scheme)
without directly querying to the scheme. To forge an AE scheme, the adversary can query
to AE − E (encryption and authentication), AE − D (decryption and verification), and π
or π−1. Thus, two phases can be considered for any forgery attempt as follows:

1. Data gathering: The adversary gathers some valid triples such as S = (Ni, (A‖C)i, Ti); 1 ≤ i ≤ q
by at most q queries to AE − E, π or π−1.

2. Execution: The adversary produces a new triple (N,A‖C, T ) such that (N,A‖C, T ) /∈ S
is accepted by AE −D as a valid triple.

In this section, it is shown that the advantage of any adversary that makes a reasonable
number of queries to JHAE − E, π, and π−1 is negligible in the forgery attack against
JHAE.

Theorem 2. For any adversary A that makes total σ block queries to JHAE − E, π, or
π−1, JHAE based on an ideal permutation π : {0, 1}2n → {0, 1}2n, is (tA, σ, ε)-unforgeable,

for any tA, where ε ≤
σ2

2n
+

q

2n
.

Proof. Suppose that A is an adversary that tries to forge JHAE. A should query at the first
to JHAE, q times, and produce a list S = {(Ni, (A‖C)i, Ti); 1 ≤ i ≤ q}. Next, A produces a
new (N,A‖C, T ) /∈ S such that JHAE −D(N,A‖C, T ) 6=⊥ as its forged triple. All of the
possible cases for the new valid (N,A‖C, T ) are as follows (cases 001 to 111).

1. Case 001. Adversary generates a valid (N,A‖C, T ) /∈ S such that ∃(Ni, (A‖C)i, Ti) ∈
S : N = Ni, A‖C = (A‖C)i, T 6= Ti, for 0 ≤ i ≤ q.

2. Case 010. Adversary generates a valid (N,A‖C, T ) /∈ S such that ∃(Ni, (A‖C)i, Ti) ∈
S : N = Ni, A‖C 6= (A‖C)i, T = Ti, for 0 ≤ i ≤ q.

3. Case 011. Adversary generates a valid (N,A‖C, T ) /∈ S such that ∀(Ni, (A‖C)i, Ti) ∈
S : A‖C 6= (A‖C)i, T 6= Ti, for 0 ≤ i ≤ q and ∃(Ni, (A‖C)i, Ti) ∈ S : N = Ni, A‖C 6=
(A‖C)i, T 6= Ti.

4. Case 100. Adversary generates a valid (N,A‖C, T ) /∈ S such that ∃(Ni, (A‖C)i, Ti) ∈
S : N 6= Ni, A‖C = (A‖C)i, T = Ti, for 0 ≤ i ≤ q.

5. Case 101. Adversary generates a valid (N,A‖C, T ) /∈ S such that ∃(Ni, (A‖C)i, Ti) ∈
S : N 6= Ni, A‖C = (A‖C)i, T 6= Ti, for 0 ≤ i ≤ q.
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6. Case 110. Adversary generates a valid (N,A‖C, T ) /∈ S such that ∃(Ni, (A‖C)i, Ti) ∈
S : N 6= Ni, A‖C 6= (A‖C)i, T = Ti, for 0 ≤ i ≤ q.

7. Case 111. Adversary generates a valid (N,A‖C, T ) /∈ S such that ∀(Ni, (A‖C)i, Ti) ∈
S : N 6= Ni, A‖C 6= (A‖C)i, T 6= Ti, for 0 ≤ i ≤ q.

Hence, the adversary’s advantage can be upper bound to forge JHAE as follows:

Pr[AINTJHAE ⇒ 1] = Pr[Case 001] + Pr[Case 010] + Pr[Case 011]
+Pr[Case 100] + Pr[Case 101] + Pr[Case 110] + Pr[Case 111].

(1)

To determine an upper bound for this advantage, the mentioned cases are categorized as
three distinct sets as follows and the adversary’s advantage in producing a successful forgery
for each set is determined.

Set 1: Set 1 includes any case that could not be used to successfully forge JHAE. More
precisely, any triple that matches case 001 can not be used to forge JHAE. The reason comes
from the fact that, for JHAE for a valid triple, if A‖C = (A‖C)i and N = Ni then T = Ti.
Therefore:

Pr[Case 001] = 0.

Set 2: Set 2 includes any case that can be directly used to differentiate JH hash mode from
a random oracle. To determine these cases, JH hash mode in Fig 3 is considered. Since
T = Ti (for 1 ≤ i ≤ q) implies (xp+1)i = (xp+1), and (xp+1)i and (xp+1) are hash outputs
in JH hash mode, then cases 010, 100, and 110 in the forgery attempt of JHAE lead to
collisions in JH hash mode. In other words, if cases 010, 100, and 110 occur in the forgery
attempt of JHAE, a collision can be found in the JH hash mode and therefore the mode can
be dierentiated from a random oracle. Since the bound of the indifferentiability of JH has

been proved to be
σ2

2n
[29], then:

Pr[Case 010] + Pr[Case 100] + Pr[Case 110] ≤ σ2

2n
.

Set 3: This set includes cases that force the adversary to guess the tag. More precisely, in
cases 011, 101, and 111, the adversary finds a new valid (N,A‖C, T ) such that ∀(Ni, (A‖C)i, Ti) ∈
S : N 6= Ni or A‖C 6= (A‖C)i. On the other hand, given such a pair of N and A‖C, distri-
bution of the valid tag would be uniformly distributed over {0, 1}n. Hence, at each attempt,
the adversary’s advantage in generating a valid tag would be 2−n. So:

Pr[Case 101] + Pr[Case 011] + Pr[Case 111] ≤ q

2n

Finally, using Equation 1:

Pr[AINTJHAE ⇒ 1] ≤ σ2

2n
+

q

2n
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4 Design Rationale

In this section, design rationale of JHAE, is described briefly.

Structure. The structure of JHAE is based on the JH hash function mode. The rational of
using JH mode was mentioned in Section 1.

Padding. In the padding rule of JHAE, the length of nonce, AD, and message were used.
The main rational of the rule is domain separation between nonce, AD, and message.

Final Key Addition. With respect to Figure 4, the final tag was computed as xp+1 ⊕K.
Since JHAE didn’t use explicit finalization, this key addition is required to prevent the length
extension attacks.

5 Conclusion

In this paper, JHAE, a new dedicated permutation-based AE mode, was introduced. JHAE
is an on-line and single-pass dedicated AE mode which did not require the inverse of its un-
derlying permutation to decrypt and therefore saved area space. JHAE was used by Artemia,
one of the CAESAR candidates.

In the ideal permutation model, it was proved that JHAE provided IND-CPA and INT-
CTXT up to q = O(2n/2). This is the first nontrivial security bound for JHAE. On the
other hand, the best-known attack on JHAE has a complexity up to q = O(2n). Therefore,
in particular there remains a gap between the best-known attack and the security bound of
JHAE.

In a recent work, Jovanovic et. al. [23] showed that sponge based constructions for au-
thenticated encryption, namely JHAE, can achieve the significantly higher bound of 2c/2,
where c is their capacity. (Note that the capacity of JHAE, is n). For a future work, the
security bound of JHAE can be improved using the security model introduced in [23].
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Table 5. Game G0 perfectly simulates (JHAE − π, π−1)

Game G0

Initialize:
K ←− {0, 1}n;
IV = 0;m0 = N
x′0 = IV ⊕m0; x0 = K
— on O1 -query (N,A,M) —
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

for i = 0 to p− 1 do:
y′i ‖ yi = O2(x

′
i ‖ xi);

x′i+1 = y′i ⊕mi+1;
xi+1 = yi ⊕mi

end for
y′p ‖ yp = O2(x

′
p ‖ xp);

xp+1 = yp ⊕mp

C = x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
T = xp+1 ⊕K
Return (C, T )
— on O2-query m—
v = π(m)
return v
— on O3-query v—//Inverse Query
m = π−1(v)
return m
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Table 6. In game G1 the permutations π and π−1 are simulated .

Game G1

Initialize:
X = ∅ ;K ←− {0, 1}n;
IV = 0;m0 = N
x′0 = IV ⊕m0; x0 = K
— on O1 -query (N,A,M) —
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

for i = 0 to p− 1 do:
y′i ‖ yi = O2(x

′
i ‖ xi);

x′i+1 = y′i ⊕mi+1;
xi+1 = yi ⊕mi

end for
y′p ‖ yp = O2(x

′
p ‖ xp);

xp+1 = yp ⊕mp

C = x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
T = xp+1 ⊕K
Return (C, T )
— on O2-query m—
if (m, v) ∈ X then return v
else v ←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T v′ = v then
v ← {0, 1}2n\{v′ : (m′, v′) ∈ X}
X = X ∪ (m, v)
return v
— on O3-query v—//Inverse Query
if (m, v) ∈ X then return m
else m←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T m′ = m then
m← {0, 1}2n\{m′ : (m′, v′) ∈ X}
X = X ∪ (m, v)
return m
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Table 7. In game G2 the bad event type-0 may occur.

Game G2

Initialize:
X = ∅ ;K ←− {0, 1}n;
IV = 0;m0 = N
x′0 = IV ⊕m0; x0 = K
— on O1 -query (N,A,M) —
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

for i = 0 to p− 1 do:
y′i ‖ yi = O2(x

′
i ‖ xi);

x′i+1 = y′i ⊕mi+1;
xi+1 = yi ⊕mi

end for
y′p ‖ yp = O2(x

′
p ‖ xp);

xp+1 = yp ⊕mp

C = x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
T = xp+1 ⊕K
Return (C, T )
— on O2-query m—
if (m, v) ∈ X then return v
else v ←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T v′ = v then bad0 ← true
X = X ∪ (m, v)
return v
— on O3-query v—//Inverse Query
if (m, v) ∈ X then return m
else m←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T m′ = m then bad0 ← true
X = X ∪ (m, v)
return m
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Table 8. In game G3 oracle O2 is simulated inside oracle O1.

Game G3

Initialize:
X = ∅ ;K ←− {0, 1}n;
IV = 0;m0 = N
x′0 = IV ⊕m0; x0 = K
— on O1 -query (N,A,M) —
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

for i = 0 to p− 1 do:
if (x′i ‖ xi, y′i ‖ yi) ∈ X then return y′i ‖ yi
else y′i ‖ yi ←− {0, 1}2n
if ∃((x′i ‖ xi)′, (y′i ‖ yi)′) ∈ X S.T (y′i ‖ yi)′ = y′i ‖ yi then bad0 ← true
X = X ∪ (x′i ‖ xi, y′i ‖ yi)
x′i+1 = y′i ⊕mi+1;
xi+1 = yi ⊕mi

end for
if (x′p ‖ xp, y′p ‖ yp) ∈ X then return y′p ‖ yp
else y′p ‖ yp ←− {0, 1}2n
if ∃((x′p ‖ xp)′, (y′p ‖ yp)′) ∈ X S.T (y′p ‖ yp)′ = y′p ‖ yp then bad0 ← true

X = X ∪ (x′p ‖ xp, y′p ‖ yp)
xp+1 = yp ⊕mp

C = x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
T = xp+1 ⊕K
Return (C, T )
— on O2-query m—
if (m, v) ∈ X then return v
else v ←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T v′ = v then bad0 ← true
X = X ∪ (m, v)
return v
— on O3-query v—//Inverse Query
if (m, v) ∈ X then return m
else m←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T m′ = m then bad0 ← true
X = X ∪ (m, v)
return m
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Table 9. In game G4 bad event type-1 may occur.

Game G4

Initialize:
XO1 = XO2 = ∅ ; X = XO1 ‖ XO2 ; K ←− {0, 1}n;
IV = 0;m0 = N
x′0 = IV ⊕m0; x0 = K
— on O1 -query (N,A,M) —
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

for i = 0 to p− 1 do:
if (x′i ‖ xi, y′i ‖ yi) ∈ XO1 then return y′i ‖ yi
else if (x′i ‖ xi, y′i ‖ yi) ∈ XO2 then bad1 ← true

else y′i ‖ yi ←− {0, 1}2n
if ∃((x′i ‖ xi)′, (y′i ‖ yi)′) ∈ X S.T (y′i ‖ yi)′ = y′i ‖ yi then bad0 ← true
XO1 = XO1 ∪ (x′i ‖ xi, y′i ‖ yi)
x′i+1 = y′i ⊕mi+1;
xi+1 = yi ⊕mi

end for
if (x′p ‖ xp, y′p ‖ yp) ∈ XO1 then return y′p ‖ yp
else if (x′p ‖ xp, y′p ‖ yp) ∈ XO2 then bad1 ← true

else y′p ‖ yp ←− {0, 1}2n
if ∃((x′p ‖ xp)′, (y′p ‖ yp)′) ∈ X S.T (y′p ‖ yp)′ = y′p ‖ yp then bad0 ← true

XO1 = XO1 ∪ (x′p ‖ xp, y′p ‖ yp)
xp+1 = yp ⊕mp

C = x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
T = xp+1 ⊕K
Return (C, T )
— on O2-query m—
if (m, v) ∈ X then return v
else v ←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T v′ = v then bad0 ← true
XO2 = XO2 ∪ (m, v)
return v
— on O3-query v—//Inverse Query
if (m, v) ∈ X then return m
else m←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T m′ = m then bad0 ← true
XO2 = XO2 ∪ (m, v)
return m
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Table 10. In G5 , bad event type-2 may occur.

Game G5

Initialize:
XO1 = XO2 = WO1 = WO2 = YO1 = YO2 = ∅ ; X = XO1 ‖ XO2 ; W = WO1 ‖WO2 ; Y = YO1 ‖ YO2 ;
K ←− {0, 1}n;
IV = 0;m0 = N
x′0 = IV ⊕m0; x0 = K
— on O1 -query (N,A,M) —
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

for i = 0 to p− 1 do:
if (x′i ‖ xi, y′i ‖ yi) ∈ XO1 then return y′i ‖ yi
else if (x′i ‖ xi, y′i ‖ yi) ∈ XO2 then bad1 ← true

else y′i ‖ yi ←− {0, 1}2n
if ∃((x′i ‖ xi)′, (y′i ‖ yi)′) ∈ X S.T (y′i ‖ yi)′ = y′i ‖ yi then bad0 ← true
XO1 = XO1 ∪ (x′i ‖ xi, y′i ‖ yi)
WO1 = WO1 ∪ (x′i ‖ xi), YO1 = YO1 ∪ (y′i ‖ yi)
x′i+1 = y′i ⊕mi+1;
xi+1 = yi ⊕mi

end for
if (x′p ‖ xp, y′p ‖ yp) ∈ XO1 then return y′p ‖ yp
else if (x′p ‖ xp, y′p ‖ yp) ∈ XO2 then bad1 ← true

else y′p ‖ yp ←− {0, 1}2n
if ∃((x′p ‖ xp)′, (y′p ‖ yp)′) ∈ X S.T (y′p ‖ yp)′ = y′p ‖ yp then bad0 ← true

XO1 = XO1 ∪ (x′p ‖ xp, y′p ‖ yp)
WO1 = WO1 ∪ (x′p ‖ xp), YO1 = YO1 ∪ (y′p ‖ yp)
xp+1 = yp ⊕mp

C = x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
T = xp+1 ⊕K
Return (C, T )
— on O2-query m—
if (m, v) ∈ XO2 then return v
if m ∈WO1 then bad2 ← true
else v ←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T v′ = v then bad1 ← true
XO2 = XO2 ∪ (m, v)
return v
— on O3-query v—//Inverse Query
if (m, v) ∈ XO2 then return m
if v ∈ YO1 then bad2 ← true
else m←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T m′ = m then bad1 ← true
XO2 = XO2 ∪ (m, v)
return m
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Table 11. In game G6 O1 does not keeps the history of intermediate queries.

Game G6

Initialize:
X = ∅ ;K ←− {0, 1}n;
IV = 0;m0 = N
x′0 = IV ⊕m0; x0 = K
— on O1 -query (N,A,M) —
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

for i = 0 to p− 1 do:
y′i ‖ yi ← {0, 1}2n;
x′i+1 = y′i ⊕mi+1;
xi+1 = yi ⊕mi

end for
y′p ‖ yp ← {0, 1}2n;

xp+1 = yp ⊕mp

C = x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
T = xp+1 ⊕K
Return (C, T )
— on O2-query m—
if (m, v) ∈ X then return v
else v ←− {0, 1}2n
X = X ∪ (m, v)
return v
— on O3-query v—//Inverse Query
if (m, v) ∈ X then return m
else m←− {0, 1}2n
X = X ∪ (m, v)
return m
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Table 12. G7 (boxes removed) and G8 (boxes included). In game G7 , blocks of ciphertext
and tag value are generated randomly. In gameG8 there is a switch from random permutation
to random function.

Games G7 and G8

Initialize:
X = ∅
— on O1-query (N,A,M)—
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

for i = 1 to p do:
x′i ←− {0, 1}n

end for
T ←− {0, 1}n
C = x′l+1 ‖ x′l+2 ‖ ... ‖ x′p
Return (C, T )
— on O2-query m—
if (m, v) ∈ X then return v
else v ←− {0, 1}2n

if ∃(m′, v′) ∈ X S.T v′ = v then

v ← {0, 1}2n\{v′ : (m′, v′) ∈ X}
X = X ∪ (m, v)
return v
— on O3-query v—//Inverse Query
if (m, v) ∈ X then return m
else m←− {0, 1}2n

if ∃(m′, v′) ∈ X S.T m′ = m then

m← {0, 1}2n\{m′ : (m′, v′) ∈ X}
X = X ∪ (m, v)
return m
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Table 13. Game G9 perfectly simulates an ideal AE, i.e, RO, π and π−1.

Game G9

Initialize:
X = ∅
— on O1-query (N,A,M)—
pad(A)‖pad(M) = m1 ‖ m2 ‖ ... ‖ mp

C ←− {0, 1}|Pad(M)|

T ←− {0, 1}n
Return (C, T )
— on O2-query m—
if (m, v) ∈ X then return v
else v ←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T v′ = v then
v ← {0, 1}2n\{v′ : (m′, v′) ∈ X}
X = X ∪ (m, v)
return v
— on O3-query v—//Inverse Query
if (m, v) ∈ X then return m
else m←− {0, 1}2n
if ∃(m′, v′) ∈ X S.T m′ = m then
m← {0, 1}2n\{m′ : (m′, v′) ∈ X}
X = X ∪ (m, v)
return m
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