4 research outputs found

    Building a generalized distributed system model

    Get PDF
    The key elements in the second year (1991-92) of our project are: (1) implementation of the distributed system prototype; (2) successful passing of the candidacy examination and a PhD proposal acceptance by the funded student; (3) design of storage efficient schemes for replicated distributed systems; and (4) modeling of gracefully degrading reliable computing systems. In the third year of the project (1992-93), we propose to: (1) complete the testing of the prototype; (2) enhance the functionality of the modules by enabling the experimentation with more complex protocols; (3) use the prototype to verify the theoretically predicted performance of locking protocols, etc.; and (4) work on issues related to real-time distributed systems. This should result in efficient protocols for these systems

    The Problem of Mutual Exclusion: A New Distributed Solution

    Get PDF
    In both centralized and distributed systems, processes cooperate and compete with each other to access the system resources. Some of these resources must be used exclusively. It is then required that only one process access the shared resource at a given time. This is referred to as the problem of mutual exclusion. Several synchronization mechanisms have been proposed to solve this problem. In this thesis, an effort has been made to compile most of the existing mutual exclusion solutions for both shared memory and message-passing based systems. A new distributed algorithm, which uses a dynamic information structure, is presented to solve the problem of mutual exclusion. It is proved to be free from both deadlock and starvation. This solution is shown to be economical in terms of the number of message exchanges required per critical section execution. Procedures for recovery from both site and link failures are also given
    corecore