4,686 research outputs found

    General Upper Bounds on the Runtime of Parallel Evolutionary Algorithms

    Get PDF
    We present a general method for analyzing the runtime of parallel evolutionary algorithms with spatially structured populations. Based on the fitness-level method, it yields upper bounds on the expected parallel runtime. This allows for a rigorous estimate of the speedup gained by parallelization. Tailored results are given for common migration topologies: ring graphs, torus graphs, hypercubes, and the complete graph. Example applications for pseudo-Boolean optimization show that our method is easy to apply and that it gives powerful results. In our examples the performance guarantees improve with the density of the topology. Surprisingly, even sparse topologies such as ring graphs lead to a significant speedup for many functions while not increasing the total number of function evaluations by more than a constant factor. We also identify which number of processors lead to the best guaranteed speedups, thus giving hints on how to parameterize parallel evolutionary algorithms

    Optimal Parameter Choices Through Self-Adjustment: Applying the 1/5-th Rule in Discrete Settings

    Full text link
    While evolutionary algorithms are known to be very successful for a broad range of applications, the algorithm designer is often left with many algorithmic choices, for example, the size of the population, the mutation rates, and the crossover rates of the algorithm. These parameters are known to have a crucial influence on the optimization time, and thus need to be chosen carefully, a task that often requires substantial efforts. Moreover, the optimal parameters can change during the optimization process. It is therefore of great interest to design mechanisms that dynamically choose best-possible parameters. An example for such an update mechanism is the one-fifth success rule for step-size adaption in evolutionary strategies. While in continuous domains this principle is well understood also from a mathematical point of view, no comparable theory is available for problems in discrete domains. In this work we show that the one-fifth success rule can be effective also in discrete settings. We regard the (1+(λ,λ))(1+(\lambda,\lambda))~GA proposed in [Doerr/Doerr/Ebel: From black-box complexity to designing new genetic algorithms, TCS 2015]. We prove that if its population size is chosen according to the one-fifth success rule then the expected optimization time on \textsc{OneMax} is linear. This is better than what \emph{any} static population size λ\lambda can achieve and is asymptotically optimal also among all adaptive parameter choices.Comment: This is the full version of a paper that is to appear at GECCO 201

    OneMax in Black-Box Models with Several Restrictions

    Full text link
    Black-box complexity studies lower bounds for the efficiency of general-purpose black-box optimization algorithms such as evolutionary algorithms and other search heuristics. Different models exist, each one being designed to analyze a different aspect of typical heuristics such as the memory size or the variation operators in use. While most of the previous works focus on one particular such aspect, we consider in this work how the combination of several algorithmic restrictions influence the black-box complexity. Our testbed are so-called OneMax functions, a classical set of test functions that is intimately related to classic coin-weighing problems and to the board game Mastermind. We analyze in particular the combined memory-restricted ranking-based black-box complexity of OneMax for different memory sizes. While its isolated memory-restricted as well as its ranking-based black-box complexity for bit strings of length nn is only of order n/lognn/\log n, the combined model does not allow for algorithms being faster than linear in nn, as can be seen by standard information-theoretic considerations. We show that this linear bound is indeed asymptotically tight. Similar results are obtained for other memory- and offspring-sizes. Our results also apply to the (Monte Carlo) complexity of OneMax in the recently introduced elitist model, in which only the best-so-far solution can be kept in the memory. Finally, we also provide improved lower bounds for the complexity of OneMax in the regarded models. Our result enlivens the quest for natural evolutionary algorithms optimizing OneMax in o(nlogn)o(n \log n) iterations.Comment: This is the full version of a paper accepted to GECCO 201

    Level-Based Analysis of the Population-Based Incremental Learning Algorithm

    Get PDF
    The Population-Based Incremental Learning (PBIL) algorithm uses a convex combination of the current model and the empirical model to construct the next model, which is then sampled to generate offspring. The Univariate Marginal Distribution Algorithm (UMDA) is a special case of the PBIL, where the current model is ignored. Dang and Lehre (GECCO 2015) showed that UMDA can optimise LeadingOnes efficiently. The question still remained open if the PBIL performs equally well. Here, by applying the level-based theorem in addition to Dvoretzky--Kiefer--Wolfowitz inequality, we show that the PBIL optimises function LeadingOnes in expected time O(nλlogλ+n2)\mathcal{O}(n\lambda \log \lambda + n^2) for a population size λ=Ω(logn)\lambda = \Omega(\log n), which matches the bound of the UMDA. Finally, we show that the result carries over to BinVal, giving the fist runtime result for the PBIL on the BinVal problem.Comment: To appea
    corecore