
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

1991

The Problem of Mutual Exclusion: A New
Distributed Solution
Rajeev Chawla
rajeev@rchawla.com

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Computer Sciences Commons

© The Author

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses
and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/4442

http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F4442&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F4442&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F4442&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F4442&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F4442&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F4442&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarscompass.vcu.edu%2Fetd%2F4442&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/4442?utm_source=scholarscompass.vcu.edu%2Fetd%2F4442&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

College of Humanities and Sciences

Virginia Commonwealth University

This is to certify that the thesis prepared by Rajeev Chawla entitled

The Problem of Mutual Exclusion - A New Distributed Solution has been

approved by his committee as satisfactory completion of the thesis

requirement for the degree of Master of Science in Computer Science.

Lorraine M. Parker

Director of Thesis

Thorn W. Haas

Committee Member

J(;TsA:wood
Director of Graduate Studies

Reuben W. Farley

Chairman, Department of Mathematical Sciences

Elske v. P. Smith

Dean, College of Humanities and Sciences

1�/�/91
Dattl

TOE PROBLEM OF MUTUAL EXCLUSION - A NEW DISTRIBUTED SOLUTION

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

at Virginia Commonwealth University.

By

Rajeev Chawla

B. Tech., Institute of Technology, BHU, India, 1988

Director: Dr. Lorraine M. Parker

Associate Professor

Department of Computer Science

Virginia Commonwealth University

Richmond, Virginia

December, 1991

To my loving mother who is not here to see it but remained all the

time with me to guide and appreciate every word of this thesis.

ACKNOWLEDGEMENTS

I wish to express my appreciation to my advisor, Dr. Lorraine

Parker, for her constant help. It was she who introduced me to the

problem of mutual exclusion. Her encouragement, throughout my

graduate studies, gave me the confidence to keep going. She posed

tough questions, answered others when I got stuck, and praised my

results. Her questions and comments have immensely helped improve the

quality of this thesis. It has been a great pleasure working with

her.

I would also like to thank my committee members, Dr. Ames and Dr.

Haas, for their constructive input into my thesis.

I owe a great deal to Dr. Wood for taking care of everything for

me when I needed it the most. I would also like to thank him for

continuing my graduate teaching assistantship, without which I could

not have completed this work.

Thanks are also due to many friends who helped me 1n their own

ways. Names which need a special mention are Kurt Heidelberg - thanks

for being a great friend, and Katie Ambruso who showed interest in my

work (in spite of being a non-CS major) and tried helping me on the

proofs. I would also like to thank her for forcing me to take some

time off my work. I would also like to thank Anna Harris for her

administrative help and friendly advice.

Finally, I would like to thank my parents, Mr. Jag Mohan Chawla

and the late Mrs. Chander Chawla, as well as my brother, Raman, for

their unfaltering support, encouragement, and inspiration to keep

going on in life. I owe it to them all.

Table of Contents

Page

List of Tables ... viii

List of Figures .. ix

Abstract . xi

Chapter I Introduction . 1

1.1 Concurrent Programming . 1

1.2 Process Interactions ... 3

1.3 Definition of Synchronization . 4

1.3.1 Condition Synchronization . 5

1.3.2 Mutual Exclusion . 5

1.4 Properties of Mutual Exclusion Algorithms . 7

1.5 Performance Measurement . 11

1.6 Concurrent Program Correctness 11

1.7 Outline of the Thesis . 13

Chapter II Shared Memory Low-Level Solutions . 14

2.1 Concept of Indivisible Instructions 14

2.1.1 Memory Locks in Intel 8086 Series 15

2.1.2 Memory Locks in Pyramid System 19

2.2 Synchronization with Indivjsible Instructions 19

2.2.1 Exchange Instruction . 20

2.2.2 Test and Set Instruction 21

2.2.3 Lock Instruction . 22

2.2.4 Increment and Decrement Instruction 24

2.2.5 Compare and Swap Instruction 26

2.2.6 Fetch and Add Instruction . 28

2.3 Performance Considerations . 31

2. 4 Semaphores . 34

2.4.1 Implementation of P and V Primitives 37

2.4.2 Extensions of P and V Primitives . 38

2.4.2.1 Parallel P and V . 39

2.4.2.2 PP and VV . 40

2.4.2.3 PV Chunk .. 40

2.4.2.4 Priority Semaphores . 41

2.4.2.5 Higher-Level Constructs . 42

2.5 Concurrent Reading and Writing . 42

2.5.1 Lamport's Solution . 43

2.5.2 Peterson's Solution . 47

2.6 Summary . 48

Chapter III Shared Memory High-Level Solutions . 49

3.1 Introduction . 49

3.2 Hyman's Incorrect Solution . 52

3.3 Dekker's Algorithm . 53

3.4 Doran and Thomas' Algorithm . 54

3.5 Dijkstra's Generalization to N Processes . 58

3.6 Knuth's Solution . 61

3.7 deBruijn's Solution . 65

3.8 Eisenberg and McGuire's Algorithm . 68

3.9 Peterson's Solutions . 70

3.10 Further Improvements . 74

3.10.1 Burn's Improvements . 74

3.10.2 Lamport's Improvements . 75

3.11 Summary . 79

Chapter IV Distributed Solutions 80

4.1 Introduction 80

4.2 Solutions without Explicit Usage of Message-Passing

Pr imi ti ves 85

4.2.1 Lamport's Bakery Algorithm 86

4.2.2 Improvements to Lamport's Bakery Algorithm 90

4.2.3 Dijkstra's Self-Stabilizing Distributed Algorithm 90

4.3 Solutions Which Use Message-Passing Primitives Explicitly .. . 92

4.3.1 Event Ordering 93

4.3.1.1 Logical Clocks 93

4.3.1.2 Eventcounts and Sequencers 96

4.3.1.3 Causal Ordering 97

4.3.2 Previous Work on Distributed Mutual Exclusion

Algorithms 98

4.3.2.1 Ricart-Agrawala Algorithm 108

4.3.2.2 Suzuki-Kasami Algorithm 108

4.3.2.3 Maekawa's Algorithm 110

4.3.2.4 Raymond's Algorithm 113

4.4 Summary 116

Chapter V A New Distributed Mutual Exclusion Solution Derived

From Real-Life Examples • . 117

5.1 Introduction 117

5.2 Search for Distributed Mutual Exclusion Solutions 118

5.2.1 In Case of One Shared Resource 118

5.2.1.1 Informal Description of the New Algorithm's

Development 123

5.2.1.2 Formal Description 128

5 0 2 0 1 0 3 Correctness Proofs o o o o o o o o o o o o o o o o o o o o o o o 0 0 0 0 o o 131

5 o 2 o 1 o 4 Cost of the Algorithm o o o o o o o o o o o o o o o o o o 0 0 o o 0 0 o o 136

5 o 2 o 1 o 5 Failure Considerations o o o o o o o o 0 0 o o o 0 0 o o o 0 0 0 0 0 0 o 138

5 o 2 o 2 Mutual Exclusion in case of M Instances of the

Shared Resource o 145

5 o 2 o 2 o 1 Extension to the Ricart-Agrawala Algorithm 0 0 0 o o 146

5 o 2 o 2 o 2 Extension to the Suzuki-Kasami Algorithm o o o o o o o 146

5 o 2 o 2 o 3 Extension to the Proposed Algorithm 0 0 0 0 0 0 0 0 0 0 0 0 148

5 o 3 Summary o 150

Chapter VI Conclusions o o o o o o o o o o o 0 o 0 o o o o 0 151

Bibliography 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o l55

List of Tables

Page

Table 2.1 Valid 386™ Instructions with the Lock Prefix 18

Table 2.2 Valid 486™ Instructions with the Lock Prefix 18

Table 2.3 Atomic Instructions for Synchronization 20

Table 3.1 List of Software Solutions 51

Table 3.2 Burn's Results for the Amount of Shared Memory Used 74

Table 4.1 A Comparison of Some Distributed Mutual

Exclusion Algorithms . 107

Page

Figure 1.1 Enqueue Operation in Two Processes 6

Figure 2.1 Mutual Exclusion Using Exchange Instruction 21

Figure 2.2 Definition of Test-and-Set Instruction 22

Figure 2.3 Mutual Exclusion Protocol Using "TestSet" Instruction ... 22

Figure 2.4 Definition of Lock Instruction 23

Figure 2.5 Mutual Exclusion Protocol Using Lock Instruction 24

Figure 2.6 Mutual Exclusion Protocol Using Decrement Instruction ... 24

Figure 2.7 Definition of Compare-and-Swap Instruction 26

Figure 2.8a Mutual Exclusion Protocol Using Compare-and-Swap 27

Figure 2.8b General Mutual Exclusion Using Compare-and-Swap 27

Figure 2.9 Modification of Protocol in Figure 2.3 32

Figure 2.10 Definition of P and V Operations 35

Figure 2.11 An Implementation of Counting Semaphores 37

Figure 2.12 Definition of PP and VV Operations 40

Figure 2.13 Definition of P(n,s) and V(n,s) Operations 41

Figure 2.14 Mutual Exclusion of Writers 44

Figure 2.15 Lamport's Concurrent Reading and Writing Solution

to the Readers-Writers Problem 46

Figure 2.16 Peterson's CRWW Solution to the Readers-Writers

Solution ... 48

Figure 3.1 Hyman's Solution .. 52

Figure 3.2 Dekker's Solution 53

Figure 3.3 Doran and Thomas' Solution Version 1 55

Figure 3.4 Doran and Thomas' Algorithm Version 2 57

Figure 3.5 Dijkstra's Solution . 59

Figure 3.6 Knuth's Solution . 62

Figure 3.7 Knuth's Two Process Solution . 65

Figure 3.8 Changes in Knuth's Solution . 66

Figure 3.9 deBruijn's Solution 66

Figure 3.10 Eisenberg and McGuire's Solution . 69

Figure 3.11 Peterson's First Primitive Algorithm 70

Figure 3.12 Peterson's Second Primitive Algorithm 71

Figure 3.13 Peterson's Solution for Two Process Mutual Exclusion . . . 71

Figure 3.14 Peterson's Solution for N Process Mutual Exclusion 73

Figure 3.15 Lamport's Algorithm for N Process Mutual Exclusion

with 3 Writes and 2 Reads to the Shared memory 77

Figure 3.16 Lamport's Algorithm for N Process Mutual Exclusion

with 5 Writes and 2 Reads to the Shared memory 78

Figure 4.1 Lamport's Bakery Algorithm . 87

Figure 4.2 Dijkstra1s Self-Stabilizing Algorithm 91

Figure 4.3 Example of Partial Ordering of System Events 94

Figure 4.4 Ricart-Agrawala Algorithm . 109

Figure 4.5 Suzuki-Kasami Algorithm . 111

Figure 4.6 Raymond's Algorithm . 114

Figure 5.1 Formal Description of Protocol 3 . 129

Abstract

THE PROBLEM OF MUTUAL EXCLUSION - A NEW DISTRIBUTED SOLUTION

Rajeev Chawla

Virginia Commonwealth University, 1991.

Major Director: Dr. Lorraine M. Parker

In both centralized and distributed systems, processes cooperate and

compete with each other to access the system resources. Some of these

resources must be used exclusively. It is then required that only one

process access the shared resource at a given time. This is referred

to as the problem of mutual exclusion. Several synchronization

mechanisms have been proposed to solve this problem. In this thesis,

an effort has been made to compile most of the existing mutual

exclusion solutions for both shared memory and message-passing based

systems. A new distributed algorithm, which uses a dynamic

information structure, is presented to solve the problem of mutual

exclusion. It is proved to be free from both deadlock and starvation.

This solution 1s shown to be economical in terms of the number of

message exchanges required per critical section execution. Procedures

for recovery from both site and link failures are also given.

CHAPTER I

INTRODUCTION

The availability of inexpensive processors has made possible

the construction of distributed systems and multiprocessors, that

were previously economically infeasible. However, there is more to

making this a reality than just hooking the hardware together. There

are many problems involved in the design of such systems, such as the

management of common memory and memory local to various processors,

the allocation of physical and virtual resources, and concurrency

protection and management. One fundamental problem that stands out

from all those involved in controlling parallelism, is the

synchronization of concurrently executing programs. Further, mu��

exclusion, referred to as a "key-problem" by Dijkstra 1n [Dijkstra

1971], 1s one of the most important synchronization problems

encountered in concurrent programming [Axford 1989].

1.1 Concurrent Programming

A concurrent program specifies two or more sequential programs

that may be executed concurrently as parallel processes [Andrews

1983]. It can be executed either, by allowing processes to share one

processor, referred to as multiprogramming, or by running each

process on its own processor, referred to as multiprocessing if

processors share a common memory or as distributed processing if the

processes are connected by a communication network. The problem of

1

2

synchronization remains independent of whether a concurrent program

is executed on multiple processors or on a single multi-programmed

processor. Therefore, concurrent programming is the activity of

constructing a program containing multiple processes that cooperate

in performing some task [Andrews 1991 b J, and concurrent programming

abstraction is the study of interleaved execution sequences of the

atomic instructions of sequential processes [Ben-Ari 1990]. Since no

assumptions can be made about the execution rates of concurrently

executing processes, one process could complete hundreds of

instructions before any other process executes one instruction. The

only assumption made is that a process does not deliberately halt -

it keeps on executing at a positive rate. This is called the finite

progress assumption [Andrews 1983 J.

Since arbitrary interleavings of process instructions are

possible, a concurrent program behaves in a non-deterministic

fashion. Consider for example, a change-giving machine which accepts

$1 and $5 bills and offers its customers change 1n any of the

combinations of nickels, dimes, and quarters. The customer cannot

predict the combination of denominations he is going to get, and the

machine may behave differently a� different times for the same input,

that is it may change a $1 bill into four quarters one time and ten

dimes at a later time. The machine is said to behave in an arbitrary

or non-deterministic fashion.

For a concurrent program to be correct, it IS required to be

correct under all interleavings of execution sequences and this leads

to extensive case analysis as the number of interleavings that must

3

be considered grows exponentially with the size of the component

sequential processes. For the change-giving machine example, it has

to be ensured that the machine offers exact change irrespective of

whatever combination of denominations is given to the customer. The

exact time of execution of instructions is ignored as it has no

relevance to program correctness, except in cases of time-critical

(hard real-time) systems [Faulk 1988].

1.2 Process Interactions

In concurrent programming, problems start appearing when two or

more processes interact with each other. These interactions require

simultaneous participation of both the processes involved. For

example, a chocolate can be extracted from a vending machine only

when its customer wants it and only when the vending machine is

prepared to give it [Hoare 1985]. For any particular application,

there are two kinds of interactions cooperative and competitive.

Cooperative processes are directly or indirectly aware of each

other's existence. On the other hand, competing processes are unaware

of each other any interaction between them is indirect. The

resolution of a competitive sjtuation may require creation of

cooperating processes and conversely, cooperating processes could

compete with one another for resources. The following examples from

[Andre 1985] clarify this point -

Example 1: Consider a set of processes {P} which share (compete for) a single printer. Access

to this printer is gained by cooperation between the calling processes of {P}, on one hand, and

4

a single print-server process, on the other.

Example 2: Suppose there is a set of processes which cooperate in pairs to produce and print

certain values. Since the buffers for all producer-printer pairs must reside m a store with

limited capacity, the process pairs will compete for storage locations indirectly by means of

cooperating producer and printer processes of each pair. This competition can be resolved by

cooperation between the processes which allocate and retrieve the buffer space.

In order to cooperate, concurrently executing processes must

communicate and synchronize. Communication allows execution of one

process to influence execution of another. Inter-process

communication is based on the use of shared variables or on message

passing [Andrews 1983].

1.3 Definition of Synchronization

A process is assumed to be executing in discrete steps. At each

step, there is an "event", which can be either local to the process

in which it occurs and not perceived by the rest of the system, or

can have some significance on the whole system, in which case it is

relevant to the general problem of synchronization. According to

[Andre 1985], synchronization consists of controlling the evolution of

processes, and therefore the occurrence of events, as a function of

the past history of the system. Simply, synchronization can be

thought as a set of constraints on the ordering of events [Andrews

1983] - this may involve delaying execution of a process to satisfy

these constraints. In example 2 above, a printer process cannot print

a value unless it is produced.

5

Conceptually, there are two major forms of synchronization in a

system of sequential processes that run concurrently - one on behalf

of accessing shared data and one on behalf of communication

[Habermann 1972].

1.3.1 Condition Synchronization

Communication may lead to a situation where one process is

ready to process input which 1s yet to be produced by another

process. In that case, the processes must be synchronized such that

the consuming process cannot start processing the input before the

producer has produced it. This is referred to as condition synchronization

[Andrews 1983].

1.3.2 Mutual Exclusion

In certain circumstances, it 1s necessary to ensure that

portions of two concurrent processes do not run concurrently. These

portions are called criticalsections. For example, if two or more processes

share a common resource (memory, peripheral, CPU, clock, etc.),

mutual exclusion must be enforced on the sections of these processes

which access the shared resource to secure the integrity of the

shared resource.

Consider two processes, both of which put (enqueue) items onto

a shared queue without bothering about a dequeue operation for this

example. Suppose the queue is implemented as an array with variable

name "queue", and an index, "tail", to the last i tern put into the

6

queue. The code In two processes could look like that given in Figure

1.1

Since nothing can be assumed about the relative speed of

different processors, suppose processor! executes tail := tail + 1, and

processor2 executes tail := tail + 1 followed immediately by queue[tail} :=

item2; then, processor! executes queue{tail} := item]. This order of

execution shows that nothing is put into queue[tail+l], and iteml is

put into queue[tail +2] and item2 gets lost.

The concurrent execution in the above example led to serious

corruption of the queue. Therefore, it is required for all update

operations on the shared variables to be mutually exclusive In time.

The design of a mutual exclusion algorithm consists of defining

the acquisition and release protocols used to coordinate entry into

the critical section - acquisition protocol (entry code) is executed

before entering the critical section, and release protocol (exit

Shared: queue

tail

Array(O .. queuesize) of anytype ;

integer ;

Local: item1 , item2 anytype;

Process 2 Process 1

tail := tail + 1 ;

queue(tail) := item1 ;

tail := tail + 1 ;

queue(tail) := item2 ;

Figure 1.1 - Enqueue operation in two processes

7

code) IS executed on leaving the critical section. Thus, all mutual

exclusion algorithms can be depicted as -

acquisition protocol

< CRITICAL SECTION >

release protocol

The acquisition and release protocols ensure that the critical

section is used by only one process at a time and any other process

trying to enter the critical section waits. In addition, the

protocols can play a scheduling role in determining which of several

contending processes is allowed to proceed.

Enforcing mutual exclusion is not an easy task. Dijkstra was

the first to show whether or not processes could be synchronized with

just the standard operators of an ordinary programming language

[Dijkstra 1965]. He states that this is the most difficult program he

has ever written [Dijkstra 1971].

1.4 Properties of Mutual Exclusion Algorithms :

There are a number of pitfalls to avoid while writing the

solution (program) to provide synchronization. The first pitfall is

deadlock. Consider several processes all attempting to enter their

critical section to use the shared resource. As at most one process

may be in the critical section, one solution would be to let none of

them in. An analogy [Raynal 1986] would be - when several people meet

8

before a doorway (the resource) and suppose the protocol is, if I am

alone, I go through; otherwise, I let others go first. If several

people with this protocol arrive simultaneously at the doorway, they

will all wait, blocking each other's access. This is deadlock.

[Silberschatz 1988] defines deadlock as a state of processes where

two or more processes are waiting indefinitely for an event that can

only be caused by one of the waiting processes. Although it does

provide mutual exclusion, it leads to a situation in which there is

no useful activity by any of the processes (in other words, the

system is 'hung'); it must therefore be avoided.

The second pitfall to avoid is a situation whereby a process is

postponed infinitely 1n entering its critical section. Consider the

case where processor Pl is in the critical section and P2 and P3 are

delayed in their acquisition protocol. Once Pl executes its release

protocol, the first step is to end the delay of P2 or P3. Assume that

P3 now enters the critical section and that Pl executes its

acquisition protocol once more. Consider the situation when Pl again

enters its critical section once P3 comes out of it. If this keeps on

happening, the processes may end up behaving in such a way that P2 is

indefinitely delayed 1n its acquj.sition protocol and will never get

to enter the critical section. This situation is called starvation.

It is important to note that in case of n processes competing

for one resource, deadlock brings the whole system (all the

processes) to a "standstill" state, whereas starvation does that to

individual processes.

"fair".

9

To rule out starvation, the mutual exclusion solution should be

[Francez 1986] defines fairness as a restriction on some

infinite behavior according to eventual occurrence of some events. On

the basis of eventuality, there are three main subclasses -

•Unconditional fairness,

•Weak fairness, and

•Strong fairness.

Unconditional fairness implies that for each behavior each

event occurs infinitely often without any further qualification

[Francez 1986]. For example, consider multi-programmed non-

communicating concurrency - here, n processes, totally independent of

each other, conceptually are executed in parallel but use one common

processor. An event is the execution of an atomic step 1n one

process. In this case, unconditional fairness means that along an

infinite execution each process lS allocated processor time

infinitely many times. But, nothing IS implied about the length of

the interval between consecutive processor time allocations to any

given process, or about the length of time the processor is allocated

to any given process.

According to weak fairness, an event will not be indefinitely

postponed from occurring provided that it remains continuously

enabled from some time instant until it actually occurs. On the other

hand, strong fairness guarantees eventual occurrence under the

condition of being infinitely often enabled, but not necessarily

continuously. Implementation of a strong fairness policy is tougher,

10

but it is a preferred choice in many cases. For example, consider a

process in its acquisition protocol waiting for a condition. It must

repeatedly (infinitely often) test the shared variable to gain entry

into the critical section. This method of delaying a process 1s

called busy-waiting and the process is said to be spinning on the shared

variables, called spin-locks. A strongly fair mutual exclusion solution

with busy-waiting will guarantee eventual entry to the critical

section for each attempting process.

These concepts of fairness are not very practical because they

depend on 'eventually' and 'infinitely often'. A practical approach

could be basing fairness on the "order of arrival" of the requesting

processes. Linear and FIFO (first-in-first-out) fairness fall in this

category. These are a by-product of queue implementation. For real-

time applications, a "bounded-delay" fairness policy, in which there

exists a bound (hopefully small) on the length of the interval

between consecutive occurrences of the same event, is preferred.

[Dijkstra 1965] gives a minimum number of properties that all

algorithms implementing mutual exclusion must have. These are -

• Algorithm should allow only one process in its critical section at any one point of time.

• Algorithm should be deadlock-free, that is, if several processes are waiting to enter a

critical section while no process is actually in its critical section, one of them must enter it

within a finite time.

• There should be complete independence between those parts of the algorithm which are

involved in access conflicts and those parts that are not.

• Algorithm should treat all processes in the same fashion, that is, it should not have any

privileged process.

11

Dijkstra did not have 'starvation-free' property in his list of

minimum properties, but it is a desirable property to include.

1.5 Performance Measurement

[Stone 1989] introduces the performance notion of SYPS

(SYnchronizations Per Second), measured in MSYPS (Mega SYPS). The

number of serial sections executed sequentially in one second gives

the MSYPS rate. As a general rule, adding more processors increases

the MIPS (Mega Instructions Per Second) rate of the system. But if

processes need to have a lot of synchronization operations among

themselves, increased MIPS does not effect the speedup at all; the

MSYPS rate then determines the Increase in the speedup. Thus,

throughput is limited both by the MIPS and MSYPS capacity of the

system.

1.6 Concurrent Program Correctness

Programs, especially concurrent programs, are often described

informally. A process can be studied without getting into formal

notation and proof system. There are two approaches to arguing about

the correctness of a program Operational Reasoning and Non-

Operational (Formal/Axiomatic) Reasoning. Operational reasoning

involves arguments about the unfolding computations of a program,

whereas non-operational reasoning focuses on static aspects (such as

invariants) of the program [Chandy 1988]. Both approaches are useful

and have advantages over each other. Since arbitrary interleavings of

process execution sequences are allowed in concurrent processing and

12

for a concurrent program to be correct, it has to be correct under

all interleavings, it 1s hard to convince skeptics about the

correctness of concurrent programs by using operational arguments. A

common mistake in operational arguments IS forgetting to consider

certain sequences of events that could occur. Also, operational

arguments tend to be longer. Nevertheless, creation of an algorithm

is often based on operational reasoning and for this reason, the

operational technique IS used extensively.

Currently, there are several methodologies for verifying

concurrent programs. These concentrate on the concurrency problems

and sometimes leave the sequential parts of the program to be

analyzed using other methods. Methodologies like Petri Nets [Peterson

1981b], CSP [Hoare 1985], and UNITY [Chandy 1988] require the program

to be modeled using their own specific

primitives communication

mathematical

primitives.

definitions,

These

and therefore,

synchronization and

and have simple

permit a rigorous

mathematical analysis of the programs written using these primitives.

But, it is often inconvenient and tedious as these primitives are not

the same as the primitives used in many common programming languages.

Whatever approach lS used, all the properties (mutual

exclusion, deadlock-free, starvation-free, fairness, etc.) of mutual

exclusion protocols discussed in the algorithm need to be satisfied.

13

1.7 Outline of the Thesis

This thesis is organized into six chapters. In Chapter II

different hardware and low-level mechanisms available for

implementing synchronization are discussed. In Chapters III and IV an

outline of the existing software solutions for centralized and

distributed systems is given. In Chapter V, a new algorithm for

providing distributed mutual exclusion is submitted. In Chapter VI, a

summary of the thesis and future work problems are given.

CHAPTER II

SHARED MEMORY LOW-LEVEL SOLUTIONS

2.1 Concept of Indivisible Instructions

It is conventional for computer hardware to be designed to

permit interrupts to occur only between instructions. Normally, an

instruction may not be interrupted in the middle of its execution. An

interrupt request that arrives in the middle of an instruction is not

lost but merely made to wait. This has an important effect - a single

machine instruction is guaranteed to be indivisible; once execution

of it has begun, no other process can interrupt until it has

finished.

On multiprocessor machines in which several processors share a

common memory, the normal indivisibility of machine instructions does

not provide mutual exclusion between different processors. Many

instructions involve several memory accesses each. If another

processor shares access to the same memory, there is normally nothing

to prevent it from accessing memory between accesses by the first

processor. Of course, a processor will have no way of knowing if

consecutive memory accesses by another processor are part of one

instruction or several instruction�.

The memory unit enforces mutual exclusion on each individual

memory access. This means that there is no risk that a memory

location can ever be found 1n an intermediate state, it must either

14

15

contain its value before the write access or its value after it.

Thus, memory read and write are indivisible operations. But some

additional mechanisms are needed to enforce mutual exclusion 1n a

multiprocessing system with shared memory.

The idea of disabling interrupts during the execution of

critical section also 1s ineffective on multiprocessor systems.

Disabling interrupts only prevents other processes on the same

processor from running concurrently; it has no effect on processes

running on different processors.

Multiprocessor machines provide a special memory lock instruction

which is treated as a prefix to the instruction immediately following

it, and causes a memory lock to be applied for the duration of that

instruction. This means that no other processors or devices are

permitted access to the shared memory during execution of the locked

instruction.

Memory locked instructions are thus effectively indivisible

(i.e. mutually exclusive) on multiprocessor systems, just as all

machine instructions are indivisible on a uniprocessor system.

2.1. 1 Memory Locks in Intel 8086 series

The 8086 includes a memory lock prefix instruction which can be

used to prefix any other instruction and cause a memory lock to be

applied for the duration of that instruction. This can have

disastrous effects if misused and it seems the LOCK instruction was

added to the instruction set hurriedly at the eleventh hour, to

16

support concurrency [Axford 1989]. The 8086 instruction set includes

string instructions which will operate on strings of arbitrary

length. These instructions can take a very long time to execute and

involve many memory accesses (depending on the length of string) . If

memory lock is applied to such instructions, other devices are locked

out of memory for relatively long periods of time. This can be a

disaster for a fast disk-controller, which has to read data from a

disk rotating at a fixed speed, and store that data in memory at the

rate at which it comes off disk. There are typically only a few

micro-seconds in which to write each data word to memory. If access

to memory is not obtained within this time, the data 1s lost and

complete disk transfer has to be aborted.

Probably, this anomaly is because 8086 is a single user

machine. It does not provide memory protection, nor are user

processes prevented from using I/ 0 instructions or other instructions

which the operating system may prefer to keep for its own use alone

in other environments.

When the 80286 was designed, the philosophy changed. This

processor was designed to be a multi-user machine with full memory

protection and other features to' prevent processes from interfering

with each other 1n uncontrolled ways. Of course, the unconstrained

use of memory lock cannot be permitted for ordinary user processes.

Instead, unconstrained use of memory lock is permitted for the

operating system only, and all other programs are prevented from

using it - the operating system decides whether or not a user process

can use memory lock. Nevertheless, memory lock 1s automatically

17

implemented on all exchange instructions, whether requested or not,

so that all processes can obtain some mutual exclusion facilities in

a multiprocessor system. [Liu 1986; Intel 80286]

This solution was fine, until the 386™ was designed. The 386™

includes support for paging. This made it impractical to implement

memory lock on some instructions, even though the use of memory lock

was confined to the operating system and privileged processes only.

The culprit 1s again the string instruction. Suppose the string

crosses a page boundary into a non-resident page. It is impossible to

maintain the memory lock while the page is recovered from disk (swap

space) , as the disk-controller cannot access memory while the lock is

on. But if the lock is released, this destroys the mutual exclusion

which was the whole point of using the lock in first place.

Therefore, the 386™ designers abandoned the 80286 approach. Instead,

the 386™ adopts an approach that totally prohibits any process from

using memory lock on specified types of instructions, which include

string instructions. Having restricted the use of memory lock to only

those instructions for which it is always safe, i.e., those whose

execution time is always fairly short, there is no longer any need to

prevent ordinary user processes ,from using it. So, on the 386™

machine, memory lock is no longer regarded as a privileged

instruction. Table 2.1 lists the instructions which can use LOCK

instruction as a prefix. [Liu 1986; Intel 386™]

The 486™ processor also supports paging and therefore, like

386™, the usage of LOCK instruction is restricted to the

instructions which have small execution time. Table 2.2 lists the

ADC, ADD, AND, BT

BTS, BTR, BTC, OR

SBB, SUB, XOR

XCHG

XCHG

DEC, INC, NEG, NOT

mem,reg/immediate

mem,reg/immediate

mem,reg/immediate

reg,reg

mem,reg

mem

Table 2.1- Valid 386™ lnstructioDB with the Lock Prefix

Bit test and Change Instructions

Exchange Instructions

BTS, BTR, BTC

XCHG,XADD, CMPXCHG

1 operand arithmetic and logical instructions INC, DEC, NOT, NEG

2 operand arithmetic and logical instructions ADD, ADC, SUB, SBB,

AND, OR, XOR

Table 2.2- Valid 486™ InstructioDB with the Lock Prefix

18

486™ CPU instructions which can use the lock prefix. An invalid­

opcode exception results from using the lock prefix before any other

instruction, or with these instructions when no write operation is

made to memory (that is, when the destination operand is 1n a

register).

A locked instruction is guaranteed to lock only the area of

memory defined by the destination operand, but may lock a larger

memory area, if execution is going on in 8086/80286 configuration.

Locked cycles are implemented in hardware with the LOCK# pin.

When LOCK# is active, the processor is performing a read-modify-write

operation and the external bus 1s not relinquished until the cycle is

19

complete. Multiple reads or writes can be locked. The 486™ also has

a PLOCK# pin which indicates that the current bus cycle and the

following one should be treated as an atomic transfer. This can be

used to generate atomic reads and writes of 64-bit operands.

The 486™ processor always asserts LOCK# during an XCHG

(exchange) instruction which references memory, even if the wck prefix

is not used. It also provides two instructions XADD (Exchange and

Add) and CMPXCHG (Compare and Exchange) , which if prefixed with the

LOCK instruction, can be used (as explained in the next sections) to

implement mutual exclusion protocols. [Intel 486™]

2.1.2 Memory Locks 1n Pyramid System

The Pyramid system supports paging. So, like 386™, the string

instructions provided for commercial applications do not allow memory

to be locked. The Pyramid Reference Manual makes it clear by adding a

note in all the string instructions, that these instructions are

interruptible.

2.2 Synchronization with Indivisible Instructions

Most modern computers provide a number of special instructions

that are particularly useful for concurrent programming because they

are guaranteed to be indivisible, i.e., mutually exclusive with other

instructions. The most common are listed 1n Table 2.3.

The common factor linking all these instructions and

distinguishing from all others, is the fact that they carry out two

20

• EXCHANGE INSTRUCTION

• TEST and SET INSTRUCTION

• LOCK INSTRUCTION

• INCREMENT AND DECREMENT INSTRUCTION

• COMPARE and SWAP INSTRUCTION

• FETCH and ADD INSTRUCTION

Table 2.3 - Atomic Instructions for Synchronization

actions atomically - reading and writing or reading and testing of a

single memory location with in one instruction cycle. The classical

form of READ/MODIFY/WRITE is a key characteristic of synchronizing

instructions. [Stone 1989; Raynal 1986]

2.2.1 Exchange Instruction : [Raynal 1986; Axford 1989]

The instruction exchange(r,m) exchanges the contents of register r

with those of memory location m. During execution of this

instruction, access to m is blocked for any instruction using m.

The mutual exclusion protocol (in Figure 2.1) uses a variable

shared by all processes - memory location bolt initialized to 1; it may

take values 0 or 1. Each process Pi uses a local variable key (a

processor register) initialized t� 0; it also only takes values 0 or

1. The protocol for process Pi is as follows -

A process will only be allowed to enter its critical section if

it finds boh set to 1. It will then exclude all other processes from

the critical section by setting bolt to 0. It rel�ases the critical

section by setting bolt to 1, thereby allowing a waiting process to

var bolt shared integer; {initially 1}

key integer; {initially 0}

repeat exchange(keyi , bolt);

until keyi = 1;

< CRITICAL SECTION >

exchange(keyi , bolt);

Figure 2.1 - Mutual Exclusion Using Exchange

Instruction

enter the critical section.

Note that only process P-1 ln its critical

21

section satisfies

keyi= 1, and that the following relation on variables key and bolt is

true at all times-

L keyi + bolt 1,

which is the invariant for this solution to the problem - it

ensures, given the range of values (integers 0 & 1), that not more

than one process 1s 1n its critical section; while if bolt equals 1, no

process is in its critical section.

Both 386™ and 486™ microprocessors provide this instruction

as an atomic instruction.

2.2.2 Test and Set Instruction : [Stone 1989; Raynal 1986]

The instruction testset(m) (Figure 2.2) carries out a series of

actions atomically - it tests the value of variable m· ' if the value

is 0, it replaces it by 1, otherwise it makes no change to the value

of m. It returns value of m 1n condition code 1n both cases.

The

Defmition: TestSet(mem_address);

{The [) operator fetches the contents of the specified

memory address location.}

begin condition_code := [mem_address];

if condition_code = 0 then [mem_address]

end; {Return Condition_code}

Figure 2.2 - Definition of Test-and-Set Instruction

mutual exclusion protocol implemented

22

1· '

using this

instruction requires a shared memory location initialized to 0. The

protocol for each process Pi is given 1n Figure 2.3.

The only process that can be in its critical section 1s the one

that found bolt set to 0.

2.2.3 Lock Instruction : [Raynal 1986]

The definition of this instruction 1s very similar to that of

testset. Here, however, the wait loop is an integral part of the

instruction itself.

The behavior of atomic lock and unlock instruction can be best

described as given in Figure 2.4. ,

var bolt : shared integer; {initially 0}

repeat condition_code .- Testset(bolt);

until condition_code 0;

< CRITICAL SECTION >

bolt 0;

Figure 2.3 - Mutual Exclusion Protocol Using TestSet

Defmition : lock(m);

begin

while m 1 do;

m 1· '

end;

Definition : unlock(m);

m +- 0;

Figure 2.4 - Definition of "Lock"

23

A separate "unlock" instruction need not be specially provided

as its effect can be obtained simply by m +- 0; each memory access

being mutually exclusive.

On a uniprocessor machine, the lock instruction will lead to

deadlock if interrupts are not permitted during execution of the

instruction. If m lS initially 1' the only way this instruction can

terminate lS for some other process to reset m to 0. On a

uniprocessor, the only way to start another process lS by an

interrupt, hence interrupts must be permitted during this

instruction, but only after the first statement, i.e., inside the

wait loop. This instruction 1s intended primarily for use 1n a

multiprocessing environment.

For a shared variable bolt initialized to 0, the mutual exclusion

protocol is given 1n Figure 2.5.

The lock instruction is sometimes called test-and-switch-branch (TSB).

If several processors are all waiting for the same m, only one

will be allowed to proceed when m returns to 0. But which one is

allowed depends

var bolt : shared integer; {initially 0}

lock(bolt);

< CRITICAL SECTION >

unJock(bolt);

Figure 2.5 - Mutual Exclusion Protocol

using "Lock"

upon the hardware implementation of

24

the lock

instruction it may be completely unpredictable in some machines

while a fixed priority order may operate 1n others.

2.2.4 Increment and Decrement Instructions [Stone 1989;Raynal 1986]

The effect of increment and decrement instructions, increment(r,m)

and decrement(r,m), 1 s to increment or decrement, respectively, the

contents of the memory location m by 1 and to load the result into

register r. Of course, this instruction 1s executed 1n one cycle

(i.e., is uninterruptible) to make it mutually exclusive.

The exclusion protocol, given 1n Figure 2.6, for process Pi is

implemented using the decrement(r,m) instruction alone (as shown). Here,

bolt 1s initialized to 1. Mutual exclusion can be implemented in an

var bolt : shared integer; {initially 1}

repeat dccrement(key,bolt);

until key = 0;

< CRITICAL SECTION >

bolt <--- 1· '

Figure 2.6 - Mutual Exclusion Protocol

using "Decrement"

25

entirely analogous way using instruction increment(key,bolt), but with

variable bolt initialized to -1.

In practice, the use of either of these instructions on

machines implementing them would have one major disadvantage - if a

process remains in possession of the critical section for a long

time, while others are trying to access it, variable bolt will grow

(decrease) indefinitely, when using increment (decrement) instruction.

Depending on the size of the memory location, this could lead to

major problems causing mutual exclusion to fail because of one of

these two reasons -

• overflow causing memory failure,

• variable returns to value 1 (-1) in case of decrement(increment) instruction 1.

The ICL 2900 series computers provide two similar indivisible

instructions, called "dect" and "tine" [Keedy 1985].

These two instructions together are more powerful than Test-and-Set

instruction and help in reducing the number of instructions required

for synchronization.(See §2.4.1)

1
This is more likely because of the way numbers are coded in memory words. For example, in case of

16-bits word size, (7FFF)16 is maximum positive number and (8000)16 is the maximum negative number.

Therefore, adding 1 to FFFF (= -1) would yield a 0 and so we can cycle back to value 1. This is a serious

matter and gives problems in case of theoretical verification of programs. Verification of program on one

machine may not be correct on another because of a different word-size.

26

2.2.5 Compare and Swap Instruction [Stone 1989; Hwang 1985]

The compare-and-swap instruction (Figure 2. 7) uses two registers,

one to hold an old value of the shared datum, and one to hold a new

value. The advantage of using this instruction is that it computes

the new value of the shared datum without locking it; it refetches

the shared datum, checks to see if its value is unchanged, and if so,

performs the update. If the value has changed, the current value is

loaded into the register that holds the old value. This instruction

is available on the IBM 370/168.

The compare-and-swap instruction is more powerful than the rest of

instructions shown before. But, it is useful in a limited number of

Definition: compare_and_swap(address,reg_old_ val,reg_new _val);

{The [] operator fetches the contents of the specified memory address.}

temp := [address];

NOTE : condition-code is returned and it can be used to check

if the update took place.

if temp = reg_ old_ val then

begin [address] := reg_new _val;

condition_code := 1;

end

else begin reg_ old_ val := temp;

condition_code := 0

end;

end { of definition };

Figure 2. 7 - Definition of "Compare and Swap"

27

important circumstances only, including the queueing and dequeueing

of tasks.

The mutual exclusion protocol using compare-and-swap instruction

for enqueueing an i tern, assuming no dequeue operations are allowed,

is given in Figure 2.8a. A general mutual exclusion solution using

compare-and-swap may be obtained by making compare-and-swap behave

like the exchange instruction. This is given in Figure 2.8b.

(item_address).Link .- nil; { Initialize items for insertion

at end of queue}

Reg_tail := tail; { Read tail to a register }

LOOP: compare_and_swap(tail,reg_ tail,item_address);

if condition_code = 0 then goto LOOP;

{ Loop back on failure of compare-and-swap }

(reg_tail).Link := item;

Figure 2.8 a - Mutual Exclusion Protocol Using "Compare and Swap"

for enqueueing an item

Initial Values:

(address) := 1;

reg_ old_ val := 0;

reg_new_val := 1;

Protocol for Pi :

Repeat

compare_and_swap(address,reg_old_ val,reg_new _val);

Until condition_code = 0;

< CRITICAL SECTION >

reg_ old_ val := 0;

Figure 2.8 b - General Mutual Exclusion Protocol

Using Compare_and_Swap

28

The reason compare-and-swap 1s more powerful is that the shared

datum 1s locked at the beginning of the instruction, updated during

the instruction, and unlocked at the end. This is in contrast to the

prior instructions, which lock the critical section and release the

critical section by manipulating a shared variable; the critical

section remains locked for a long time till its execution. The compare­

and-swap instruction, therefore, produces the maximum possible MSYPS

rate by reducing locked regions of a program to a single instruction.

2.2.6 Fetch and Add Instruction [Stone 1989; Gottlieb 1987]

Instruction fetch-and-add was proposed by Gottlieb for MIMD

(Multiple Instruction Multiple Data) shared memory machines using a

message switching network with the geometry of the Omega-network

[Lawrie 1975]. The NYU Ultracomputer [Gottlieb 1987] provides a

primitive fetch-and-add that permits every PE (processing element) to

read and write a shared memory location 1n one cycle. In particular,

simultaneous reads and writes directed at the same memory location

are done in a single cycle, and therefore, this primitive allows

synchronization of multiple processes in a parallel manner.

It is based on the serialization 'principle [Eswaran 1976], which states

that the effect of simultaneous actions by the PEs 1s as if the

actions had occurred 1n some unspecified serial order. Thus, for

example, a load simultaneous with two stores directed at the same

memory location will return either the original value or one of the

two stored values, possibly different from the value that the cell

finally comes to contain.

29

Fetch-and-add IS essentially an indivisible add to memory; its

format is F&A(V,e), where V is an integer variable and e is an

integer expression. This indivisible operation IS defined to return

the old value of V and to replace V by the sum V+e. If V is a shared

variable and many fetch-and-add operations simultaneously address V, the

effect of these operations IS exactly what it would be if they

occurred in some (unspecified) serial order, i.e., V is modified by

the appropriate total increment and each operation yields the

intermediate value of V corresponding to its position In this order.

The following example illustrates the semantics of fetch-and-add,

assuming V Is a shared variable. If PE. I processing element)

executes

F&A(V,�), and if PEj simultaneously executes

ANSj +- F&A(V,ej), and if V is not simultaneously updated by yet

another processor, then either

ANS. +- V + e-
J I

V +e.
J

ANS. +- V
J

and, in either case, the value of V becomes V + ei + ej.

An example which demonstrates the concurrent updation of shared

memory IS the concurrent execution of F&A(i,l) by several PEs. Here,

'i' is a shared variable used to index into a shared array. Each PE

obtains an index to a distinct array element, although one cannot

30

predict which element will be assigned to which PE, and (i' receives

the appropriate total increment.

[Gottlieb 1983] showed that fetch-and-add can be generalized to a

fetch-and-� operation that fetches the value in V and replaces it with

�(V,e). Of course, defining �(a,b)=a+b gives fetch-and-add. It is easy

to see that defining � to be a boolean OR function gives test-and-set and

defining � to be a second value projection function 7r2

7r2(a,b)=b) gives exchange (swap) . Therefore,

TestSet(V) is equivalent to

Exchange(L, V) is equivalent to

F&OR(V,TRUE), and

L ,_ F& 1r2(V,L).

(i.e.'

Thus, use of fetch-and-add operation allows many processes to perform

in a completely parallel manner. No locking and unlocking is

required, nor is a retry test and loop required as with compare-and-swap.

For multiprocessor systems with fewer processors, compare-and-swap

is found to be better approach, whereas fetch-and-add lS preferable as

the number of processors increases, since it can execute all the

requests for shared memory access-simultaneously. But whether or not

fetch-and-add is cost-effective, is still a matter of research interest

[Stone 1989] its implementation cost is high, and is limited to

simultaneous access of the same shared variable by all contending

processes.

31

2.3 PERFORMANCE CONSIDERATIONS

The MIPS rate of a system can be increased by adding more

processors, but MSYPS may not increase at all. The exclusive access

requirement limits the performance of most multiprocessor

architectures. When access to a shared variable is saturated, no

additional speed improvement is possible no matter how many more

processors are added to the system. Actually, the computation time

may increase by adding more processors, as more processors will be

active contending to access the shared data. The MSYPS bottleneck is

one of the sources of performance degradation.

The instructions exchange, test-and-set, lock, increment-and-decrement are

another source of performance degradation - processes attempting to

enter critical sections are busy accessing and testing global

variables. This is called busy wait or spin-lock. When a processor is

spinning, it actively consumes memory bandwidth that might otherwise

have been used more constructively. If the spinning period is too

long, a processor is not effectively utilized during that period and

therefore ends up wasting lots of computer cycles. Moreover, when

many processors are spinning, the contention causes additional cycles

of delay while a process is attempting to release the critical

section.

A number of methods have been proposed to reduce degradation

due to spin-locks. One of the methods is ai�ed at reducing the

request rate to memory and, hence, the degree of memory conflicts.

This is accomplished by delaying retesting of the global variable for

32

an interval T. Thus, for example, the mutual exclusion protocol using

test-and-set instruction canbe modified as given in Figure2.9.

var bolt shared integer; {initially 0}

begin

condition_code testset(bolt);

while condition_code op 0 do

begin PAUSE(T);

condition_code +- testset(bolt);

end;

end;

Figure 2.9 - Modification of protocol in Figure 2.3

Another method is directed at making available cycles to do

useful work. This can be accomplished by suspending the blocked

process and enqueueing its status on a queue associated with a global

variable; and then reassigning the processor to another ready-to-run

process in its local memory. When the processor is signaled that the

lock has been allocated, it resumes execution of the waiting process.

The resumption would be immediate ,if the process is not swapped out;

but in real-time systems a process may need to be resumed regardless

of whether or not it is swapped out. Though suspending and resuming

processes appears to be very efficient, the overheads involved with

enqueue and dequeue operations would be very high and may be greater

in cost than the cost of the cycles lost 1n spin-lock. Moreover,

33

enqueueing a task means that a processor has to access and update a

shared queue pointer. This access itself involves a lock/unlock of

some kind. If this lock is not granted, the problem of enqueueing a

task at one queue to enqueue it at another queue 1s encountered, and

this could repeat ad infinitum. Therefore, this chain of events has to be

broken by forcing a lock to be implemented by means of a spin-lock.

Now, this is the place where the instruction compare-and-swap comes very

handy; the shared queue can be accessed and updated using compare-and­

swap as queue would be locked for just one cycle, i.e., the time for

execution of compare-and-swap instruction. This implies that, for

efficient use, there ought to be at least two primitives built-in the

processor - one being compare-and-swap and another could be any from test­

and-set/ lock/ exchange/ increment & decrement.

Blocking a task could be worthwhile, but only if the s1ze of

the critical section is very large; otherwise it should be sufficient

to delay the retesting of global variable by putting a PAUSE

statement to avoid memory contention.

In terms of performance, task enqueueing tends to Increase

available MIPS by reassigning the idle processors to other useful

work; whereas spin-locks tend to decrease MIPS by wasting useful

machine cycles. Task enqueueing increases the number and length of

critical sections protected by locks. By increasing the number of

critical sections, the MSYPS demand is increased, and hence the

overall effect of task enqueueing 1s to decrease the maximum

potential MSYPS rate.

34

Another important issue is implementation of UNLOCK. The

unlocking process has to compete with the (N-1) processes spinning on

the shared variable, and the result of this may be a delay of time

proportional to N. Giving priority to a WRITE request over a

READ/MODIFY/WRITE request can avoid this problem; but it must be done

carefully as giving priority to writers may postpone readers forever

(starvation).

The distribution of locks in memory is also an important factor

in the performance of concurrent processes accessing lockable

resources. If all locks are stored 1n one memory module, the

contention for these locks can become excessive.

2.4 SEMAPHORES

Dijkstra was one of the first to appreciate the difficulties of

using low-level mechanisms for process synchronization, and this

prompted his development of semaphores [Dijkstra 1968; Dijkstra

1971]. Semaphores can be implemented using statements of the testset

type, and are generally offered as fundamental tools of system

kernels.

A semaphore S is a non-negative integer variable that can be

handled only by two primi tives2
P and V (defined in Figure 2.10),

besides initialization.

2P is the first letter of the Dutch word "passeren", which means "to pass"; V is the first letter of

"vrygeven", the Dutch word for "to release". Reflecting on the definitions of P and V, Oijkstra and his group

observed P might better stand for "prolagen" formed from the Dutch words 11proberen" (meaning "to try")

and "verlagen" (meaning "to decrease") and V for the Dutch word "verhogen" meaning "to increase".

35

The notation wait and signal is also used for P and V respectively

[Habermann 1972]. By definition, both P and V primitives are atomic,

i.e., only a single primitive may be executed on any one semaphore at

any one time.

P(S) S +- S - 1;

if S ::; 0 then wait in a queue associated with S endif;

V(S) : s s + 1;

if S ::; 0 then unblock one of the waiting processes endif;

Figure 2.10- Definition of P and V operations

In this definition of semaphores, processes that are blocked

within a P operation on a semaphore variable S are distinguished from

processes that are about to execute a P(S) but have not yet become

blocked. This distinction 1s important as the execution of a V(S)

will cause a blocked process to be selected 1n preference to a

process that is not blocked. However, all blocked processes are

treated equally as far as being selected is concerned - no effort is

made to distinguish processes that have been blocked for a short

length of time from those that hav� been blocked for a longer period.

The group of blocked processes at any instant of time can, therefore

be modeled as a set, from which a V operation chooses at random a

process to be signaled. Stark calls semaphores with this type of

blocking discipline blocked-set semaphores. He also defines two more types

of semaphores blocked-queue semaphores and weak semaphores. Blocked-queue

36

semaphores are like blocked-set semaphores except that the group of blocked

processes is maintained as a FIFO queue, instead of a set. In case of

a weak semaphore, a process attempting to perform a P operation on a

semaphore variable S executes a busy-waiting loop in which the value

of S is continually tested. As soon as S is discovered to have a

value greater than zero, it is decremented; the decrement and

immediately preceding test are performed as one indivisible step. A V

operation simply increments S in an indivisible step. A weak semaphore

is also called a busy-wait semaphore. [Stark 1982]

Each one of these, namely weak, blocked-set, and blocked-queue,

semaphores has a different starvation property. These properties can

easily be deduced from their definitions, and are given below -

• For a weak-semaphore, starvation is possible.

• For a blocked-set semaphore, starvation is possible, if the number of processes

contending for the critical section is greater than two.

• For a blocked-queue semaphore, starvation is impossible.

[Morris 1978] showed that starvation-free mutual exclusion with

blocked-set semaphores is possible, but the solution employs three

(instead of one) binary blocked-set semaphores. [Stark 1982] showed

that weak semaphores can be used to implement starvation-free mutual

exclusion if processes can retain and use information about previous

synchronization history to modify future synchronization protocols.

Dijkstra also distinguished between binary and counting (general)

semaphores [Dijkstra 1968; Di jkstra 1971 J. When the semaphore

variable S can take values 0 or 1 only, it is called a binary

37

semaphore, and if S takes any integer value, it is called a counting

(general) semaphore.

It is important to be able to distinguish between the various

definitions of semaphores because the correctness of a program will

depend on the exact definition used.

The Venus operating system [Liskov 1972] provides P and V

operations as the basic interprocess communication mechanism. [Lausen

1975] describes the internal structure of a semaphore based operating

system BOSS2, developed for RC4000.

2.4.1 Implementation of P k V Primitives

The binary semaphores allow only one process at a time within

an associated critical section. The mutual exclusion protocols given

In §2.2.1, §2.2.2, and §2.2.3 achieve this, though they do not adhere

to the definition of P and V.

The implementation (in Figure 2.11) of counting semaphores IS

more interesting, and binary semaphores easily follow from this

implementation by initializing the semaphore to 1.

Initialization : S = M , where M is the number of processes

which can enter critical section concurrently.

P(S) decrement(S);

if S < 0 then block the process and put m a queue;

V(S): increment(S);

if S < 0 then wakeup one of the waiting processes;

Figure 2.11 - An Implementation of Counting Semaphores

38

This implementation has the problem of underflow if a "huge"

number of processors execute P(S).

Here, the power of increment and decrement instructions becomes

clear. A semaphore i mpl em en ted with test-and-set permits only one process

to pass, whereas, the solution using increment and decrement instructions

permits up to M processes to pass concurrently.

Keedy et a/ proposed to supplement the semaphore integer variable

with a set, which can be thought of occupying one or more words

adjacent to the integer word. Each bit in the words for the set

represents the absence (0) or presence (1) of a member of the set;

this set can be used to indicate when the resource is free, or when

no resources are free, it may be used to identify the processes,

which are waiting on a resource. The MONADS operating system was

developed with microcoded set semaphores. [Keedy 1979]

[Hehner 1981] gave an implementation of P and V semaphore

operations, based on the local memory concept where no variable is

written by more than one process. This implementation technique is

very similar to Lamport's Bakery Algorithm [Lamport 1974], discussed

in §4.2.1.

2.4.2 Extensions of P and V Primitives

Semaphores with P and V primitives have been demonstrated to be

adequate and sufficient to solve a wide variety of synchronization

problems. However, solutions for synchronization problems involving

the scheduling of processes or classes of processes according to

39

different priorities, can be very cumbersome and difficult to

discover. The reason for this complexity is that while semaphores are

well sui ted to inhibiting other processes, they cannot directly be

used by one class of processes to inhibit other classes of processes.

As a consequence, new synchronization primitives and some extensions

of P and V primitives were proposed to facilitate solutions for

complex synchronization problems.

2.4.2.1 Parallel P and V (PV Multiple) :

[Patil 1971] presented a synchronization problem, Cigarette Smoker's

problem, and proved that the necessary synchronization cannot be

achieved with just P and V operations. He suggested a generalization

of P to include simultaneous operations over a finite number of

semaphores. That is,

P(S1, · · · ,Sn): ifS1 > OA···ASn

then S1:= s1 -1; · · · ; Sn:= Sn -1

else Suspend;

the execution decreases each of s1,s2,s3 by 1.

[Parnas 1975] however gave a realization of Cigarette Smoker's

problem by using an array of semaphores, and showed that Patil's

claim was wrong.

[Kosaraju 1973] presented a two producer two consumer

synchronization problem, and proved that it can not be realized with

either arrays of semaphores or multiple P and V primitives.

40

2.4.2.2 PP and VV Operations :

[Campbell 1973] introduced PP and VV operations which allow

several processes to execute a procedure simultaneously. Their

definition is given in Figure 2.12.

procedure PP(integer count;

semaphore mutex,sem);

begin

P(mutex);

count := count+1;

if count = 1 then P(sem);

V(mutex);

end;

procedure VV(integer count;

semaphore mutex,sem);

begin

P(mutex);

count := count-1;

if count = 1 then V(sem);

V(mutex);

end;

Figure 2.12- Defrnition of PP and VV operations

In the solution of readers-writers problem [Courtois 1971], the

code within PP and VV appears several times, and therefore can be

replaced easily by these two operations.

2.4.2.3 PV Chunk Operations :

[Vantilborgh 1972] defined the generalized operations P(n,s)

and V (n,s) based on the concept of "order" of a blocked (on a

semaphore) process. The definition of these operations is given in

Figure 2.13. Both P (n,s) and V (n,s) are indivisible operations.

From the definition, it follows that semaphore s IS always non-

negative.

P(n,s) : if n :S s then s := s-n

else add the performing process to the s-queue

(i.e., the queue associated with s) and store n; n

is called the order of the blocked process and n 2: 0.

V(n,s) : s := s+n;

The

remove from the s-queue a set of processes such that their

order sum is less than or equal to the current value of s and such

that there is no other set with this property strictly including

this set; the current value of s is then decreased by that sum.

Figure 2.13- Definition of P(n,s) and V(n,s) Operations

major changes with respect to the original p

41

and v

operations are that semaphore s can be updated by a value greater

than one, and V(n,s) can select a "maximal" set of processes, the

order sum of which is less than or equal to the semaphore value.

The "order" feature 1n this set of semaphores operations

distinguishes amongst different processes waiting at the same

semaphore and thus, makes it easier to find out solutions for complex

synchronization problems such as the reader-writer problem.

2.4.2.4 PRIORITY SEMAPHORES

[Freisleben 1989] presented 'a new set of primitives, called

priority semaphores, to solve general scheduling problems involving

arbitrary levels of priority. Usage of these new primitives is

described in terms of the reader-writer problem and then generalized by

presenting an algorithm which involves arbitrary levels of priority

with support for preemption and shared access by certain process

classes.

42

Here, two new primitives priority_ P and priority_ V are introduced.

The algorithm presented with these new primitives works, but the

primitives may be too big in definition to be defined at machine

level. Moreover, the implementation of these primitives would be

unlike that of semaphores, which could be implemented using one of

the indivisible instructions from §2.1.1 to §2.1.5.

Freisleben et a/ implemented these primitives 1n microcode for an

ICL PERQ system. This implementation revealed execution times of

about 8 microseconds for priority_ P and 5 microseconds for priority_ V

instruction.

2.4.2.5 Higher-level Constructs :

Although semaphores can be used to program almost any kind of

synchronization, P and V are rather unstructured primitives. It is

easy to make mistakes while using these P and V primitives and the

protection of critical sections is left to the programmer. Therefore,

structured concurrent programming notations like conditional critical region

[Hansen 1972a; Hansen 1972b], monitors [Hoare 1974; Howard 1976],

distributed processes [Hansen 1978] and path expressions [Campbell 1974] were

proposed for specifying synchronization.

2.5 CONCURRENT READING and VRITING

Mutual exclusion effectively creates a serialization and

therefore reduces parallelism. So the search for synchronization

solutions which do not implement mutual exclusion 1s consistently

43

growing. [Lamport 1977] and [Peterson 1983] presented algorithms

which show that it is possible to solve synchronization problems like

readers-writers without resorting to mutual exclusion. There is no

serialization at all in these algorithms, and therefore, if MSYPS 1s

a big bottleneck, it would be worth implementing synchronization

using one of these two solutions, and then better use of the power of

parallel computing would be achieved.

2.5.1 Lamport's Solution

[Lamport 1977] suggested a synchronization mechanism which

permits concurrent reading and writing. In all of the previous

solutions, the global variable/semaphore is a basic (atomic) unit of

data 1 n memory. However, a data i tern may be composed of several

atomic units. Lamport considered the problem of concurrent reading

and writing without introducing mutual exclusion for two reasons

(!)Mutual exclusion requires that a writer wait until all current

read operations are completed [Courtois 1971]. This may be

undesirable if the writer has higher priority than the readers.

(2)The concurrent reading and writing may be needed to implement

mutual exclusion.

His paper assumes that there are certain basic units of data

whose reading and writing are indivisible, i.e., hardware

automatically sequences concurrent operations to the basic unit of

data; a basic unit of data may just be a single bit. Lamport

considered the case of n readers and one writer and therefore, in his

algorithm mutual exclusion of writers is not provided; it needs to be

44

enforced using some other algorithm. A simple solution using

semaphore w is given in Figure 2.14.

P(W);

WRITER's CODE

V(W);

Figure 2.14- Mutual

exclusion of writers

Concepts Involved in Concurrent Reading and �riting :

Let V = d1d2 ... dm be an m-digit variable that assumes a
[0] [1] sequence of values V , V , ... such that i:::; j implies y[i]:::; vul, that

is, write of y[i] precedes the write of yUJ. Also, for k:Sl, let y[k,l]

denote both the value obtained by a read and the assertion that the

read saw versions y[k]
' y[k+l], ... , y[l] and no other versions. Since

reading may be concurrent with writing, reading v yields
[i l [i·] where dj J is a part of the version V J of V; and

If k = l, then the read obtained the consistent version

d�kJ ... d�] =V[kJ. It IS possible for the read to obtain a consistent

version even if k # l. For example, if d�5] = d�6], then a read could

obtain the value y[S,6] = d�5Jd�6l ... d�] = y[6J.

If a read of V obtai ned the value y[k,l], then

(i) The beginning of the read preceded the end of the write of y[k+lJ.

(ii) The end of the read followed the beginning of the write of y[IJ.

45

A read(write) of V is performed from left to right if for each j, the

read(write) of v.
J

IS COmpleted before the read of Vj+1 is begun.

Reading or writing from right to left is defined in the analogous way.

The following results proved in [Lamport 1977] form the basis

of the solution (given in §2.5.1.2) to the readers-writers problem -

• If V is always written from right to left, then a read from left to right obtains a
value V�l,ll] ... y�m•1ml with k1::; 11::; k2::; . . . km ::; lm. This result holds even when V is
not composed of digits; V could be made up of any basic data items then.

• If V is always written from right to left, then a read from left to right yields a
value y[k,l] ::; y[l]_ In other words, a left-to-right reading of V while V is changing from y[k]
to y[l] yields a value that will.not exceed y[IJ. If k = I, then V was not changed during the
reading process.

• If V is always written from left to right, then reading V from right to left yields a
value y[k,l] 2: y[l]_ In this case, it is assured that the value will be at least as large as the
stored value at the beginning of the read operation.

It is worth demonstrating these theorems using an example. For

the example, a digit is an atomic unit of data. If y[O] = 0999,

vl1l = 1000, vl2l = 1001, reading V may produce a value y[0,1l, y[0,2J, y[1,2l,

depending on the relative speed of the read and write operations, and

assuming that V actually changes during the reading :-

(writing from right to left and reading from left to right : result # 2)

y[0,1] = 0[o]9[0]9[o]0[1] or 0[o]9[0]0[1]0[1] or 0[0]0[1]0[1]0[1] .

In any case, y[O,l] ::; y[l] = 1000.

y[0,2] = o[O]g[O]g[O]l [2] or o[O]g[OJo[1]1 (2] or o[O]o[llo[l]1 (2] or o[O]g[OJo[2]1 [2] or

0(0]0[1]0[2]1 [2] or 0[0]0[2]0[2]1 [2] ;

Thus, y[0,2] ::; vl2l = 1001.

46

Similar examples can be used to demonstrate the third

result.

Concurrent Reading k Writing of Readers-Writers Problem

Using the results In §2.5.1.1, Lamport gave a solution (Figure

2.15) to the general readers-writers problem in the case of a single

writer.

This algorithm may be used if either (i)it is undesirable to

make the writer wait for a reader to finish reading, or (ii)the

probability of having to repeat a read is small enough so that it

does not pay to incur the overheads of a solution employing mutual

exclusion. The algorithm allows the possibility of a reader looping

forever (starving) if writing is done often enough.

WRITER READER

--+ --+
vl :> vl; repeat temp · - v2;

WRITE READ

+- +-
v2 · - vl; until vl .- temp;

1. ': >' means set greater than. Therefore, v 1 : > v 1 can be

replaced by v 1 := v 1 + 1.

2. The arrow directions on top of variables give the direction

of read and write. The variables without arrowheads

can be read or written in any direction at that place.

Figure 2.15- Lamport's Concurrent Reading and Writing Solution

to the "Readers-Writers" Problem

47

On the basis of the results given in §2.5.1.1, [Lamport 1990]

gives algorithms for implementing (without forcing mutual exclusion)

both a monotonic and a cyclic multiple-word clock that 1s updated by

one process and read by one or more other processes.

2.5.2 Peterson's Solution

[Peterson 1983] considered the more general Concurrent Reading

While Writing (CRWW) problem and provided algorithms which simulate

atomic reads or writes for a data i tern composed of several atomic

units so that the writer can modify the data while the readers can

obtain a correct, recent value.

[Lamport 1977] considered the concurrent reading and writing

problem where the writer is not allowed to wait, but the readers can

then be locked out. Lamport's solution (in Figure 2.15) depends on

the direction of read and write, and requires shared variables whose

values are unbounded (v1:>v1 statement sets v1 to a higher value than

before every time a write operation is performed). Peterson solved

the CRWW problem with higher level constructs with no direction

specification for read and write, and used a bounded number of small,

indivisible shared variables.

Peterson's solution is given in Figure 2.16. Here, the writer

is wait-free and readers may be locked out (starved). The writer uses

a flag wflag to signal when it is writing the buffer. A reader can test

this wflag before and after reading the buffer and determine if it

partially overlapped a write. The shared variable switch is inverted

Algorithm for the ith reader

T1: reading[i] := not writing[i];

T2: sfalg := wflag;

sswitch := switch;

< Read Buffer >;

if sflag or wflag or

switch of= sswitch then goto T2;

if reading[i]=writing[i] then goto T1;

Algorithm for the writer

wflag := true;

< Write Buffer >;

switch := not switch;

wflag := false;

for j := 1 step 1 until N do

if readingUJ of= writing[i] then

writing[i] := reading[i];

Figure 2.16- Peterson's CRWW Solution to the Readers-Writers Problem

48

after each write to detect a write that may have occurred entirely

during the read. The problem of two or more writes occurring during a

read is handled by a pair of variables, namely reading[i J and writing[i J,

per reader one variable for that reader and the other for the

writer.The reader initially sets them to be different, with the

writer setting them equal between writes. Hence, the reader, after

its read of the buffer, can determine if it overlapped part of a

write, an entire write, or two or more writes, In which case it

repeats. It is possible that readers may be locked out.

2.6 Summary :

This chapter contains low-level mechanisms which are provided

as primitives to the user. The mutual exclusion solutions can be

developed from these primitives without much difficulty. In the next

chapter, software solutions, which do not depend on any such

primitive, are given.

CHAPTER Ill

SHARED MEMORY HIGH-LEVEL SOLUTIONS

3.1 Introduction

The problem of how to implement mutual exclusion has been

studied extensively. Until 1962, the problem of whether or not

processes could be synchronized using just the standard operators of

an ordinary programming language had still to be resolved. The first

solution to this problem for two processes is credited to the Dutch

mathematician T. Dekker. Di jkstra extended this solution to N

processes, where N could take any value [Dijkstra 1965]. Since that

time numerous extensions have been devised to simplify the algorithm

[Doran 1980; Peterson 1981] or improve upon one of the issues of

concurrent programming [Knuth 1966; deBruijn 1967; Eisenberg 1972;

Lamport 1974; Burns 1982; Lamport 1987].

All of the software solutions 1n a centralized system use

shared variables to achieve mutual exclusion. They assume that the

memory hardware mechanism allows exclusive access to the storage

locations, that is, several simultaneous accesses (reading and/or

writing) to the same location are serialized 1n an order that is

unknown beforehand. None of these solutions makes use of instructions

that can perform uninterruptible read-modify-write operations because

an ordinary higher level language does not supply this operation in

any form as a primitive operation. But they do assume that if

processor A performs WRITE X followed by WRITE Y, then all other

49

50

processors will observe the VVRlTEs performed in this order. That is,

if processor A executes VVRlTE X and then VVRlTE Y, no other processor

that executes READY followed by READ X will see the new value of Y

and the old value of X. If it sees the old value of X, it will also

see the old value of Y because X is changed before Y 1s changed. This

assumption is totally reasonable, yet it need not be obeyed in a

multi-processor system unless it 1s specifically designed into the

architecture.

Any system that uses a multi-level switching network between

processors and memory can potentially violate this assumption and

then all of these software solutions will fail. In a switched network

multi-processor system, it is possible that VVRlTE X hits a hot-spot1

and is buffered, while VVRITE Y succeeds in reaching memory and

updating Y. In the meantime, another processor 1ssues READ Y and

READ X. Now, READ Y obtains the new value of Y and also, it lS

possible for READ X to avoid the hot-spot that 1s holding back VVRITE

X, and get the old value of X. [Stone 1989]

All of these software solutions also assume that processes do

not start 1n their critical sections and they do not halt outside of

their non-critical sections. These- are very reasonable assumptions,

as otherwise a process hal ted in its critical section would prevent

all other processes from entering the mutually exclusive critical

section, and starting straight away in the critical section (without

going through the entry (acquisition) protocol) would defeat the

1 A hot-spot is the region of memory that receives more than its share of access in a multi-processor

system.

51

whole purpose of achieving mutual exclusion through these solutions.

Although at present there are more efficient hardware solutions

(discussed in Chapter 2) to the problem of mutual exclusion, study of

these software solutions is important to realize the inherent

difficulty of the problem. Even if there are a dozen or so lines of

code in these software solutions, parallelism makes it difficult to

understand their behavior and analyze their correctness. To make

people realize that these solutions are far from trivial, Dijkstra in

his paper [Dijkstra 1965] asked the readers to try (before reading

his solution) writing a program to solve this problem. Hyman's

incorrect solution is a good citation [Hyman 1966].

The rest of this chapter contains an outline of each of the

software solutions (listed 1n Table 3.1) along with an informal

• Hyman's Incorrect Solution

• Dekker's Solution

• Doran and Thomas' Solution

• Dijkstra's Solution

• Knuth's Solution

• deBruijn's Solution

• Eisenberg and McGuire's Solution

• Peterson's Solution

• Burn's and Lamport's Improvements

Table 3.1 - List of Software Solutions

52

argument as its proof of preserving mutual exclusion and other

properties of the mutual exclusion problem.

3.2 Hyman's Incorrect S olution

[Hyman 1966] proposed a solution for two processes P0 and P1,

which compete for access to their critical sections. Knuth showed

that Hyman's solution did not preserve mutual exclusion for all

interleavings of the execution sequences of two processes [Knuth

1966].

Hyman's solution, consisting of twelve lines of ALGOL program,

contained 15 syntactic errors [Knuth 1966]. A structured version of

his solution is given in Figure 3.1.

Shared V ariablcs:

b : array(0 .. 1] of boolean; (initialized to true)

k : 0 .. 1; (can be either 0 or 1)

Protocol for P 0 Protocol for P 1

b(O] := false; b(1] := false;

while (k f:. 0) do while (k f:. 1) do

begin begin

while not b(1] do; while not b(O] do;

k := 0; k := 1;

end; end;

<CRITICAL SECTION> <CRITICAL SECTION>

b(O] := true; b(1] := true;

Figure 3.1- Hyman's Solution

53

For the counterexample, consider the case when k=O, and b(O]=b[1]=true.

Now, process PI sets b[1] to false and then finds b(O] to be true. P0

then sets b�] to false, finds k=O and enters its critical section. But

PI now sets k=1 and executes its critical section at the same time.

Thus, this solution does not achieve mutual exclusion.

3.3 Dekker's Algorithm : [Dijkstra 1968; Silberschatz 1988]

The first software solution to the problem of mutual exclusion

was given by Dekker, but was described and proved correct by

Dijkstra. The algorithm 1s given in Figure 3.2.

Shared Variables :

flag : array [0 .. 1] of boolean; (Initialized to false)

turn : 0 .. 1;

Note : i contains the process number and j is the other

process's number.

The Protocol for Pi is­

flag[i] := true;

while flag[j] do begin

if turn=j then begin

flag[i] := false;

while turn=j do;

flag[i] := true;

end;

end;

< CRITICAL SECTION >

turn := j;

flag[i] := false;

Figure 3.2 - Dekker's Algorithm

54

It is clear from the algorithm (in Figure 3.2) that a process

would enter its critical section only if other process's flag is set to

false and its own flag is set to true. If both Po and P1 set their

flag to true, turn decides who goes inside the critical section. So

mutual exclusion is preserved. Since turn can be updated only in the

postlude, the process with its "turn" will definitely enter the

critical section (if it wishes to do so) and hence the algorithm is

deadlock-free. However, there is a risk of starvation. It may happen

if p. 1 is a very fast repetitive process;

flag[j] =false, while p.
J

cannot set flag[j J

it may constantly find

to true because of p. 's 1

constant reading of the variable flag[j] and access to a memory

location is exclusive. Process Pj will definitely be able to enter

its critical section but only after it sets flag[j] to true. Therefore,

the "fairness" of this algorithm depends on the fairness of the

memory hardware. If the hardware is fair, Pj will get to set flag[j] to

true in a finite time and eventually enter its critical section.

3.4 Doran and Thomas' Algorithm :

Doran and Thomas presented two variants of Dekker's algorithm

as they thought Dekker's algorithm-to be difficult (with its nested

loops) to comprehend [Doran 1980]. The first variant, given in Figure

3.3, is a rephrasing of Dekker's algorithm, but it consists of two

loops in success1on rather than the nested loops of Dekker's

solution. And the second variant, given in Figure 3.4, has just one

loop.

Shared Variables :

boolean A_needs, B_needs;

integer turn;

Note: The construct "wait until <cond.>" is used as an

abbreviation for L: if not <cond.> then goto L.

Protocol for Process A Protocol for Process B

1. A_needs := true; B_needs := true;

2. if B_needs then begin if A_needs then begin

3. if turn= 'B' then begin if turn = 'A' then begin

4. A_needs := false; B_needs := false;

5. wait until turn = 'A'; wait until turn = 'B';

6. A_needs := true; B_needs := true;

7. end; end;

8. wait until not B_needs; wait until not A_needs;

9. end; end;

10. < CRITICAL SECTION > < CRITICAL SECTION >

11. turn := 'B'; turn:= 'A';

12. A_needs := false; B_needs := false;

13. < NON-CRITICAL SECTION > < NON-CRITICAL SECTION >

Figure 3.3- Doran and Thomas' Algorithm Version 1

55

Mutual exclusion 1n the first variant (Figure 3.3) is guaranteed by

each process setting a flag before entering its critical section and

then testing the other process's flag immediately before entry (in

lines 2 or/and 8). If one process is excluded because the other has

already entered its critical section, then the "turn" indicator

56

guarantees that the excluded process will be the next to enter. The

proofs for mutual exclusion and no deadlock are similar to the ones

given for Dekker's solution.

Both, Dekker's algorithm and this first variant, avoid deadlock

by having each process reset its critical section flag before

awaiting its turn. This is, in effect, like saying "after-you" to the

other process, but use of the critical section flag for this purpose

obscures the intended politeness [Doran 1980]. The second variant,

given in Figure 3.4, introduces an explicit pair of flags to stand

for "after-you". This second variant appears to mirror real life -

'if the other process is using something, or wants to, then say

"after-you" politely and wait until it has finished or until it also

says "after-you" in which case be well-mannered and do not go first

if you had the last turn' [Doran 1980].

In the second variant, the condition tested before entry to the

critical section is weaker than 1n Dekker's solution or the first

variant, since it is possible for one process, say A, to enter the

critical section while the critical section flag of the other

process, i.e. B_needs, is true. However, when this occurs, the

B_said_after_you flag guarantees that B is in its entry protocol and has

not entered the critical section. This second variant uses one wait

loop and two flags as compared to two wait loops and one flag in the

first variant.

The proofs for mutual exclusion and no deadlock for the second

variant (in Figure 3.4) are based on reductio ad absurdum. Assume that

Shared Variables :

boolean A_needs, B_needs, A_said_after_you, B_said_after_you;

integer turn;

Note : The construct "wait until <cond.>" is used as an

abbreviation for L: if not <cond.> then goto L.

Protocol for Process A Protocol for Process B

1. A_needs := true; B_needs := true;

2. if B_needs then begin if A_needs then begin

3. A_said_after_you :=true; B_said_after_you := true;

4. wait until not B_needs or wait until not A_needs or

5. {turn= 'A' and (turn= 'B' and

6. B_said_after _you); A_said_after _you);

7. A_said_after _you := false; B_said_after_you := false;

8. end; end;

9. < CRITICAL SECTION > < CRITICAL SECTION >

10. turn := 'B'; turn:= 'A';

11. A_needs := false; B_needs := false;

12. < NON-CRITICAL SECTION > < NON-CRITICAL SECTION >

Figure 3.4- Doran and Thomas' Algorithm Version 2

57

both processes are 1n their critical section at the same time. Both A

and B must get past lines 4-6 in the program to get to their critical

section. If A is in its critical section, it must have set A_ needs to

true at line 1, and found either B_needs false at line 4 or (turn= (A'

and B_said_after_you) true at lines 5 and 6 respectively. Since by

assumption B is also in its critical section, it must have set B_needs

58

true and found either A_needs false or (turn='B' and A_said_after_you)

true. Therefore, the only way A and B could have got into their

critical section at the same time is when A found �rn= 'A' when B was

in its critical section or attempting to enter it, and B found

turn= 'B' when A was in its critical section or attempting to enter

it. Since turn is a shared variable and is updated only In the exit

protocol, it can be either 'A' or 'B' and never both 'A' and 'B'.

This is a contradiction and thus mutual exclusion is achieved.

Deadlock cannot occur In this algorithm. If one of the

processes IS hal ted In its non-critical section, the other process

will find the halted process's n�� flag to be false and will then be

able to go past lines 2 to 8 in the protocol in Figure 3.4 and hence

access the critical section without any resistance from the hal ted

process. If both A and B are attempting to enter the critical section

at the same time, then �rn (being either 'A' or 'B') will decide who

goes into the critical section. Therefore, both 'A' and 'B' cannot be

blocked and hence there is no deadlock.

Both of these variants, like Dekker's, depend on the fairness

of the memory hardware to be "fair" to the processes competing to

enter the critical section.

3.5 Dijkstra1s Generalization to N Processes

[Dijkstra 1965] generalized Dekker's solution to the case of N

processes. Dijkstra's algorithm IS given in Figure 3.5.

This algorithm allows a process to enter its critical section

Shared Variables :

Boolean array b, c [1: N]; (initialized to true)

integer k;

Note: 1 :S k :S N. b[i] and c[i] are set by Pi only, where as all

other processes can only read them. Here, i contains the process

number, and N is the total number of processes.

Local Variables: integer j;

Protocol for Process Pi (1 :S i :S N) is-

LiO: b(i] := false;

Li1 : i f k of; i then

Li2: begin c[i] := true;

Li3: if b[k] then k := i;

goto Li1;

end

Li4: else begin

c[i] := false;

for j := 1 step 1 until N do

if (j of; i) and (not c[i]) then goto Li1;

end;

< CRITICAL SECTION >

c[i] := true;

b[i] := true;

< NON-CRITICAL SECTION >

goto LiO;

Figure 3.5 - Dijkstra's Solution

59

only when it finds all other c's true after having set its own c to

false. Mutual exclusion is achieved and to prove this, assume, to the

contrary, that two processes Pi and Pj are in their critical section

simultaneously. To enter critical section, Pi must set c[i] to false

60

and find c[j] to be true. On the other hand, Pj must have found c[i]

to be true after setting c[j] to false. This leads to a

contradiction, and hence the assumption that two processes are in

their critical section at the same time is wrong, and mutual

exclusion is achieved.

This solution also avoids "after you"-"after you" kind of

blocking (deadlock). If the process Pk is not trying to enter the

critical section, b[k] will be true and all the other processes

trying to enter the critical section will find (k f i) true. As a

result, several processes may execute the assignment statement in

Li3, 1.e. k :=i. After the first assignment, no new process can assign

a new value to k as they all will find b[k] false. Since k is a shared

variable, it will contain the number of the last process, say i, to

have had carried out the assignment (k := i), and will not change until

b[i] becomes true. Now, Pi will wait (in Li4) until all other

processes set their c true, and then p. 1 will enter its critical

section. Therefore, when none of the processes 1s 1n the critical

section, one process will be able to do so. Hence, there is no

deadlock.

If a number of processes aPe constantly competing for the

critical section, there is nothing to stop one of the processes from

always entering the critical section as this process can always be

the last one to modify k. So in this algorithm it is possible that a

process may get starved.

61

3.6 Knuth's Solution

[Knuth 1966] presented the first "fair" software solution to

the problem of mutual exclusion. By providing "fairness" In the

algorithm, a process trying to enter its critical section is

guaranteed to do so within a finite time. The bound is given by the

number of times that other processes may enter the critical section

between the moment a process submits a request to enter its own

critical section and the moment it actually does so [Knuth 1966].

After this algorithm, it became possible to measure the maximum

waiting time (in number of times) for a process to enter its critical

section. Knuth's algorithm appears in Figure 3.6.

This solution guarantees mutual exclusion for it is impossible

for two processes to go past the loop in line L2 in Figure 3.6. To

prove this, assume that two processes Pi and Pj are in the critical

section simultaneously. For Pi to be in the critical section, contro/[i]

must be equal to 2, and contro/[j] must be either 0 or 1 (i.e., not 2).

But, for p. to be in its critical section, contro/[j] must be 2. This
J

shows that the assumption that two processes may be in the critical

section simultaneously leads to a contradiction.

The algorithm also guarantees that the critical section is

reachable, that Is the system cannot be deadlocked; because if no

process enters the critical section, the value of k remains constant

and the first process (in the cyclic ordering

k, k- 1, ... , 1, N, N- 1, ... , k+ 1) attempting to enter will have no

restraint to do so.

Shared Variables :

integer array control [1:N);

integer k;

(initialized to 0)

(initialized to 0)

Note : Here, i contains the process number,

and N is the total number of processes.

Local Variables : integer j;

Protocol for Process P. is -
I

LO: control[i) := 1;

L1: for j := k step -1 until 1, N step -1 until 1 do

begin

if j = i then goto L2;

if control[j) :f. 0 then goto L1

end;

L2: control[i) := 2;

for j := N step -1 until 1 do

if (j :f. i) 1\ (control[i) = 2) then goto LO;

L3: k := i;

< CRITICAL SECTION >

k := if i = 1 then N else (i-1);

L4: control[i) := 0;

L5: < NON-CRITICAL SECTION >

goto LO;

Figure 3.6 - Knuth's Solution

62

Knuth's solution 1s "fair". Since the critical section is

reachable, a process Pi can be blocked only if there is at least one

other process p.
J

that gets to execute its critical section

arbitrarily often. But every time Pj gets through from LO to L4, with

control[i]:j:.O, it encounters the value of k (in L1) that must have been

set by a process P1 which follows i and precedes j in the cyclic

ordering N,N-1, ... ,2,1, i.e., i>l>j. Since by assumption p.
J

63

continually overtakes Pi, the effect allowing this to happen must

occur continually, i.e. P1 should always then enter the critical

section before Pj. There must therefore be a process Pk' that follows

Pi and preceded P1, that is i>k'>l, and so on. Since the number of

processes N is finite, Pi must at some stage enter its critical

section. Thus, the fairness of the solution is guaranteed.

Knuth claims that a process has to wait at most 2N-l_1 turns,

where N is the number of processes, and turn is defined as one process

using its critical section. Proof for this maximum delay function is

not trivial [deBruijn 1968]. In unfavorable circumstances, a process

Pi trying to enter its critical section may be positioned at L1, and

all other (N-1) processes at L2. The worst case (2N-l -1 turns) would be

when Pi misses all the momentary values of k which would enable it to

get through to L2. But after this worst case delay, the value of k

cannot be changed further by any other process and then Pi would be

able to enter its critical section.

The value of k is changed in L3 only, and a careful look shows

that the new value of k is computed using modulo N arithmetic. The

process numbers 1 .. N can be mapped to O .. N-1 and k can be thought to

be computed as k (k-1) mod N.- For the worst case computation,

assume Pj, such that j=(i+1) mod N, gets into the critical section

first, and therefore sets k= i after exiting the critical section.

Now, there are (N-2) processes (left at L2) which can potentially

change the value of k and assume that Pj joins Pi at L1. Again, assume

P1, such that l=(i+2) mod N=(j+1) mod N, enters the critical

section and therefore, changes k to j. Now, process Pj can cross the

64

barrier at L1 and join the other processes at L2. Assume this happens

and therefore there are again (N-2) processes at L2 with Pi at L1.

Further, assume that Pj again enters the critical section before all

the other waiting processes at L2. Now, there are (N-3) processes

left at L2 and possibly, P
j waiting at L1 with Pi and P1 at LO. Again

assume that Pm, such that m=(i+3) mod N=(j+2) mod N=(l+1) mod

N, is the next to enter the critical section, and therefore the new

value of k is l, after Pm exits its critical section. This new value

of k enables both Pj and P1 to cross L1, assuming Pi again misses the

chance. Now, assume that Pj goes inside the critical section first,

then P1, and then again Pj. Thus, by continuing the situations

unfavorable to Pi' it can be seen that Pj, such that j=(i+1) mod

N, enters the critical section (1 (enabled itself)+ 2° (enabled by P(j+1)modN) +

21 (enabled by P(j+2)modN)+···+ 2N-3 (enabled by P(j+N-2)modN=(i-1)mod N) times

20(2N-2- 1)
=1+ 2_1 =)2N-2 times. And then generalizing,

p(i+l)modN

p
(i+2)modN

p
(i+N-l)modN

enters critical section
enters critical section

enters critical section

2N·2 times
2N-3 times

2° times

The sum total of the number of times would give the maximum

delay. Therefore, maximum delay is =2N
- 2+ 2N

-3+ . . . + 2°

20 * (2N-l -1)

(2 _1)
(Sum of a Geometric Progression)

65

Knuth gave a simpler version of his N process algorithm to

solve the mutual exclusion problem in case of two processes [Knuth

1966]. It appears in Figure 3.7.

It is interesting to compare Knuth's two process solution

(Figure 3.7) with that of Dekker (Figure 3.2), and Doran and Thomas

(Figures 3.3 and 3.4). The latter solutions depend on the fairness of

the hardware, whereas Knuth's algorithm ensures fair behavior.

LO: control[i] := 1;

Ll: if k = i then goto L2;

if control[i] i- 0 then goto Ll;

L2: control[i] := 2;

if control[i] = 2 then goto LO;

L3: k := i;

< CRITICAL SECTION >

k :=j;

L4: control[i] := 0;

Figure 3.7- Knuth's Two Process Solution

3.7 deBruijn's Solution

Knuth's solution 1s not efficient, when N is very large.

[deBruijn 1967] proposed an improvement to Knuth's algorithm.

deBruijn suggested a very small change in Knuth's solution and

reduced the order of maximum number of waits from exponential to

polynomial time. The change is in line L3 of Knuth's algorithm, that

is the part of the protocol where k 1s updated. The change is given 1n

Figure 3.8 and the complete algorithm in Figure 3.9.

L3: k := i;

< CRITICAL SECTION >

k := if i = 1 then N else i- 1;

L3: < CRITICAL SECTION >

!!y if (control(k] = 0) V (k = i)

then k := if k = 1 then N else k- 1;

Figure 3.8 - Changes in Knuth's Solution

66

The modification made to Knuth's algorithm does not effect the

proofs of mutual exclusion and of critical section reachability; they

Shared Variables :

integer array control (1:N];

integer k;

(initialized to 0)

(initialized to 0)

Note: Here, i contains the process number ,

and N is the total number of processes.

Local Variables: integer j;

Protocol for Process Pi is-

LO: control(i] := 1;

L1: for j := k step -1 until 1, N step -1 until 1 do

begin

if j = i then goto L2;

if controlm #- 0 then goto L1

end;

L2: control(i] := 2;

for j := N step -1 until1 do

if (j ;f. i) 1\ (control [if= 2) then goto LO;

L3: < CRITICAL SECTION >

if (control(k] = 0) V (k = i) then

k := if i = 1 then N else (i-1);

L4: control(i] := 0;

L5: < NON-CRITICAL SECTION >

goto LO;

Figure 3.9- deBruijn's Solution

67

rema1n the same. The alterations however affect the "fairness" issue.

With these changes, if at a given moment k is i, and if controf[i] -:j;O,

then k does not change its value before process Pi has executed the

critical section. For the time k is constant, no process can enter the

critical section twice. Suppose p.
J

passes twice, then j -:j; k and

contro/[k] -:j; 0, for otherwise k would have changed the first time P j went

through the critical section. Further, Pk does not pass its critical

section before Pj does; otherwise the value of k would change before

P j gets its second turn. Therefore, contro/[k] -:j; 0 all the time between

the two turns of P j, and this means that P j cannot get to L2 after

its first turn. Now following the arguments similar to those in §3.6,

the worst case delay can be computed. Therefore, if a process

attempts to enter the critical section, then in the worst case -

p(i+l)modN

p(i+2)modN

p (i+N-l)modN

can enter the critical section

can enter the critical section

can enter the critical section

before Pi gets inside the critical section.

(N- 1) times,

(N - 2) times,

... , and

1 time,

Therefore, max1mum delay =(N-l)+(N-2)+ ... +1

N-1
I::CN-j)
j=l

p. 1

deBruijn's algorithm highlights the difficulties encountered in

writing efficient concurrent programs a small change in the

algorithm can do wonders!

68

3.8 Eisenberg and McGuire's Algorithm

After deBruijn's optimization over Knuth's solution, [Eisenberg

1972] proposed a solution which further optimizes the maximum delay

by guaranteeing it to be no more than (N-1) turns, 1.e. a linear

function over deBruijn's quadratic. Eisenberg and McGuire's algorithm

1s given in Figure 3.10.

The solution in Figure 3.10 ensures that no two processes are

simultaneously processing between their statements L3 and L6 for the

same reason as in Knuth's algorithm, and hence mutual exclusion is

achieved. Also, the algorithm is deadlock-free, for if no process has

yet passed the statement L3 before entering the critical section, the

value of k will be constant and the first contending process in the

cyclic ordering (k,k+1, ... ,N,1, ... ,k-1) will meet no resistance and

enter the critical section.

The algorithm is "fair" and guarantees that no process will be

starved. When a process exits its critical section, it designates the

first contending process (in the cyclic ordering) as its unique

successor by setting k to that process's identification number. This

also ensures that, 1n the worst case, where all processes are

attempting to enter the critical ·section, the maximum wait for

process Pi (with k=i+1) to enter the critical section 1s limited to

(N -1)turns. Since the delay function is linear, a process may

overtake another at most once.

Shared Variables :

integer array control (1:N] ;

integer k;

(initialized to 0)

Note : 1 :S k :S N. Each element of control is either 0, 1, or 2.

Here, i contains the process number and N is the total number

of processes.

Local Variables : integer j;

Protocol for process Pi is -

LO: control (i] := 1;

L1: for j := k step 1 until N, 1 step 1 until k do

begin

if j = i then goto L2;

if control[i] f 0 then goto L1

end;

L2: control (i] := 2;

for j := 1 step 1 until N do

if (j f i) 1\ (control[i] = 2) then goto LO;

L3: if (control (k] f 0) 1\ (k f i) then goto LO;

L4: k := i;

< CRITICAL SECTION >

L5: for j := k step 1 until N, 1 step 1 until k do

if (j f k) 1\ (control[i] f 0) then

begin

k := j;

goto L6

end;

L6: control(i] := 0;

L7: remainder of cycle;

goto LO;

Figure 3.10- Eisenberg and McGuire's Solution

69

70

3.9 Peterson's Solution

[Peterson 1981] presented a very simple solution to the problem

of mutual exclusion for two processes and claimed to put an end to

the "myth" that the two process mutual exclusion problem requires

complex solutions with complex proofs.

Peterson gave two primitive algorithms (given in Figures 3.11

and 3.12), which preserve mutual exclusion but suffer from deadlock,

and then derived the working algorithm (Figure 3.13) from these two

primitive algorithms.

Shared Variables :

turn : integer;

Note : The construct wait until <cond.> means that wait

until condition is true and can be replaced by the standard

construct repeat until <cond.>.

Protocol for Process 1 Protocol for Process 2

turn:= 1; turn:= 2;

wait until (turn= 2); wait until (turn= 1);

< CRITICAL SECTION > < CRITICAL SECTION >

Figure 3.11 - Peterson's First Primitive Algorithm

The first primitive algorithm (Figure 3.11) suffers from

deadlock only when one of the processes does not cyclically try for

the critical section. The second primitive algorithm (Figure 3.12)

has deadlock only when both the processes are attempting to get into

their critical section.

Shared Variables :

Q1, Q2 : boolean;

Note : The construct wait until <cond.> means that wait

until condition is true and can be replaced by the standard

construct repeat until <cond.>.

Protocol for Process 1 Protocol for Process 2

Q1 :=true; Q2 :=true;

wait until not Q2; wait until not Q1;

< CRITICAL SECTION > < CRITICAL SECTION >

Q1 := false; Q2 :=false;

Figure 3.12- Peterson's Second Primitive Algorithm

71

To prove that the algorithm in Figure 3.13 achieves mutual exclusion,

assume that both processes Pl and P2 are in their critical section at

the same time. That would then mean Ql=Q2=true. Now, the compound

condition 1n the wait loop could not be true for both the

Shared Variables :

Q1, Q2 boolean;

turn : integer;

Note : The construct wait until <cond.> means that wait

until condition is true and can be replaced by the standard

construct repeat until <cond.>.
'

Protocol for Process 1 Protocol for Process 2

Q1 :=true; Q2 :=true;

turn:= 1; turn:= 2;

wait until (not Q2) or (turn= 2); wait until (not Q1) or (turn= 1);

< CRITICAL SECTION > < CRITICAL SECTION >

Q1 :=false; Q2 :=false;

Figure 3.13- Peterson's Solution to Two Process Mutual Exclusion Problem

72

processes at the same time, as the shared variable turn would be

favorable to only one of the processes and the other condition (notQl

for P1 and not Q2 for P2) would have failed for both. It implies that

one process first passed its test and therefore entered its critical

section. Now the second process can enter its critical section only

when it finds turn favorable to it, but it can only make turn

unfavorable to itself. Therefore the second process is definite to

fail the test and thus mutual exclusion is preserved.

Deadlock is also not possible for the algorithm in Figure 3.13.

To prove this, consider P1 blocked 1n its wait loop forever. After a

finite amount of time, P2 will be doing one of three things - not

trying to enter its critical section, waiting 1n its protocol for

entry to critical section, or using the critical section again and

again. In the first case, P1 finds that Q2 is false and then it may

proceed to enter its critical section. The second case 1s impossible

as turn must be either 1 or 2, and this will make the condition true

for one of the processes to proceed. In the third case, when P2

attempts to use its critical section again, it will set turn to 2

(unfavorable to itself), and therefore permit P1 to proceed. The

third case demonstrates that this algorithm guarantees fairness also.

Peterson thought that there was no need of a formal proof for

this simple algorithm and opined that "possibly the prevalent

attitude on formal correctness arguments is based on poorly

structured algorithms and good parallel programs are not really that

hard to understand". In fact, he found Di jkstra' s formal proof of

mutual exclusion for the "simple" algorithm ln Figure 3.13

73

"unnaturally complex".

Peterson also showed that his two process solution could easily

be generalized to N processes. The N process solution, given in

Figure 3.14, IS formed by using the two process solution repeatedly

(N - 1) times to eliminate at least one process each time until only

one remains. In this algorithm, variable Q has been generalized to

take N values, ranging from 0 to N-1. The value 0 plays the same role

as "false" does for two process solution, that is to convey that the

process is not in its critical section. A process's entry to the

critical section, expressed by "true" in two process solution, is now

specified with respect to the other processes.

Shared Variables :

Q

turn

array [l ..n] of integer;

array [l..n-1] of integer;

Local Variables: i, n, j : integer;

(initially 0)

(initially 1)

Note : The construct wait until <cond.> means that wait

until condition is true and can be replaced by the standard

construct repeat until <cond.>. Here, i contains the process

number and N is the total number of processes.

Protocol for Pi is -

for j := 1 to N-1 do

begin

Q[i] :=j;

turn[i] := i;

wait until ('v'k =/= i, Q[k] < j) V (turn[i] =/= i)

end;

< CRITICAL SECTION >

Q[i] := 0;

Figure 3.14- Peterson's Solution toN Process Mutual Exclusion

74

3.10 Further Improvements :

The mutual exclusion algorithms in §3.6 to §3.9 are improvements

over Dijkstra's solution in terms of either simplicity or "fairness".

All of these algorithms do not pay any attention to the number of

shared memory variables used and the number of reads and writes to

the shared memory. These aspects of concurrent programming cannot be

overlooked if the shared memory size and the execution time of the

mutual algorithm is as critical as providing mutual exclusion.

3.10.1 Burn's Improvements

Burns proved that any protocol (based on exclusive read and

write access to the shared memory) providing deadlock-free mutual

exclusion of N processes must use at least N + 1 shared variables, N of

s1ze 2 (i.e., contains only one of the two values, like boolean

variables) and one whose size must be at least N (i.e., contains one

out of N different values) [Raynal 1986]. Burns also studied mutual

exclusion solutions based on test-and-set operations and gave upper

and lower limits on the amount of shared memory, measured by counting

the number of distinct values which it can assume. Table 3.2 contains

Mutual Exclusion Algorithms Upper-limit Lower-limit

Values Values

Deadlock-free 2 2

Deadlock-free and Starvation-free lN/2j+9 �+!

Deadlock-free and Bounded waiting N +3 N + 1

Table 3.2 - Burn's results for the amount of shared memory used

75

these limits. Based on these results, he developed mutual exclusion

solutions which use the optimal number of shared values [Burns 1982].

3.10.2 Lamport's Improvement :

A great deal of effort was spent in developing algorithms (in

§3. 6 to §3. 9) that do not allow a process to wait longer than it

"should" while other processes are entering and leaving the critical

section. However, the current belief among operating system designers

is that contention for a critical section is rare in a well-designed

system; most of the time, a process will be able to enter without

having to wait. Even an algorithm that allows individual processes to

starve, while other processes keep on entering the critical section,

is considered to be acceptable, since such situations are unlikely to

occur. [Lamport 1987]

Lamport judged the solutions by how fast they are in the

absence of contention. With modern high-speed processors, an

operation that accesses shared memory takes much more time than one

that can be performed locally. Hence, the number of reads and writes

to shared memory is a good measure of an algorithm's execution time.

All the published N process solutions require a process to

execute O(N) operations to shared memory in the absence of contention

[Lamport 1987]. Lamport presented an N process mutual exclusion

solution that does only 5 writes and 2 reads of shared memory.

Lamport gave a step-by-step description of his solution to

support his claim of minimum sequence of memory accesses needed to

76

guarantee mutual exclusion. He claimed that the best possible

algorithm is one in which the sequence of reads and writes is given

by the sequence -

write x, ready, write y, read x, critical section, write y.

The arguments for this sequence run like this -

•There is no point making the first operation 1n the

sequence a read, since all processes could execute the read and find

the initial value before any process executes its next step. So the

first operation should be a write of some variable x.

•It makes no sense for the second operation in the sequence

to be another write to x. There is also no reason to make it a write

to another variable y, since the two successive writes could be

replaced by a single write to a longer word. Therefore, the second

operation 1n the sequence should be a read. This operation should not

be a read of x because the second operation of each process could be

executed immediately after its first operation, with no intervening

operations from other processes, in which case every process reads

exactly what it had just written and obtains no new information.

Therefore, each process must perform a write to x followed by a read

of another variable y.

•There is no reason to read a variable that is not written

or write a variable that is not read. So the sequence must also

contain a read of x and a write of y.

•The last operation performed, before entering the critical

section in the absence of contention, should not be a write because

that write could not help the process decide whether or not to enter

77

the critical section. Therefore, the best possible algorithm, before

entering the critical section, has the following sequence of memory

accesses -

write x, ready, write y, read x.

The algorithm based on these arguments is given in Figure 3.15.

Here, each process first writes x, then reads y. If it finds that y

has its initial value, then it writes y and reads x. If it finds that

x has the value it wrote in the first operation, then it enters the

critical section.

Shared V ariablcs :

x, y : integer; (y = 0 initially)

Note : 1. Atomic operations are enclosed by angular brackets.

2. The 'delay' in the second then clause must be long enough so that,

if another process j read y equal to 0 in the first if before i set y = i,

then j will either enter the second then clause or else execute the

critical section and reset y to 0 before i finishes executing the delay.

Protocol for Pi is -

start: < x := i >;

if < y =P 0 > then goto start 6;

< y := i >;

if < x =P i > then delay;

if < y =P i > then goto start fi fi;

CRITICAL SECTION

< y := 0 >;

Figure 3.15- Lamport's Algorithm for N Process Mutual Exclusion with

3 Writes and 2 Reads to the shared memory

78

•After executing its critical section, a process must

execute at least one write operation to indicate that the critical

section is vacant, so processes entering later realize there is no

contention. It cannot be done with a write of x, since every process

writes x as the first access to shared memory when performing the

protocol. Therefore, a process must write y, resetting y to its

initial value after exiting the critical section.

The algorithm 1n Figure 3.15 requires not only an upper bound

Shared Variables :

x, y: integer; (y = 0 initially)

b : array [l..N] of boolean; (initially false)

Note : 1. Atomic operations are enclosed by angular brackets.

2. await cond. is an abbreviation for while not cond. do;

Protocol for Pi is -

start: < b[i] := true >;

<X:= j >;

if< y :f:- 0 > then < b[i] := false;

await < y = 0>;

goto start fi;

< y := i >;

if< x :/=- i > then < b[i] := false >;

for j := 1 toN do a�ait < not b[i] > od;

if< y :f:- i > then await < y = 0 >;

goto start fi fi;

CRITICAL SECTION

< y := 0 >;

< b[i] := false >;

Figure 3.16- Lamport's Algorithm for N Process Mutual Exclusion

with 5 writes and 2 Reads to the shared memory

79

on the time required to perform an individual operation such as

memory reference, but also on the time needed to execute the critical

section. In most situations, an algorithm that does not require this

upper bound is needed. Therefore, the algorithm in Figure 3.15 is not

acceptable. Lamport introduced a new variable b[i] to improve upon the

algorithm in Figure 3.15. This new variable indicates when a process

is inside its critical section and therefore removes the knowledge of

how long a process can stay 1n its critical section. Now, a process

must set this new variable to indicate that it 1s 1n its critical

section, and must reset that variable to indicate that it has left

the critical section. But, it brings two additional memory writes to

the shared memory. This optimal algorithm, in Figure 3.16, performs

only 5 writes and 2 reads to the shared memory to achieve mutual

exclusion for N processes.

Both the algorithms (Figures 3.15 and 3.16) guarantee deadlock­

free mutual exclusion, but allow starvation of individual processes.

3.11 Summary :

The software solutions 1n this chapter depend on the

availability of shared memory to implement mutual exclusion. In

distributed systems, there is no common memory. Therefore, these

solutions will not work. In the next chapter, solutions which use

message-passing primitives are given to solve the mutual exclusion

problem in distributed systems.

4.1 Introduction

CHAPTER IV

DISTRIBUTED SOLUTIONS

A distributed system is a collection of independent processors

(referred to as sites or nodes) which are spatially separated and which

communicate with one another only by exchanging messages [Lamport

1978]. Independent processors have neither a shared memory nor a

common clock. Instead, each processor has its own local memory to

which it has the sole access. [Enslow 1978] characterized a

distributed system to contain the following five components a

multiplicity of resources, a physical distribution of the resources,

a high-level operating system, system transparency, and cooperative

autonomy. [Silberschatz 1991] gave four major reasons for building

distributed systems resource sharing, computation speedup,

reliability, and communication.

An important characteristic of distributed systems 1s that the

message transmission delay is not negligible, compared to the time

between events in a single process [Lamport 1978]. In the following

discussion, the term 'process' means a process on a site and the term

'processes' is used to mean processes-on different sites.

A distributed system can have any topology of a physical

communication network, e.g. fully connected, partially connected,

tree, ring, bus, etc. [Tanenbaum 1988]. The only assumption made is

that there is a logical connection between any two sites and a

80

81

routing mechanism exists that delivers messages between sites. The

mutual exclusion algorithms In a distributed system may logically

organize the sites to form a structure such as tree, ring, etc.

Each site is assigned a unique identifier to distinguish it

from other sites and almost all distributed algorithms assume this as

a precondition. The task of assigning unique identifiers is referred

to as the naming problem [Beauquier 1990]. One method of naming is to

have a token circulating in the network that has an integer variable

whose value at start is 1. A site chooses the value of this integer

variable as its unique name (identifier) on the token's first arrival

at that site, and it Increases the value by 1 on the token's first

departure. Thus each site gets a unique identifier even if it does

not know about the entire network. However, this method depends on

the fact that each site transmits the token and increases its value

correctly. If a given site decreases the value of the token instead

of increasing it, two sites would receive the same identifier. Also,

a failed site may decide to keep the token forever, and then this

naming method would fail. [Lamport 1982] referred to the problem of

"bad" sites performing anything (for example, sending false messages

or not sending messages at all) as the Byzantine Generals Problem.

[Beauquier 1990] studied the naming problem in distributed systems in

which some sites can have byzantine faulty behavior. All of the

mutual exclusion algorithms in this chapter assume that sites do not

malfunction on failing, that is, there are no byzantine failures.

The underlying network IS also assumed to be reliable. The

network protocols are responsible for error-free and loss-free

delivery of messages.

Two primitives, namely send and receive,

82

are defined for

interprocess communication. All processes in a distributed system

exchange information using these two primitives. Since a message can

be received only after it has been sent, message passing also forms

the basis of process synchronization. In fact, 'send' and 'receive'

can be considered as V and P semaphore operations on the number of

queued messages [Andrews 1991b].

Interprocess communication can be synchronous or asynchronous. With

synchronous message passing, a process sending a message is delayed

until the other process is ready to receive the message. Asynchronous

message passing, on the other hand, does not cause the sending

process to block, rather it allows the process to continue executing

while a message 1s being sent on its behalf. Since synchronous

communication may decrease the overall throughput of the system,

asynchronous communication is a preferred choice [Schneider 1982].

But with asynchronous message passing, senders can get far ahead of

receivers, and therefore receivers can never be sure of obtaining the

current state of the sending process - a sender process may change

its state by the time the receiver- receives the message containing

sender's state information. Consequently, in a distributed system, no

single process can have a complete knowledge of the global state of

the system [Chandy 1985].

The problem of mutual exclusion arises 1n distributed systems

like it does 1n centralized shared memory systems. That is,

83

concurrent access to a physically or logically shared resource by

several sites needs to be serialized. But it is more complex to

implement mutual exclusion In distributed systems because of the lack

of knowledge about the global state of the system (which is not a

problem in centralized systems as it can be obtained from the shared

memory), lack of a common physical clock and unpredictable message

delays.

One of the inherent advantages of a distributed system is failure­

�k�n� [Sanders 1987], since when one site fails, others can continue

operating. When a site fails, or when the communication subsystem

(links between sites) fails, a failure-tolerant mutual exclusion

algorithm should be able to adapt to the new conditions so that it

continues to operate with the remaining processors and still maintain

mutual exclusion. [Spector 1984] describes how the first launch of

the space shuttle was delayed because of a fault In the

synchronization between the main computer and the back-up computer.

Distributed solutions tend to be more fault-tolerant than centralized

systems, because they do not depend on any global variables [Raynal

1986].

The shared memory mutual exclusion solutions in Chapters II and

III assume that access to a shared memory location is mutually

exclusive. Since these solutions assume a lower level hardware

solution (conflicting memory access arbiter) to the problem they are

solving, Lamport found them unsatisfactory [Lamport 1986a]. He

defined interprocess communication based on a communication variable

that does not assume any lower-level mutual exclusion [Lamport

84

1986a], and then gave a mutual exclusion solution using this

communication variable [Lamport 1986b]. The distributed mutual

exclusion solutions in this chapter do not assume any lower-level

mutual exclusion and can be used to achieve mutual exclusion in

centralized systems which provide 'send' and 'receive' primitives.

[Kessels 1982] showed that the shared modifiable variables of

Peterson's algorithm (see §3.9) could be distributed to form a

distributed mutual exclusion algorithm which does not require an

arbiter on a lower-level.

The mutual exclusion problem in distributed systems can be

solved by two kinds of mechanisms centralized control or distributed

(decentralized) control. In centralized control mechanisms, all requests to

use the critical section pass through a single site which is

responsible for granting access to the critical section. In a

distributed control mechanism, each site in the distributed system is

equally responsible for controlling mutual exclusion. The primary

disadvantages of a centralized control mutual exclusion algorithm are

that the central site becomes a source of contention and when the

central site is "down" or inaccessible because of communication

network failure, the critical sec�ion cannot be reached by any

process. On the other hand, distributed control, in principle, allows

at least one process to access the critical section even when one or

more sites are inaccessible. Creation of a mutual exclusion solution

in a computer network under distributed control is not trivial

[Maekawa 1985]. This chapter describes only distributed control

algorithms. Centralized control algorithms can be derived from some

85

of these as a special case.

The distributed mutual exclusion algorithms can be classified

into two categories one which does not use message passing

primitives explicitly (§4.2) and the other that uses 'send' and

'receive' primitives explicitly (§4.3).

A distributed mutual exclusion algorithm is evaluated in terms

of the number of messages exchanged, the number of information bits

exchanged, delay and resilience to failure-tolerance [Suzuki 1985].

All solutions in this chapter implement mutual exclusion at the

node level. If there is more than one process within a site trying to

access the shared resource, then it is assumed that these intra-site

conflicts are resolved using one of the techniques given in Chapters

II and III.

4.2 Solutions �ithout Explicit Usage of Message Passing Primitives

The solutions 1n this section achieve mutual exclusion by

having a site, which is trying to access critical section, obtain

state information from other sites. The state information of a site

corresponds to the values of the variables used for serializing

access to the shared resource. And the act of obtaining a site's (say

A's) state information by another site (say B) involves transmission

of a message from B to A requesting the value of A's variables,

followed by B's receipt of a message from A containing the values.

These algorithms are given using high-level abstraction and

therefore do not use 'send' and 'receive' primitives explicitly in

86

the solution. Instead, these algorithms have 'read variable'

statements to obtain the state information. In a distributed system,

'read variable' statement is implemented using 'send' and 'receive'

primitives. This abstraction hides the implementation details and

makes the algorithm easier to understand.

Another way to look at these solutions is that a process can

both read from and write to its local memory, but can only read from

other process's local memory. So there is no global variable, like

centralized systems, which is written by more than one process.

Multiprocessor systems offer read only access to a processor's

memory by another processor. So the algorithms in this section may be

implemented on a multiprocessor system without using message passing

primitives.

4.2.1 Lamport's Bakery Algorithm : [Lamport 1974]

The first distributed algorithm for implementing mutual

exclusion was proposed by Lamport. His algorithm is based upon one

commonly used in bakeries, in which a customer receives a number upon

entering the store and the holder of the lowest number is the next

one served. In the algorithm in Figure 4.1, each process chooses its

own number. The sites are named 1,2, ... ,N. So, if two processes choose

the same number, then the process with lower identification number

goes first.

Two important features of this algorithm are that it allows for

87

a bounded number of process failures and restarts, and the

possibility of read errors occurring during an overlapped read and

write of the same (shared) memory location.

In the algorithm in Figure 4.1, the statement labeled 12

appears to be redundant at first glance. But it is important to have

State Variables:

integer array choosing[l..NJ, number[l..N]; {Both initially 0}

Note: 1. The pair (choose[i],number[i]) belongs to the process at site i.

Pi may read and write these variables, but Pj, such that j :/= i, may

only read them.

2. The relation "less than" on ordered pairs of integers is defined

by (a,b) < (c,d) if a< c, or if a= c and b <d.

Local Variable at each site: integer j;

Protocol for Pi is -

begin

11: choosing[i] := 1;

number[i] := 1 + maximum(number[1], ... , number[N]);

choosing[i] := 0;

for j := 1 step 1 until N do

begin

12: if choosing[i] :j= 0 then goto 12;

L3: if number[i] :j= 0 and (number[i]j) < (number[i],i) then goto L3;

end;

< CRITICAL SECTION >

number[i] := 0;

< NONCRITICAL SECTION >

goto 11;

end;

Figure 4.1- Lamport's Bakery Algorithm

88

it there to preserve mutual exclusion. Assume that a process Pi is in

the process of selecting a ticket (i.e. choosing[i J = 1) and another

process P j, such that j > i, has selected the ticket and is in the

process of finding out if it has the lowest ticket. If L2 were not

there, it is possible that Pj would find number[i] =0 and enter the

critical section. Now if Pi selects a ticket whose value is same as

that of Pj, Pi would find that it has the lowest ticket (since i < j),

and therefore enter the critical section at the same time. Thus, L2

makes a process wait if there is another process selecting a value

for its ticket at the same time. Any process entering at the time,

when other processes have already chosen a value, would select a

higher value for its ticket and would cause no danger to the mutual

exclusion property of the algorithm.

This algorithm achieves mutual exclusion as can be shown by

proving that if process Pi is in its critical section, while another

process Pk (k,Ci) is in the 'for' loop (i.e., Pk has calculated

number[k]), then the assertion (number[i],i) < (number[k],k) is true

and consequently Pk cannot go past L3. The proof given below uses

times from Pi's viewpoint.

Let tL2 be the time at which Pi' read choosing[k] during its last

execution of L2 for j = k, and let tL3 be the time at which Pi began

its last execution of L3 for j = k. So tL2 < tL3• Let te be the time

just after Pk set choosing[k] to 1, tw the time at which it finished

writing the value of number[k], and tc the time just after it reset

choosing[k] to 0. Then te < tw < tc. Since choosing[k] is equal to zero

at time tL2, then either tL2<te or tc<tL2• The first case, tL2<te,

89

implies that number[k] :0:: 1 + number[i J, which in turn implies that

number[i J < number[k], and so the assertion (number[i],i) <

(number[k],k) is true. The second case, implies that

tw < tc < tL2 < tL3, which in turn implies that tw < tL3• This means that

at p.
1

read the current value of number[k]. Since p.
1

did not

execute L3 again for j = k, it must have found

(number[i],i) < (number[k],k). Hence at most one process can be in its

critical section at any given time.

The protocol also avoids deadlock and guarantees fairness.

Assume that a process Pk sets choosing[k] to 1, when Pi is past the

statement choosing[i]:=O. This means that number[i] contains its

current value at the time Pk chooses the current value of number[k].

Therefore, Pk must choose a value such that number[k] :0:: 1 +number[i J.

Hence Pi would enter its critical section before Pk. This protocol

therefore implements mutual exclusion on a first-come-first-served

basis.

The bakery algorithm 1s fault-tolerant assuming that when a

site fails, it immediately goes to its noncritical section and halts

and it is restarted 1n its noncritical section only. With this

assumption, the system continues to -operate despite a bounded number

of site failures. However, if a process Pi breaks down and restarts

an infinite number of times, the system could deadlock. If p.
1

constantly breaks down as it enters its protocol, then the other

processes may always find choosing[i]=1, and hence loop forever at

L2.

90

There is a problem with this algorithm. If there is always at

least one process past the statement choosing[i]:=O, the value of

number[i] can become arbitrarily large and this could cause overflow

errors (depending on the size of memory allocated to an element of

the number array) .

4.2.2 Improvements to Lamport's Bakery Algorithm

[Hebner 1981] gave a version of Lamport's Bakery algorithm for

implementing P and V semaphore primitives. Hebner and Shayamasundar

used only one variable (number) per process as compared to two (choosing

and numbu) in Lamport's algorithm.

[Peterson 1983b] proposed an algorithm that keeps every

feature,

critical

(except first-in-first-out waiting for access to the

section) of Lamport's algorithm, overcomes Lamport's

unlimited growth of the number variable, and allows for unbounded

process failures and restarts. In fact, Peterson's algorithm uses

just four values of (shared) memory per process as compared to

Lamport's (shared) variables of unbounded size.

4.2.3 Dijkstra's Self-Stabilizing Distributed Algorithm

A system is said to be self-stabilizing if it can recover from an

illegitimate state within a finite number of state transitions.

[Dijkstra 1974] proposed a distributed mutual algorithm that has this

self-stabilizing property and [Dijkstra 1986] gave a correctness

proof for this algorithm.

91

The algorithm is given in Figure 4.2. Here sites 0,1 ,2, ... ,N

are assumed to be connected in a ring topology (can be a logical ring

structure imposed on the physical network). A site can only exchange

information with its neighbors. The decision to enter the critical

section by a process (Pi) is made based on its own state variable and

that of its left hand neighbor P
(i-l)mod(N+l)

"

An important point to note is that Dijkstra's solution 1n

Figure 4.2 is not symmetric - the ubottom" machine is differentiated

from the other machines by having a different protocol.

The beauty of this algorithm is that even if the system is not

properly initialized to a legitimate configuration, the algorithm

will drag the system to a legal configuration. The system may not

preserve mutual exclusion in the illegitimate states, but once it is

State Variable for Each Machine: nr

Note- 1. In the algorithm below, for site i

L: refers to the state of its left hand neighbor, machine nr.(i-l)mod(N+l),

S : refers to the state of itself, machine nr.i,

R: refers to the state of its right hand neighbor, machine nr.(i+l)mod(N+l).

2. K is an integer such that K > N.

Protocol for Site 0 -

(the "Bottom" machine)

Ll: if L # S then goto Ll;

< CRITICAL SECTION >

S := (S + 1) mod K;

Protocol for site i -

(i # 0, i.e. other machines)

Ll: if L = S then goto Ll;

< CRITICAL SECTION >

S := L;

Figure 4.2 - Dijkstra's Self-Stabilizing Algorithm

92

in a legal state, mutual exclusion is preserved.

In this solution, the privilege to enter the critical section

moves around the ring, and this causes a major drawback - a process

is forced to wait to enter its critical section even when there is no

other process attempting to enter the critical section. Also, a

process, even when it is not trying to enter its critical section, is

forced to execute its exit protocol to pass the privilege to its

right hand neighbor.

In the algorithm in Figure 4.2, each machine takes K states,

where K > N. [Dijkstra 1974] proposed two more mutual exclusion

algorithms, with the self-stabilization property, that have machines

with three states and four states respectively.

[Kruijer 1979] also gave a self-stabilizing distributed

algorithm for sites connected In a tree network topology, instead of

the ring network of Dijkstra.

4.3 Solutions which use Message Passing Primitives Explicitly :

The mutual exclusion algorithms in this section are based on

explicit communication of messag�s among processes. The main

characteristic of these solutions is that a site does not request

another site for its state information. Rather, every time a process

changes its state, and if that can affect the global state of the

system, it broadcasts information about its new state to other

processes on the system. For example, the following state changes

would necessitate a broadcast message - from "non-critical section"

93

to "attempting to enter critical section", from "using critical

section" to "exiting critical section", and from "failed" state to

"restarting" state.

[Raynal 1986] characterized these algorithms as "send-

information" type as compared to the "request-information" type of

algorithms in §4.2. The advantage of "send-information" type

algorithms is that communication costs are kept low as it avoids

exchange of messages between processes if their states have not

changed.

4.3.1 Event Ordering :

In a distributed system, synchronization among processes relies

uniquely on establishing an order between events. Since there is no

common real physical clock between different sites, this order can be

realized only by exchanging messages.

4.3.1.1 Logical Clocks

Lamport examined the relationship of physical time and event

ordering and then defined the happ_ened-before relation without using

physical clocks [Lamport 1978].

A distributed system can be viewed as a collection of processes

and a process as a sequence of events. The definition of an event

depends on the application. Execution of a procedure, execution of a

single machine instruction, sending or receiving a message are some

examples of an event in a process. A single process is defined to be

94

a set of events with an a priori total ordering. The happened-before

relation, denoted by �, satisfies the following three properties -

1.) If A and Bare events in the same process, and if A is executed before B, then A�B.

2.) If event A is the sending of a message by one process and event B is the receipt of the

same message by another process , then A�B.

3.) If A�B, and B�C, then A�C. (Transitivity Property)

It is assumed that A+A for any event A. The restrictions given

above imply that � (happened-before) is an irreflexive partial ordering

over all system events.

Two distinct events A and B are said to be concurrent if A+B

and B+A. This order is illustrated in Figure 4.3.

Lamport associated this partial ordering of events with a

system of logical clocks which can be implemented by counters.

Pl P2
Site 1 a •

·s Site 2 ••

Ql

Local Order of Events :

Q2

Pl � P2 � P3 � P4 � P5

Ql � Q2 � Q3 � Q4

Transitivity :

Pl � P2 � Q2 � Q3 � Q4

Ql � Q2 � Q3 � P4 � P5

P3
••

P4 PS

.Z
I e � tim<

••

QJ Q4

Exchange of Messages :

P2 � Q2, and

Q3 � P4

Some Incomparable Events :

Ql and Pl, P2, P3

P3 and Q2, Q3, Q4

Pl � P2 � Q2 � Q3 � P4 � P5

Figure 4.3 - Example of Partial Ordering of System Events

95

A logical clock ci for a process pi lS defined as a function which

assigns a number Ci<A> to any event A in that process. This number

can be thought of as the time at which the event occurred. Therefore,

if an event A occurs before another event B, then C<A> < C. But

the converse, if C<A> < C then A happened before B, 1 s not

necessarily true.

The following two rules are followed to satisfy the happened-before

relation -+, when implementing logical clocks by counters -

1.) The logical clock value is incremented between any two successive events of

the same process.

2.) A site, which sends a message m, dates it with a timestamp Tm which equals

the current value of the logical clock. Upon receiving the message m, the

receiver site sets its own clock value greater than or equal to its present value

and greater than T m· The "message reception" event at the receiving site is

then dated by this new value of clock. This rule ensures that the time of

message reception is later than that of its sending.

[Andre 1985] showed that certain synchronization problems like

the producer-consumer problem can be resolved by means of partial order

only. However, all synchronization problems cannot be solved using a

partial order. For example, it is necessary to totally order system

events to solve the following problems - the problem of ensuring that

there are identical copies of the same item of information at

different sites, the problem of equitability, and the problem of

introducing priority.

Lamport extended happened-before -+ partial ordering to a strict

total ordering by ordering the events by the times at which they

96

occur, and breaking ties by using any arbitrary total ordering of the

processes. One such tie-breaking relation used very often 1s the

unique identification number of sites. Then, for two events, A in

process Pi and B in process Pj, the total order � is defined as -

A�B <=> (Ci<A> < Cj) V ((Ci<A> = Cj) 1\ (i < j)).

Based on the above definition of total ordering, Lamport gave

an algorithm to synchronize events on a first-come-first-served

basis, and then applied it to the problem of synchronizing clocks.

Most distributed mutual exclusion algorithms use time stamping

to provide fairness in the system.

4.3.1.2 Eventcounts and Sequencers

[Reed 1979] proposed another synchronization mechanism based on

observing and signaling the occurrence of events in the course of an

asynchronous computation. Two abstract objects, namely eventcount and

sequencer, are defined for this purpose. An eventcount is an object that

counts the number of events in a particular class that have occurred

in the execution of the system. Three operations are defined on an

eventcount - advance, to signal the occurrence of an event associated

with a particular eventcount, awa� and �ad to obtain the value of an

eventcount. Reed and Kanodia modified Lamport's formalization of time

(in §4.3.1.1) as a partial ordering of the events in the system. In

their definition, execution of advance, await, and read primitives

constitute events.

Synchronization among processes is shown to be obtained from

97

the ability of the eventcount primitives to maintain partial ordering

of events, rather than by mutual exclusion. Thus, all processes can

be concurrent.

For those cases where a total ordering IS necessary, the use of

a ticketing operation on a sequencer object IS proposed. A sequencer S

is a non-decreasing integer variable initialized to 0. There is only

one operation, called 6cket(S), that can be applied to a sequencer, and

this returns a non-negative integer as its result. Two uses of the

ticket(S) operation always give different values. Unlike eventcounts,

implementation of a sequencer requires some form of underlying

mechanism to achieve mutual exclusion.

4.3.1.3 Causal Ordering :

[Birman 1987] proposed a weaker ordering than total ordering

and called it causal ordering.

Suppose occurrence of an event Send(Ml), corresponding to the

site S1 sending M1, and timestamped with logical time T1. Suppose

then a second event Send(M2), with timestamp T2, occurring on s'i te S2

after S2 has received message Ml. Lamport's logical clocks (in

§4.3.1.1) ensure that T1<T2. The "causal timestamping" ensures that

event Send(Ml) precedes event Send(M2) for every site in the system.

This does not say anything about the order in which messages M1 and

M2 arrive at any given site in the system. That is, it is possible

that a given site gets message M2 before Ml, even though event

Send(Ml) occurs before event Send(M2). However, causal ordering of the

98

events Send(Ml) and Send(M2) means that every recipient of both Ml and

M2 receives messages Ml before message M2.

Causal ordering can be achieved by having every message M, sent

by a site, carry every other message sent before M that the site

knows of. Causal ordering was first implemented in the ISIS system

developed at Cornell University. The advantage of causal ordering in

a distributed system IS that it is cheaper to realize than total

ordering [Joseph 1989].

4.3.2 Previous Vork on Distributed Mutual Exclusion Algorithms

Several algorithms have been proposed to achieve mutual

exclusion In distributed systems. These algorithms differ In their

communication topology, degree of distribution of control (which is

determined by the amount of information a site maintains about other

sites) , and failure-tolerance. The differences in the algorithms

influence the number of messages exchanged and delay incurred per

invocation of critical section.

All of the algorithms make some assumptions about the system.

The common assumptions are listed below -

• Any site can communicate with any other site.

• The communication subsystem 1s reliable and therefore there are no

transmission errors nor message losses.

• The communication delay is unpredictable, and therefore no assumption IS

made about the delay between the time a message is sent and received. It is

assumed that the delay is finite.

• Each site executes the same algorithm and thus there are N control processes.

• Sites do not crash. A separate failure-recovery mechanism is to be followed.

99

• There exists a method for serializing multiple requests for mutual exclusion

within a site.

• Access to common variables m entry code, exit code, and message handling

routines is serialized.

The only assumption where some of these algorithms differ is

the order of message delivery between a pair of sites - some assume

that messages between any pair of nodes are delivered in the order

they are sent, and some do not assume so. This 1s not a big

restriction as ordering between pairs can be implemented 1n network

protocols by having message sequence numbers and message

acknowledgements.

In the following discussion, N is the number of nodes in the

system.

The distributed mutual exclusion algorithms can be classified

into the following two categories -

Category I Solutions : Use a special unique message, called Token or Privilege

message, to obtain mutual exclusion. The privilege to enter the

critical section is equated to possession of the token.

Category IT Solutions :Do not have any special message to achieve mutual exclusion.

The first algorithm for mutuar exclusion (in Category II) was

proposed by [Lamport 1978]. In this algorithm, sites maintain logical

clocks and all requests to use the critical section are assigned a

timestamp. Mutual exclusion is achieved by having a requesting site

communicate with all other sites. A site enters the critical section

only after it has received a message from every other site,

100

timestamped later than its request message. A first-come-first-served

discipline is thus observed by allowing sites to enter the critical

section in the order of their request timestamps. A "RELEASE

resource" message from a process causes removal of its request from

every site's request queue. This algorithm was later improved in

[Ricart 1981] by eliminating the need for the "RELEASE resource"

message. Ricart and Agrawala's algorithm requires 2*(N-1) messages

per invocation of critical section as compared to 3*(N-1) messages

in Lamport's algorithm. In their algorithm, a site intending to

execute critical section sends a REQUEST message to all other sites

and executes critical section only after it has received a REPLY

(permission) message from all other sites. Ricart-Agrawala's

algorithm was further improved in [Carvalho 1983]. In Carvalho and

Roucairol's algorithm, first-come-first-served discipline 1s not

observed - once a site i has received a REPLY message from a site j,

site does not have to ask for site j's permission to enter the

critical section until site i sends a REPLY message to site j, and

which can happen only after site j sends a REQUEST message to site

1. Thus, site i can enter its critical section more than one time

without consulting site j and therefore, the number of messages

exchanged per critical section invocation is between 0 and 2*(N-1).

Carvalho-Roucairol's algorithm violated Ricart-Agrawala's

definition of a symmetric algorithm, which required an algorithm to

have at least one message into and one message out of each site. This

opened the door for more algorithms with improvements in terms of the

number of messages exchanged and delay incurred per mutual exclusion

101

enforcement.

[Thomas 1979] proposed a majority consensus algorithm to

maintain synchronization of multiple copy databases in the presence

of update activity. In order to obtain mutual exclusion, a site must

obtain permission from a majority of sites in the network. Since

there can be only one majority at any given time, mutual exclusion is

achieved. Therefore, the number of permission messages required to

obtain mutual exclusion is reduced to r(N + 1)/21. The algorithm is

robust with respect to lost and duplicate messages and is resilient

to both site and communication failures.

[Gifford 1979] presented a weighted-voting algorithm. In his

solution, a site can cast more than one vote as compared to one vote

1n Thomas' algorithm. Therefore, in order to achieve mutual

exclusion, it is sufficient to obtain a majority of votes, which may

not be from a majority of sites. Gifford's algorithm can be reduced

to a centralized algorithm by assigning all votes to one site.

An important property of majority consensus is that the

intersection of any two majorities has at least one site 1n common.

[Maekawa 1985] presented a mutual exclusion algorithm which

requires between 3{N and 5{N messages per mutual exclusion. In his

algorithm, a set of sites is associated with each site using the

property of finite projective planes, which makes any two such sets

1n the system have at least one site in common and the size of each

of these sets to be {N. A requesting site must obtain permission from

all sites in the set associated with it. Since this set satisfies the

102

nonnull intersection property with every other set, mutual exclusion

is guaranteed.

The assignment of votes and the choice of a set consisting of

sets of nodes with nonnull intersection property has a crucial effect

on obtaining mutual exclusion and reliability of distributed systems.

[Garcia-Molina 1985] studied vote assignments and sets of nodes with

pairwise nonnull intersections and showed that these two strategies

of obtaining mutual exclusion are not equivalent, though they appear

to be so. Garcia-Molina and Barbara proposed the notion of a coterie,

which is a set of groups, where group is a set of nodes, with the

property that any two members of a coterie (i.e. groups) have at

least one common node. Coteries are shown to be more powerful than

vote assignments by proving that there are coteries such that no vote

assignments correspond to them. Maekawa's sets can be considered as a

special case of a coterie where each group is of same size.

[Agrawal 1991] proposed another distributed mutual exclusion

algorithm based on the notion of coteries. The communication network

is assumed to be logically organized into a tree and intersecting

quorums are formed by selecting paths starting from the root and

ending with any of the leaves. In case of failure or inaccessibility

of a site, the algorithm substitutes for that site two paths, both of

which start with the children of that site and terminate with leaves.

A tree quorum cannot be formed if any of the leaf nodes is

inaccessible. For a tree with each nonleaf node having d children, it

is shown that, in the best case, when there are no fai 1 ures, flogdNl

sites are necessary to form a tree quorum. The worst case would be

103

when (N -logdN) sites fail and then the size of tree quorum is shown

to be equal to reed -l)N + 1)/dl-

In Maekawa' s protocol, only one set 1s associated with each

site, and therefore failure of any site in the associated set of a

site prevents that site from accessing the critical section. Agrawal

and Abbadi 's scheme provides several alternative sets to a site and

IS therefore resilient to failures. They claimed their algorithm to

be the first distributed mutual exclusion protocol which tolerates

both site and network partitioning and requires O(log N) messages in

the best case.

In the token-based algorithms, the site possessing the token

has the privilege to access the critical section. Since there is only

one token in the system, only one site can possess it at any given

time, and therefore, mutual exclusion is achieved as this site will

be the only one executing the critical section. One of the earliest

token-based mutual exclusion algorithm is by Lelann. He assumed the

sites to be connected in a ring network and the token to be

circulating on this ring of sites. A site is required to capture the

token before entering critical section [Silberschatz 1991].

[Suzuki 1985 J and [Ricart 19S3] presented token-based mutual

exclusion algorithms which require at most N message exchanges for

one mutual exclusion invocation. A site possessing the token can

enter the critical section without taking permission from any other

site and therefore, no message exchanges are involved in this case.

If a requesting site does not have the token, it sends a REQUEST

104

message to all other sites. When the site holding the token receives

the REQUEST message, it transmits the token to the requesting site

when it no longer needs the token. Thus, at most N messages are

required per mutual exclusion invocation - (N -1) REQUEST messages

and 1 for transmission of the token.

This approach was improved 1n [Singhal 1989]. In Singhal's

algorithm, each site maintains information about the state of other

sites. This state information is used to guess the sites which could

be holding the token. A site intending to enter its critical section,

sends REQUEST messages to these probable token holding sites only,

and not to all other sites. Thus, the number of messages exchanged is

between 0 and N per each execution of the critical section. In fact,

the basic idea of this algorithm is very similar to the improvement

made by Carvalho-Roucairol over Ricart-Agrawala algorithm. Use of a

token to grant the privilege to enter the critical section saves

(N - 1) permission (REPLY) messages over Carvalho-Roucairol's

algorithm and Incurs the extra cost of one message to transmit the

token message.

[Raymond 1989] proposed another token-based algorithm which

uses a spanning tree of the inteyconnection network topology. In

Raymond's algorithm, a site communicates to its neighbors only and

therefore it does not have to be aware of complete network topology.

Because of the spanning tree topology, there exists a unique path

from each site to the site holding the token. The request messages

and the token travel along this path. For this algorithm the average

number of messages exchanged per mutual exclusion invocation is

105

0(logN).

[van de Snepscheut 1987] presented a similar tree-based

algorithm and then extended the solution to the case in which the

network is an arbitrary connected graph. He showed his mutual

exclusion algorithm for a general graph to be fair.

In the algorithms by Raymond and van de Snepscheu t, the

internal nodes in the tree receive and send a higher number of

messages compared to the leaf nodes.

Helary, Plouzeau, and Raynal presented a token-based algorithm

in a network with an a pnon unknown topology. All other mutual

exclusion solutions are based on a priori known topology - complete,

ring, tree, etc. [Helary 1988]. In their algorithm, a request is

propagated in the network with a flooding broadcast (wave) technique

- a site on receiving a request from one of its neighbors propagates

it to its other neighbors. The path followed by a request from a

requesting site to the token owner is marked. The token is

transmitted along that path 1n the opposite direction to reach the

requesting site.

These token-based algorithms suffer from a major drawback - if

the token 1s lost, the critical section cannot be reached by any

site. To preserve mutual exclusion, it is necessary that the token is

regenerated by only one site. [Garcia-Molina 1982] presented election

algorithms that may be used for recovery from failures. [Nishio 1990]

presented a token-based mutual exclusion algorithm which has failure

detection and recovery from failures as an integral part of the

I

106

algorithm.

[Sanders 1987] introduced the concept of "information

structures" as a unifying framework for different distributed mutual

exclusion algorithms. The information structure describes which

processes maintain state information about other processes and from

which processes permission must be requested before entering the

critical section. Information structures can be either static or

dynamic.

A comparison of some of these algorithms, 1n terms of the

number of messages exchanged per critical section invocation, the

logical structure imposed on the physical network topology, the

number of nodes about which each node keeps static information, the

number of nodes about which each node keeps dynamic information, and

the kind of information structure (static or dynamic) used, is given

in Table 4.1. It also lists whether the algorithm is token based or

not, and whether it assumes that messages are delivered in the order

they are sent or not.

Once the idea behind an algorithm is clear, it is easier to

give the details of the actual implementation of the algorithm. The

following four algorithms are chosen as representative and their

details are given below - (l)Ricart-Agrawala's Algorithm, (2)Suzuki-

Kasami's Algorithm, (3)Maekawa's Algorithm, and (4)Raymond's

Algorithm.

107

.K'·.·'·'
·••• iNeigh.5 Neigh.5

Table 4.1 - A Comparison of Some Distributed Mutual Exclusion Algorithms

1. Ricart and Agrawala Algorithm

2. Carvalho and Roucairol Algorithm

3. Logical structure imposed by finite projective planes

4. Suzuki and Kasami Algorithm

5. Neighbors

6. van de Snepscheut Algorithm

7. d is the degree of a node

8. Helary, Plouzeau, and Raynal Algorithm

108

4.3.2.1 Ricart-Agrawala Algorithm [Ricart 1981]

The algorithm IS given in Figure 4.4. The sequence number

concept used here implements Lamport's logical clocks. The algorithm

implements a first-come-first-served discipline for entry to the

critical section. It is achieved through the virtual ordering among

requesting nodes formed by the sequence numbers and node numbers. A

site enters its critical section only after it has received a REPLY

message for its REQUEST message from all other sites. A site upon

receiving a REQUEST message updates the value of its

Highest_Sequence_N umber, and then sends a REPLY message to the

requesting node if it has not requested the critical section for

itself or if the requesting node made a request to enter the critical

section before it did.

Therefore, total number of messages exchanged (N -!)Request+ (N -!)Reply

2*(N-l).

4.3.2.2 Suzuki-Kasami Algorithm : [Suzuki 1985]

In this algorithm, a PRIVILEGE message IS used to determine the

(privileged) node which can enter the critical section. A node

requesting the privilege sends a REQUEST message to all other nodes.

A node receiving the PRIVILEGE message is allowed to enter its

critical section repeatedly until the node sends PRIVILEGE to some

other node. The algorithm is given in Figure 4.5.

A REQUEST message from a site contains site's identification

number and a sequence number indicating the number of times the site

t

l
.i

i
1.

'

�I
1

i
1

i

Shared Variables (Information Held by Each node):

CONSTANT
me, {This node's unique identification number}
N; {The number of nodes in the network}

INTEGER {Variable list begins here}
Our_Sequence_Number, {Sequence number chosen by a request made here}
Highest_Sequence_Number, {The highest sequence number seen in any

REQUEST message sent or received. Initially 0}
Outstanding_ Reply _Count; {Number of REPLY messages expected}

BOOLEAN
Requesting_Critical_Section{Initially False; True when this node is requesting

access to the critical section}
Reply _Deferred (l..N]; {Initially False; Reply _Deferred[j] is True when

this node defers REPLY to j's REQUEST message}
BINARY SEMAPHORE

Shared_ vars; {Initially 1; To interlock access to the above shared variables}

Process Which Invokes Mutual Exclusion For This Node :

P(Shared_ vars);
Requesting_Critical_Section := True;
Our_Sequence_Number := Highest_Sequence_Number + 1;

V(Shared_ vars);
Outstanding_Reply_Count := N -1;

For j := 1 To N Do

If j f:- me then Send_Message(REQUEST(Our_Sequence_Number,me), j);
Waitfor (Outstanding_Reply_Count = 0);
< CRITICAL SECTION >
Requesting_ Critical_ Section := False;
For j := 1 To N Do

If Reply _Deferred[i] then
Begin Reply _Deferred := False;

Send_Message(REPLY, j);
End;

Process Which Receives Request(kj) Messages: (Defer_it is a local variable)

Highest_ Sequence_ N urn her : = Max(Highest_Sequence_ Number ,k);
P(Shared_ vars);

Defer_it := Requesting_Critical_Section AND ((k > Our_Sequence_Number)
OR (k = Our_Sequence_Number AND j >me));

V(Shared_ vars);
If Defer_it then Reply _Deferred[j] := True else Send_Message(REPL Y, j);

Process Which Receives Reply Messages :

Outstanding_ Reply _Count := Outstanding_ Reply _Count- 1;

Figure 4.4 - Ricart-Agrawala Algorithm

109

110

has requested the critical section invocation. Each site maintains an

array RN (of size N) for recording the largest sequence number ever

received from each one of the other nodes.

The PRIVILEGE message contains a queue of requesting nodes and

an array LN (of size N) for recording the number of times each site

has entered the critical section. When a site finishes executing the

critical section, the LN entry for that site in the PRIVILEGE message

is updated, and all new requesting sites are appended to the queue.

The next node to get the PRIVILEGE is the one at the head (front) of

the queue.

The algorithm requires, at most N message exchanges per one

mutual exclusion invocation (N -1) REQUEST messages and 1

PRIVILEGE message, or no message at all if the node having the

PRIVILEGE is the only requesting node in the system.

4.3.2.3 Maekawa's Algorithm : [Maekawa 1985]

In this algorithm, each site i in the system has a set Si of

sites associated with it such that any two such sets si and sj have

at least one node in common. The problem of finding a set of Si's is

equivalent to finding a finite projective plane of N points [Maekawa

1985]. The size of each set Si is found to be�-

Shared Variables (Information Held by Each Node):

Const
I : Integer;

Var
{the identifier of this node}

HavePrivilege, Requesting : Boolean;
{Initially HavePrivilege=true in node 1 only; and Requesting=false initially}
j, n : Integer;
Q : Queue of Integer; {initially empty}
RN, LN : Array (l..NJ of integer; {Initially RN[i]=LN[j]=- 1, 'v'j=1, .. . N}

Note: Request Message Handler is executed indivisibly whenever a Request arrives.

Process Which Invokes Mutual Exclusion For This Node:

begin
Requesting := true;
if not HavePrivilege then

begin
RN(I] := RN(I] + 1;

for all j in { 1,2, ... ,N}- {I} do
Send Request(I,RN(I]) to node j;

Wait Until PRIVILEGE(Q,LN) is received;
HavePrivilege := true;

end;
< CRITICAL SECTION >

LN(I] := RN(I];
for all j in { 1,2, ... ,N} -{I} do

if not in (Q, j) and (RN[j] = LN[j] + 1) then Q := append(Q, j);
if Q f- empty then

begin
HavePrivilege := false;
Send PRIVILEGE(tail(Q), LN) to node head(Q)

end;
Requesting := false

end;

Process Which Receives Request(i, n) Messages: {executed indivisibly}

begin

RN[j] := max(RN[j], n);

ifHavePrivilege and not Requesting and (R.N[j] = LN[j] + 1) then

begin

end;

HavePrivilege := false;

Send PRIVILEGE(Q, LN) to node j

end

Figure 4.5 - Suzuki-Kasami AJgorithm

111

112

The algorithm is given as -

1. When site i wants to enter critical section, it sends a REQUEST message to every member

of Si. The REQUEST message contains site's identification number and a timestamp.

2. Upon receiving a REQUEST, a member node of Si makes itself "locked" for the REQUEST,

if it is not currently locked for another REQUEST, and then returns a LOCKED message to

the requesting node i. If the node is locked for a REQUEST from another node, site i's

REQUEST is placed in the WAITING QUEUE of the node. It is then tested to determine

whether the current locking REQUEST or any other outstanding REQUEST in the Queue at

the node precedes the received REQUEST. If so, a FAILED message is returned to node i.

Otherwise, an INQUIRE message is sent to the node originating the current locking REQUEST

to inquire whether this originating node has succeeded in locking all its members. If an

INQUIRE has already been sent for a previous REQUEST and its reply has not yet been

received, it is not necessary to send INQUIRE again.

3. When a node receives an INQUIRE message, it returns a RELINQUISH message if it knows

that it will not succeed in locking all its members, that is, it has received a FAILED message

from some of its members. This RELINQUISH message relinquishes the member node to a

more preceding request and thus deadlock is avoided. The node sending the RELINQUISH

message cancels the LOCKED message previously received from the member node. If an

INQUIRE message arrives before it is known whether the node will succeed or fail to lock all

its members, a reply is deferred until this becomes known. If an INQUIRE message arrives

after the node has sent a RELEASE message, it is simply ignored.

4. When a node receives a RELINQUISH message, it relieves itself of the current locking

REQUEST, and then locks itself for the most preceding REQUEST in the WAITING QUEUE.

A LOCKED message is then returned to the node originating the new locking REQUEST.

5. If all members of Si have returned a LOCKED message, node i enters its critical section.

6. Upon completing the critical section, node i sends a RELEASE message to each member of

7. When a node rece1ves a RELEASE message, it relieves itself from the current locking

REQUEST. It deletes this locking REQUEST and then relocks itself for the most preceding

REQUEST in the WAITING QUEUE, if the Queue is not empty. A LOCKED message is

returned to the node originating the new locking REQUEST. If the Queue is empty, the node

marks itself unlocked.

113

In case of light demand for the critical section, the algorithm

requires 3{N messages per critical section invocation {N REQUEST

messages, fN LOCKED messages, and {N RELEASE messages. Under heavy

demand, a new REQUEST will most likely fail to lock its destination

node and therefore, a total of 4{N ({N REQUEST, {N FAILED, {N

LOCKED, and fN RELEASE) messages are required per mutual exclusion.

The worst case is when a new REQUEST 1s initiated from a node that

has neither requested mutual exclusion nor participated in the

algorithm as a member node for a certain period. It then causes an

INQUIRE message to be sent, for which a RELINQUISH message 1s

returned. Thus, a total of 5{N ({N REQUEST, {N INQUIRE, {N

RELINQUISH, {N LOCKED, and {N RELEASE) messages are required to

obtain mutual exclusion.

4.3.2.4 Raymond's Algorithm : [Raymond 1989]

In this algorithm, the communication network is assumed to be a

spanning tree of the actual network topology. Each node communicates

with only its neighboring nodes in the spanning tree and holds

information pertaining only to those neighbors. There exists a

PRIVILEGE message in the network; a ,site must possess this PRI VILEGE

message 1n order to enter its critical section. The complete

algorithm is given in Figure 4.6.

Each node has a variable HOLDER that stores the location of

the privilege relative to the node itself. Because of the spanning

tree network topology, a unique directed path exists from a non-

114

Shared Variables (Information Held by Each node) :

HOLDER: Values= "self' or the name of one of the immediate neighbors.
Indicates the relative position of the privileged node with
respect to the node itself.

USING: A Boolean Value. USING indicates if the node itself is currently
executing the critical section.

REQUEST_Q: A first-in-first-out queue. Possible elements are the names of
immediate neighbors and "self'. It holds the name of those nodes
that have sent a REQUEST but have not yet got the PRIVILEGE.

ASKED: A Boolean Value. It is true when a nonprivileged node has sent
a REQUEST message to its HOLDER value (=name of a node).

Process Which Makes Request (MAKE_REQUEST Process):

if HOLDER# self 1\ REQUEST _Q #empty 1\ not ASKED
then begin

Send REQUEST to HOLDER;
ASKED := true;

end;

Process Which Sends PRIVILEGE message (ASSIGN_PRIVILEGE Process) :

if HOLDER= self 1\ not USING 1\ REQUEST _Q #empty
then begin

HOLDER:= dequeue(REQUEST _Q);
ASKED := false;
if HOLDER= self

then USING := true
else Send PRIVILEGE to HOLDER;

end;

Node Wishes to Enter the Critical Section :

enqueue(REQUEST _Q, self); {If this is the privileged node then Assign_
ASSIGN_PRIVILEGE; Privilege will allow this node to enter the critical section.
MAKE_REQUEST; Otherwise, it makes a REQUEST to obtain the privilege.}

Node Receives a REQUEST Message From Neighbor X :

enqueue(REQUEST _Q, X); {If this node is the holder then Assign_Privilege
ASSIGN_PRIVILEGE; may send the Privilege to the requesting node. Otherwise,
MAKE_REQUEST; it propagates the Request to obtain the privilege.}

Node Receives a PRIVILEGE Message;

HOLDER:= self; {Assign_Privilege may pass the privilege to
ASSIGN_PRIVILEGE; another node. And then, Make_Request may request
MAKE_REQUEST; that the privilege be returned.}

Node Exits the Critical Section :

USING := false; {On releasing the critical section, Assign_
ASSIGN_PRIVILEGE; Privilege may pass the privilege to another node and
MAKE_REQUEST; may then request it back through Make_Request}

Figure 4.6 - Raymond's Algorithm

115

privileged site to the privileged site. When a nonprivileged node

wishes to enter the critical section, it sends a REQUEST message to

the holder of the PRIVILEGE message, as viewed by it. Upon receipt of

a request message, a nonprivileged node on this unique path then

makes a request to its 0believed" holder if a request was not already

made by it for itself or on behalf of some other node. In the

algorithm, a variable (ASKED) is used to find out if a request was

already made by the node. Thus the number of request messages made is

reduced.

A node can transmit the PRIVILEGE message only if it holds the

PRIVILEGE but not be using it, and the oldest request for the

privilege came from another node. The PRIVILEGE is transmitted using

the same path as used by the REQUEST message but In the opposite

direction.

There are four events that can alter the assignment of

privilege and/or necessitate the sending of a REQUEST message - node

wishing to enter the critical section, node exiting the critical

section, the receipt of a REQUEST message by a node, and the receipt

of the PRIVILEGE message.

The upper bound for the number of messages exchanged per

critical section is 2*0, where D is the diameter (longest path

length) of the tree. The worst possible topology for this algorithm

is a straight line arrangement, since the diameter of such a topology

is N -1. The best topology for this algorithm is a radiating star

formation. The diameter of such a topology, with k as the valence of

h l f d . . b 2 f I (
(N- l)(k- 2) 1) l

eac non ea no e, 1s g1ven y * ogk-t k + ·

Thus the worst case for this topology 1s O(logk_1N).

4.4 Summary :

116

The availability of such a variety of distributed mutual

exclusion algorithms is a good evidence in itself of the nontrivial

nature of the problem and the crucial role it plays in distributed

systems. A distributed system designer would have to be very careful

in selecting the "right" algorithm. Some of the factors to consider

include network topology, reliability, cost (efficiency), and

ex tens i bi li ty.

In the next chapter, a new distributed mutual exclusion

algorithm 1s developed by finding solutions to some real-life

situations which require mutual exclusion.

CHAPTER V

A NEW DISTRIBUTED MUTUAL EXCLUSION SOLUTION

DERIVED FROM REAL-LIFE EXAMPLES

5.1 Introduction

An extensive amount of work has been done to solve the problem

of mutual exclusion in distributed systems. Chapter IV discussed all

the available distributed mutual exclusion algorithms. This chapter

presents some new solutions to achieve mutual exclusion in a

distributed system when there is only one shared resource and also

when there are M (;::: 1) identical instances of the resource. These

solutions are obtained by considering real-life situations where

mutual exclusion 1s required. Some of the solutions discussed 1n

Chapter IV appear here again; they have been tailored to suit our

real-life examples.

The examples used through out this chapter are -

Example 1- Consider the situation when a book (resource) is shared among N

persons (sites). For convenience, assume their names to be 1 through N such that they are

unique and 1 < 2 < · · · < N (think of lexicographic sorting). No two persons can read (use) the

book at the same time. The only way to find out if anybody is using the book is through

exchange of messages. Everybody can talk to (communicate with) everyone else with the

condition that communication between any two-persons is limited to exchange of postcards

(messages) only. It is assumed that a postcard always reaches its destination without any

changes to its contents. But a postcard from one person may take any amount of time to reach

another person (Postal delays are possible!).

The assumptions made In the above example fit a distributed

117

118

model.

Example 2- An extension to the first example is when there are M (> 1) copies of

the same book. Considering M 2: N, i.e., when there are at least as many books available as the

number of persons, is of no interest as each person then could have a personal copy of the book

without any trouble. Therefore, we assume M < N, that is, at most M persons could be reading

the book at the same time. Other assumptions are as made in the first example.

One such real-life situation is seen everyday In a bank where

tellers provide service to customers. We will have to modify the

actual situation a little bit to fit a distributed model. Some of the

assumptions to be made are - customers enter from different doors,

they cannot see each other and communicate through messages only, and

a customer IS not allowed to turn back to ask the teller a quick

question once he/she is left the window.

In the following discussion, informal language (as In the first

example) IS used. This can easily be replaced with formal

terminology. The words "call" and "call back" are used only for

better understanding of the problem; they don't imply immediate

delivery of the message.

5.2 Search for Distributed Mutual Exclusion Solutions

5.2.1 In Case of One Shared resource

Initially, assume that the book is lying at a place known to

everyone and everybody replaces the book back at that place after

using it.

A very simple and intuitive solution IS -

119

Any person needing the book "calls" everybody else to inform "I need the book".

On receiving the "call", a person answers back one of the following three things - "Go ahead",

or "I am using it. I will call you back when I am done", or "I also want the book and so I will

call you back when I am done". When the person currently using the book is finished reading

it, he "calls back" all the "callers" to say "I am done. Go ahead and use the book". A person

receiving "Go ahead" from everybody else can be sure that it would be then safe to use the

book.

The "I will call you back" message needs to reach a person

before "Go ahead" message to avoid confusion. So assume that messages

are delivered in the order they are sent. This restriction will be

removed later on.

This solution will work if not more than one person needs to

use the book at the same time (formally, when there are no concurrent

requests to use the shared resource); otherwise it will not work. For

example, assume persons and j need to use the book at the same

time. Also assume that they have got "Go ahead" from everyone else

but from each other. Now, person i would wait for j to "call back"

and j would wait for to "call back" and it will never happen. This

problem stems from the "selfish" approach in the solution. To avoid

it, we introduce some arbitration scheme in the protocol. One such

rule is to let the book go to the person who asked for it first. It

can be implemented using time of the "call" and person's name (it IS

possible to have two persons to have exactly the same time even if

they have different watches and therefore names having a

lexicographic ordering are used to break the ties. This is similar to

Lamport's logical clocks [Lamport 1978]).

Assume that a person marks the same time (actually time of the

120

"first call") on all the "calls" made for each use of the book. By

incorporating the arbitration rule into the protocol, person i

requesting for the book would give "Go ahead" to another person j if

i sees that j had started asking for the book before he did;

otherwise, i "calls back" j to say "Sorry, you will have to wait

since I asked for the book before you. I will call you later when I

am done".

The above protocol guarantees exclusive access to the book and

it can be shown that it is free from deadlocks and starvation.

Since the cost of a distributed algorithm is generally

determined by the number of message exchanges, we determine for the

above protocol the total number of message exchanges for each use of

the book . It requires -

In the best case, when nobody is using the book -

(N- 1) "Call" (request) messages and (N- 1) "Go ahead" messages. And therefore, a total of

2 * (N- 1) messages per use of the book.

In the worst case, when someone is using the book and everybody else had already

started asking for it -

(N -1) "Call" (request) messages, (N -1) "I will call back when I am done" messages, and

(N- 1) "Go ahead" messages. And therefore, a total of 3 * (N- 1) messages per use of the

book.

Improvements :

This protocol has been improved upon (in terms of number of

message exchanges) in the literature (except [Lamport 1978]). [Ricart

1981] improved upon it by eliminating "I will call back when I am

done" messages. In Ricart-Agrawala algorithm, a person can defer the

121

reply if he either is using the book or made the "call" before the

other requesting person (since the protocol is to be used with

processes and not persons, one can afford to be discourteous!) . This

saves (N-1) messages and therefore their algorithm requires a total

of 2 * (N -1) messages to use the book.

[Carvalho 1983] further improved it by reducing the number of

"call" (request) messages and thereby the number of "go ahead"

messages. The reduction is achieved by having a person assume for

next requests "go ahead" from the persons that sent "go ahead" for

the current request.

The number of requests and "go aheads" are also shown to be

reduced by forming logical groups according to some rule in quorum­

based algorithms [Maekawa 1985; Agrawala 1991; Garcia-Molina 1985].

These algorithms require a person to "call" other persons 1n his

group and obtain "go ahead" from them only.

The number of "go ahead" messages is reduced from (N -1) to 1 by

letting the book always stay with a person unless it is in transit;

that is relax the initial assumption of replacing the book back at

the previously known place. So, a person, after using the book, may

pass it to one of the requesting persons or keep it if no one has

asked for it. Thus, "go ahead" messages are replaced with actually

passing the book.

This new assumption corresponds to a situation where the shared

resource is passed among processes. Since this 1s not physically

possible, a special "token" message is introduced and possession of

122

the token is assumed to be equivalent to possession of the shared

resource. For simplicity, we will stick to our assumption of

circulating the shared resource.

So with this assumption, if the person holding the book needs

to use it, that person can "go aheadn without asking anyone. But if a

person does not have the book and wants to use it, then he would have

to "calln everyone else as the identity of the person holding the

book is not known to anyone. Since it is allowable to be

discourteous, one does not reply to a "calln if one does not possess

the book. The person with the book replies by passing the book, after

using it, to the person who requested for it first. Therefore, this

protocol requires (N-1) "calln messages to make sure that the request

reaches the "rightn person (one with the book) and one more to pass

the book.

Again, this protocol will work only if there are no concurrent

requests to use the book. [Suzuki 1985] gave a similar algorithm and

handled concurrent requests by having the book carry a list of

persons who need to use the book. The person holding the book updates

this list by removing from it the name of the person to whom the book

will be passed and adding the names of the persons who requested for

the book but their names are not on the list (to avoid duplicate

names) . Thus, the number of message exchanges is reduced to 0 or N

per use of the book.

Objective

The goal in this chapter is to design a protocol which further

123

reduces the number of message exchanges. Since there is no scope left

to reduce "go ahead" type of messages (they have been reduced to 1 in

the above protocol) , the a1m is to reduce the number of "calls"

(requests) a person has to make to get the book.

[Singhal 1989] reduced the number of request messages by

introducing asymmetry. In Singhal's algorithm, the initial

configuration is such that the person named N is required to ask

persons 1 through N -1, person named N- 1 is required to ask persons 1

through N- 2, and so on to person 1 who does not need to ask anyone.

This forms a step-ladder arrangement of persons. Asymmetry is

maintained by letting people go up and down this ladder. The person

at the bottom of the ladder 1s the one who possesses the book.

[Raymond 1989] and [van de Snepscheut 1987] reduced the number of

request messages by imposing a tree structure arrangement on people.

The number of request messages can be reduced to one if

everyone at any given time knows the name of the person who possesses

the book. We reduce the number of request messages to at most (N-1)

by using a heuristic which helps in determining the location of the

book. This heuristic is developed through a series of protocols and

the next section gives a description of them.

5.2.1.1 Informal Description of the New Algorithm's Development :

The objective is to reduce the number of "calls" (requests) one

has to make before getting the book and thereby reduce the total

number of message exchanges.

124

We will start from the protocol 1n the last section where the

book is held by the person who uses it last. Assume that, at the

start, the book is given to the person named 1 and this fact is known

to everyone 1n the system.

Protocol 1 - A simple idea is that the person with the book informs

everyone of the name of the person to whom he is going to pass the

book. Since everybody always knows the name of the person who has the

book, anyone needing the book has to make only 1 "call" to the person

with the book. So the number of "call" (request) messages is reduced

to 1 by introducing (N-2) "inform" messages (the person passing the

book and the person going to get the book do not need to be

informed).

The "inform" messages are not only an overhead, but also a

source of new problems. It is likely that everybody had already made

a request to use the book before they got the information about new

holder of the book. So there is a risk of (N- 2) "calls" going waste.

Another serious problem with this protocol 1s that a person may just

end up chasing the book. This 1s more likely to happen when there is

a heavy demand for the book, but can happen otherwise as no

assumption is made about the delay between the time a message is sent

and received.

The cause of all the problems in the above protocol is the

transmission of "inform" messages, containing the name of the new

holder of the book, to everyone. So we remove the broadcast of

"inform" message and introduce "inform on request" with short-term

125

memory.

Protocol 2 - Consider the case when person i is going to pass the

book to person j. Person i, instead of broadcasting j as the new

holder of the book, remembers the name j as the one with the book.

Person i then informs the next "caller" (the person whose request is

received next) that "Sorry, I gave/am giving the book to j. So call j

now" and changes its (short-term) memory value from j to the name of

this "caller". So the next "caller" is told to call the previous

caller, and so on. This protocol thus requires a person to remember

the name of the person who he thinks has the book. Since postal

delays are possible, it is likely that a person has not yet received

the book and there is already a "call" waiting to be serviced (that

is, someone has already asked the book back from that person). It is

also possible that while a person is using the book somebody else

asks him for it. If it 1s the first "call" received by that person,

then both of the above situations can be handled by having a person

(i)tell the "caller" that he will pass the book after using it, and

(ii)remember the name of the "caller" as the one with the book;

otherwise, it is handled as described before.

An example to explain this pro�ocol is given below -

Assume that 4 people (1, 2, 3, and 4) share a book and at start the book is with 1.

Consider the situation when 2, 3, and 4 need the book. So, all three of them "call" 1. Assume 1

receives the requests in the order 3, 2, and 4. So 1 is ready to pass the book to 3. 2 is told to

call 3, and 4 is told to call 2. Now, 2 "calls" 3, and 4 "calls" 2 to ask for the book. Assume 4's

request reaches 2 before 2 has got the book. So, 2 "informs" 4 to wait until he is done. Now, 3

finishes using the book and passes it to 2, and then 2 starts using it. In the meantime, 1 and 3

decide to use the book again. 2 has finished reading the book and so 2 passes it to 4. Since 1

126

thinks the book is with 4 and 3 considers it to be with 2, 1 "calls" 4 and 3 "calls" 2

respectively. On getting 3's call, 2 "informs" 3 to "call" 4 . Assume 1 's message has still not

reached 4 where as 3 has found out that 2 does not have the book and it may be with 4. So 3

"calls" 4 and assume it reaches 4 before 1 's request does. Therefore, 4 passes the book to 3 and

then on receiving 1 's call "informs" him to "call" 3. When 3 receives 1 's call, he passes the

book to 1 after using it , and then 1 can use it.

The final state of the system is - 1 has the book, 2 thinks 4 has the book, 3 thinks 1

has the book, and 4 thinks 1 has the book.

A careful look shows that the system begins with a directed

star topology (everybody knows 1 has the book) and the second

protocol tries to maintain it. If a directed star topology 1s

maintained, only 1 "call" is needed to get to the person with the

book. The example given above shows that the second protocol does not

accomplish such a topology always - if 2 wanted to use the book, when

the state of the system is as given at the end of the example, 2 will

have to call 4 and 1 in this order to get the book provided no other

requests are created. However, the protocol could be modified such

that it always maintains a directed star topology. The change would

be - whenever a person changes his value of the variable that holds

the name of the person considered by this person to be the current

holder of the book, he "informs" the person, from whom he got the

book, of this change. A person on receiving such information then

sets his value to the name contained in that message. By doing this,

only 1 "call" message is required and possibly 1 "call" message is

wasted because of unpredictable message delays. But this is achieved

at the cost of more "inform" messages. Since the ultimate goal is to

reduce the total number of message exchanges per use of the book,

127

this approach is abandoned.

The third protocol given below accomplishes a reduction by

being both "discourteous" and "helpful".

Protocol 3 - In the second protocol, on receiving a "call", a person

not having the book informs the "caller" who to "call" (as he sees

it) to get the book. These "inform" messages Increase the total

number of messages, and therefore, an attempt to eliminate them is

made here.

Ideas from [Ricart 1981] and [Raymond 1989] are used to get rid

of "inform" messages and still be able to maintain an approximate

directed star topology. So, a person not having the book does not

"call back" a "caller" (discourteous approach from [Ricart 1981]) to

provide information about who to call to get the book; rather, he

forwards the "call" (helpful approach from [Raymond 1989]) on behalf

of the "caller" to the person who he thinks has the book and changes

his value to contain the name of the caller as the new holder of the

book for handling future requests. The other rules remain the same as

those in the second protocol.

In the next section, a formal description of this protocol is

given. It is shown to be both deadlock-free and starvation-free. The

cost of the algorithm is shown to be between 0 and N messages per use

of the book.

128

5.2.1.2 Formal Description of Protocol 3

The following assumptions are made in this mutual exclusion

algorithm for a distributed system consisting of N nodes -

(1)any two nodes can communicate with each other,

(2)messages are neither lost nor changed,

(3)messages may be delivered out of order, and

(4)there are no failures. (Recovery from failures is

considered separately in §5.2.1.3)

It is assumed that there exists a special privilege message,

called token, in the system. A site can execute its critical section

only if it possesses the token. The site holding the token IS

referred to as the privileged site.

The complete algorithm is given in Figure 5.1.

Initialization The token IS initially assigned to site 1.

Therefore, initially holder_as_l_see_it is set to "self" for site 1 and 1

for all other sites, and have_token is true at site 1 only and false at

all other sites.

It is assumed that there are no requests at system start-up,

and therefore, initially requesting_CS and using_CS are false, and

who_to_pass_token is set to none for all the sites.

The Algorithm Each node has three processes one for invoking

mutual exclusion, one for handling receipt of request messages, and

one for handling receipt of token message. These three processes

execute 1n local (within a node) mutual exclusion which can be

implemented using a shared memory mutual exclusion solution, such as

semaphores, monitors, etc. However, wait and execution of the

Shared Variables (Information Held by Each node) :

Holder_as_l_see_it: Values= "self' or the name of one of the nodes.
Indicates the current holder of the token as viewed by this site.
Initially, site 1 's value is "self' and all other sites' value = 1.

Using_CS: A Boolean Value. Using_CS indicates if the node itself is currently
executing the critical section. Initially False for all the sites.

Have_token: A Boolean Value. Initially true at site 1 and false at all other sites.
Requesting_CS: A Boolean Value. True when a node is requesting access to the

critical section. Initially false at all the sites.
Who_to_pass_token: Values= "none" or name of one of the nodes. Indicates the

node to whom the token is passed next by this site. Initially, its
value = "none" at all the sites.

Process Which Invokes Mutual Exclusion for this node i :

who_to_pass_token := none; {There cannot be a request pending}
requesting_CS := true;
if not have_ token then begin

Send Request(i) to holder_as_l_see_it; {Send a request message containing its
holder _as_l_see_it := "self'; name to the node it thinks has token}
Wait Until have_token =true; {Wait is interruptible}

end;
using_CS := true;
< CRITICAL SECTION > {Can handle request messages here}
requesting_CS := false; using_CS := false;
if who_to_pass_token of: "none" then begin {Transmit the token to the site which

Send token to who_to_pass_token; requested for it when this site was using
have_ token := false; or waiting to use its critical section}

end;

Process Which Receives Request(k) messages :

if holder _as_Lsee_it of: "self' {If this site does not have the token,
then begin it forwards the request to the site who

Send Request(k) to holder_as_l_see_it; it thinks has the token and then
holder _as_l_see_it := k; updates its variable's name}

end else if ((using_CS 1\ (who_to_pass_token ="none")) V

(requesting_CS 1\ (who_to_pass_token = "none")))
then begin {If a request comes when this site is

who_to_pass_token := k; waiting to execute or executing the
holder_as_l_see_it := k; critical section, then save this name

end else begin fot later use}
Send token to k; {If this node has finished executing its
have_token := false; critical section, pass the token to the
holder _as_l_see_it := k; requesting node}
end;

Process Which Receives Token message :

have_token := true;

Figure 5.1 - Formal Description of Protocol 3

129

130

critical section 1n the process which invokes mutual exclusion are

interruptible, that is the other two processes can be executed that

time. It is also assumed that multiple requests within a node to

access the critical section are serialized.

A site not holding the token and wishing to enter the critical

section sends a request message to the site given by holder_as_l_see_it.

A non-privileged site, on receiving a request, forwards the request

to the site who it thinks holds the token, and updates its variable

holder_as_l_see_it to contain the requesting site's identifier for

directing the next request to that site. The privileged node passes

the token to the requesting node when it no longer needs the token

for itself, that is when it has finished executing its critical

section.

There is only one implementation detail which is not covered in

the informal discussion of the protocol. A privileged or going-to-be

privileged site must remember who to pass the token to separately

s1nce it is possible for this site to view the ultimate holder of the

token different from the site to whom the token is passed by it. This

happens when there is more than one request directed at a site while

it is executing its critical section or waiting to execute the

critical section as the token has not reached it yet.

The proposed algorithm uses a dynamic information structure.

Each site at any given time keeps dynamic information about two nodes

only - the current holder of the token as viewed by it (represented

as holder_as_l_see_it in Figure 5.1), and the node which is passed the

131

token next by it (represented as who_to_p�s_token in Figure 5.1).

Token Size - The token used in this algorithm does not contain any

information other than it is a "special" message. This 1s an

advantage over most of the other token-based algorithms where size of

the token message is considerably big. For example, in the Ricart­

Agrawala algorithm, the token contains an array of size N to store

sequence_ numbers of the sites [Ricart 1983]; in the Suzuki-Kasami

algorithm, the token contains an array of size N to store sequence

numbers of the sites and a queue, whose size varies from 0 to N-1, of

requesting nodes [Suzuki 1985 J; in Singhal's algorithm, the token

contains an array of size N to store sequence numbers of the sites

and a vector of size N to store the state information of all the

sites in the system [Singhal 1989].

Message Overtaking - In the proposed algorithm, the order of message

deli very does not have to be preserved. Consider the situation when

site i sends the token to site j and then issues a request to j to

access the critical section again. There is no problem even if i's

request is serviced by j before the token reaches j. On receiving i's

request, j will set who_to_p�s_token to i and will transfer the token

back to i only after using its crit!cal section. In the meantime, any

other request to j will be forwarded to 1.

5.2.1.3 Correctness Proofs

The proofs for mutual exclusion and freedom from both deadlock

and starvation are given below -

•Mutual Exclusion is Achieved -

132

In token-based algorithms, a site cannot enter the critical

section if it does not possess the token. So mutual exclusion may be

violated only if a site passes the token to another site while it is

executing the critical section. In the algorithm, the token can be

passed to another site either in the exit code of the process which

invokes mutual exclusion or in the process which receives the request

messages. A site executes its exit code only after it has finished

executing its critical section. In the process which receives request

messages, the token is passed only if holder _as_l_see_it = "self' and both

requesting_ CS and using_CS are false. Therefore, the algorithm

guarantees mutual exclusion. 0

For the proofs of following lemmas, the variable holder_as_l_see_it

is represented at each node by suffixing the node's name to it. The

nodes and the values of the variable holder_as_l_see_it at each node can

be represented as a directed graph G=(V,E), where V=set of nodes,

and E={(i,j)lholder_as_l_see_iti=ji\i,jEV}. In this notation, the value

"self" for a node is denoted as its own unique name. The loops formed

from the values of the variable holder_as_l_see_iti = i do not have any

effect on the algorithm because of ,the following reasons - (i)a node

possessing the token does not send a request to itself, (ii)a node,

on receiving a request, does not send that request to itself again,

and (iii)a node never transmits the token to itself. Therefore, these

loops are not considered in the proofs given below.

Lemma 1 - A node has at most one outgoing edge.

133

Proof - Since the variable holder_as_l_see_it at a node can hold only one

value at a time, and an edge from this node is formed using the value

of its holder_as_l_see_it variable, there can be only one outbound edge.

Also, since it is possible for a site i to have holder_as_l_see_iti=i,

there is no edge from this node then. 0

Lemma 2 - It is impossible to have a cycle in the directed graph G.

Proof - (1) Since the token always stays with the site that used it

last, when there are no pending requests in the system, the variable

holder_as_l_see_it for that site contains the value "self" . Therefore,

one node in the system has no outgoing edge then.

(2) If there are requests floating in the network (that is,

they have not yet reached their destinations), then it is possible to

have more than one site with holder_as_l_see_it="self". The graph is

then disconnected. However, the algorithm in Figure 5.1 ensures that

the requests are directed/going to be directed to all but one of

these sites and that would change the variable holder_as_l_see_it at

these sites in such a way that the graph is again connected with only

one node having no outgoing edge.

(3) Assume that a cycle is formed. This implies that each

site involved in the cycle has an outgoing edge. The other sites, not

involved in the cycle cannot remain permanently isolated as the final

graph is connected. Further, these rest of the sites can only point,

directly or indirectly, to one of the sites involved in the cycle as

a site can have only one outgoing edge (from Lemma 1). Thus, all the

sites in the graph have an outgoing edge. But from (1) and (2), there

134

is one node which has no outgoing edge. This is a contradiction and

therefore, the assumption made IS wrong.

Hence, a cycle is never formed. 0

Lemma 3 - A request to access the critical section will always reach

a node which possesses or IS going to possess the token and has

who_to_pass_token = "none".

Proof - (1) The communication network is assumed to be reliable. So

a request IS never lost.

(2) From Lemma 2, a cycle is never formed in the graph of

nodes. Therefore, a request does not keep circulating among nodes.

(3) Since a site cannot generate another request until one

request is satisfied and the site with the token does not forward the

first request it handles to another site, a request never reaches

back to the node which generated it.

(4) Transmissions delays are assumed to be finite.

From (1), (2), (3), and (4), it follows that a request to

access the critical section reaches a node, which has/is going to get

the token and has the value of the variable who_�_pass_�ken equal to

"none", in a finite amount of time. 0

•Deadlock is Impossible -

Deadlock occurs when no node is in the critical section and

there is at least one node trying to enter it and cannot do so.

Proof - Let R.
I

be the request from site to use the critical

section. If site i holds the token, then there is nothing that can

prevent i from entering its critical section. (Of course, if site i

135

generated Ri and it has the token, then it is not executing the

critical section as multiple requests are serialized. Also, there are

no other requests when Ri is generated and serviced.)

If site i does not hold the token, then it is guaranteed that

Ri will reach a node, say m, which has/is going to get the token and

it is the first request m is going to service (from Lemma 3). Now,

according to the algorithm in Figure 5.1, if that node m is not using

the critical section, it must immediately send the token to i 0 '

otherwise it sets its who_to_pa.ss_token to i and upon finishing

execution of the critical section, it will send the token to i. That

is, it 1s impossible that m keeps the token forever when it has

serviced a request from another node. Since the token takes only a

finite amount of time to reach i and the possession of the token is

equivalent to accessing the critical section, i then enters its

critical section.

Hence, deadlock is impossible. D

•Starvation is Impossible -

Starvation occurs when one node waits indefinitely to enter its

critical section while other nodes are entering and leaving their

critical section. So we wish to prove that every request to enter the

critical section is satisfied within a finite time.

(1) From Lemma 3, we know that a request R reaches the node

which possesses or is going to possess the token and has not serviced

a request.

136

(2) We also know that a node, on seeing R, will not forward

any future requests directed at it to the node to which it forwards

R. Rather, it would now forward the next request to the node which

generated R. Therefore, no new requests from that node (its own or on

behalf of other nodes) can precede R after it has serviced R.

(3) Transmission delays are assumed to be finite.

From (1), (2), and (3), it follows that any request R is

eventually satisfied 1n finite time. Hence, starvation lS

impossible.D

5.2.1.4 Cost of the Algorithm :

The cost of the algorithm is measured in terms of the number of

messages required for one execution of the critical section.

Like other token-based algorithms, if a node has the token and

there are no pending requests to be serviced, that node can enter the

critical section without communicating with anybody and therefore,

the number of message exchanges is 0.

When a node does not have the token, the best case would be

when the request message is directed to the node which has the token

and that node services this request first. In that case, only 2

messages are needed for mutual exclusion invocation, the request and

the passing of the token.

The worst case occurs when the nodes arrange themselves in a

straight line. This can happen because of the way requests to enter

the critical section are satisfied. This is illustrated below. In

137

this case, if the node at one end holds the token and if the node at

the other end wishes to enter the critical section, it needs (N-1)

request messages and 1 token message to do so. Therefore, a total of

N messages is required in the worst case.

Example to demonstrate the worst case -

Assume 6 people (1 through 6) share a book. Also, assume the book is with 3, and the

state of the system is as given -

holder_as_I_see_iti = 3, for i = 1 and 2,

holder _as_I_see_iti = "self', for i = 3,

holder _as_I_see_iti = 1, for i = 4 , 5, and 6, and

who_to_pass_token = "none", for all i = 1 to 6.

Consider the case, when 2 needs the book and the state of the system is as given

above. So 2 sends a request to 3. Now assume that 4, 5, 6, and 1 use the book in this order

before 2's request reaches 3. The state of the system then is -

holder _as_I_see_it 1 = "self',

holder_as_I_see_it3 = 4,

holder_as_I_see_it5 = 6,

holder_as_I_see_it2 = "self',

holder _as_I_see_it4 = 5,

holder_as_I_see_it6 = 1,

who_to_pass_tokeni = "none", for all i = 1 to 6.

There is a request in the network from 2 to 3.

On receiving 2's request, 3 forwards it to 4, 4 forwards it to 5, 5 forwards it to 6, and 6

forwards it to 1. Also, 3, 4, 5, and 6 cannot use the book before 2 , once they have seen 2's

request. So it takes 5 request messages (2-+3, 3-+4, 4-+5, 5-+6, 6-+1) and one for transferring

the book (1 -+2) for 2's request to be satisfied.

The example becomes more interesting when 2's request reaches 3 when 3 had just

passed the book to 4, then 3's request on behalf of 2 reaches 4 when 4 had just passed the book

to 5, and so on. But this does not affect the worst case analysis of the algorithm.

Since the proposed algorithm uses a dynamic information

structure, the number of messages vary between 0 and N.

138

5.2.1.5 Failure Considerations

This section addresses the effects of both link and site

failures on the proposed algorithm and presents methods for recovery

from these failures. The Byzantine failures [Lamport 1982] are not

considered.

There are many states in which a system can be when it fails

[Singhal 1989]. A crash recovery procedure should be able to pull the

system back from all of these states. Such an exhaustive crash

recovery procedure is not given here, but some of the more important

cases are discussed.

•Message Losses -

It is assumed that a message is either delivered correctly or

not delivered at all by the network communication subsystem. This can

be ensured by using error detecting codes [Tanenbaum 1989]. Message

loss can be detected using time-out mechanisms.

If a request message 1s lost, the sending site will have to

make the request again. So loss of a request message is not a big

problem. However, if the token is lost, it needs to be handled

carefully as only one site must regenerate the token. An election

algorithm [Garcia-Molina 1982; Peterson 1982; Hirschberg 1980] may be

used to generate the new token.

•Link Failures -

It is assumed that the underlying network layer informs the

sender if a message cannot be sent because of a link failure. There

139

are two situations to be taken into account -

A) When the link failures cause network partitioning -

In this case, the network graph is divided into two different

subgraphs. Following two situations may occur then -

(i)holder_as_Lsee_iti = j , where i and j belong to separate subgraphs.

(ii)who_to_pass_tokeni = j , where i and j belong to separate subgraphs.

In the first situation, a request cannot be made by i or

forwarded by i on behalf of the other sites which have holder _as_l_see_it

variable value equal to j (transitive closure). Other sites can still

enter the critical section and mutual exclusion condition is still

maintained. In the second situation, the token cannot be passed. The

mutual exclusion constraint is not violated as the token remains with

one site only.

It is possible to have the token in the subgraph where all the

sites have their holder_as_l_see_it variables set to sites from the other

subgraph. In that case, critical section is inaccessible to all sites

once the site with the token has found out that the token cannot be

passed to the site 1n the other subgraph. This does not affect the

mutual exclusion constraint; it only causes delay in execution of the

critical section by a site. The system jumps back to full activity

once the connectivity is restored.

If the amount of parallelism is a big consideration and the

estimated time to restore the system connectivity is large, the

Recovery Procedure 2 given below may be used. The Recovery Procedure

1 must be followed anyway once the system is restored as the sites in

140

the subgraph without the token will have no idea where the token is.

These sites will have to issue a new request to access the critical

section as the requests at the time of partition are not satisfied.

Recovery Procedure 1 -

When system connectivity 1s restored, the sites 1n the

partition (say A) which did not have the token need to be notified

which site holds the token in the other partition (say B). This can

be achieved by having all the sites in parti�ion A send a "recovery"

message to all the sites in partition B. Sites in partition A cannot

request for the critical section until an "inform" message reaches

them. On receiving the "recovery" message, the site holding the token

or going to have the token and having who_to_pass_token ="none" sends an

"inform" message containing its identity to the site which sent that

"recovery" message. Other sites ignore the "recovery" message. On

receiving the "inform" message, a site sets its holder_as_l_see_it to

contain the identity of the site which sent the "inform" message. The

variable who_�_pass_�ken is set to "none" for the sites in partition

A. Thus the connectivity of the graph formed by the sites and the

values of the holder_as_l_see_it variable are restored.

Recovery Procedure 2 -

Once it is found by a site (say i) that token can't be passed

to the site given by who_to_pass_tokeni, it sends an "attention needed"

message containing its identity to all the sites. The sites which are

still connected to site i in the physical network graph will receive

this message and then change their holder_as_l_see_it variable value to i

141

to reflect that change in the graph formed (by sites and the values

of the variable holder_as_l_see_it) in the algorithm. This would enable

the sites in the partition to access the critical section. Once the

connectivity is restored, Recovery Procedure 1 is followed.

However, there is a problem - what if a request message was

already sent to i by another site? This can be handled by using

timestamps in the messages. would neglect all request messages

marked with a timestamp value smaller than the "attention needed"

message. A site on receiving the "attention needed" message would

generate a request message again.

B) �en the link failures do not cause network partitioning -

Even if 1 ink fai 1 ures do not cause the network graph to be

disconnected, it is possible that the graph formed by the sites and

the values of the variable holder_as_I_see_it gets partitioned. This does

not pose problems as the strong connectivity feature can be exploited

(network is assumed to be fully connected) to find alternate paths

and complete message transmissions.

• Site Failures -

It is assumed that site faill,!res can be detected by some kind

of mechanism, such as time-outs. Once a site failure is detected, it

is made known through messages to the other sites by the site

detecting this failure. It 1s also assumed that a site does not

malfunction on failing.

The following situations that require action may occur at the

142

time a site (say j) fails -

(1) j had the token at the time of failure, or

(2) j is going to get the token as it had made a request to enter

the critical section before it failed, or

(3) there is a request message directed at the failed site j, or

(4) j was recovering from a previous failure.

Each of these cases is handled separately. The recovery

procedure for the failed site j is given first. This is common to all

the four cases.

Recovery Procedure 3 (recovery from a failed state) -

In the recovery phase, the failed site (j) sends a "recovery"

message to all the sites. On receiving this "recovery" message, the

site holding the token and having who_to_pass_token ="none" sends an

"inform" message containing its name to the recovering site j. After

the receipt of this "inform" message, site j sets its variable

holder_as_l_see_it to contain the name of the site which sent the

"inform" message. Site j assigns "none" to its variable

who_to_pass_token.

It is possible that more than one "inform" message is received

by a recovering node (due to unpredictable communication delay). But

it is sufficient to have the recovering node process only the first

"inform" message and ignore the rest, because processing of one such

message connects the recovering site back into the dynamic graph

formed in the algorithm.

The recovery procedures for each of the four cases are

discussed below -

Case One - The token is definitely lost. So it needs

143

to be

regenerated. As mentioned earlier, detection of token-loss is not a

trivial problem since the token may be considered to be lost when

instead network connectivity is broken. Recovery Procedure 4 tries to

bring back system activity in such a situation.

Recovery Procedure 4 -

(1) Run a token-recovery algorithm. An election algorithm

may be employed to regenerate the token.

(2) Once the token is regen era ted, all other sites have to

be notified of the site which has the token (this is necessary if the

token-recovery algorithm does not do so). The site which regenerates

the token assigns "self" to its holder_as_l_see_it variable and all other

sites set their holder_as_l_see_it variable to contain the name of the

token regenerating site. The variable who_to_pass_token 1s set to

"none" at all the sites.

(3) A site (except the failed site) can make a request to

access the critical section only after it has performed the first two

steps completely.

(4) lo'hen the failed site _recovers, it follows the Recovery

Procedure 3 given earlier.

Case Two - If the failure of site j is detected before the token is

passed to it, then the token is not transmitted to j. Then a recovery

procedure containing steps 2, 3, and 4 of Recovery Procedure 3 is

employed. This may cause some sites to make a request again to enter

144

the critical section. However, if the token is already on its way to

j, it will be lost when it reaches the failed site j. It is then

handled in a similar manner to the first case.

Case Three - When a request message is sent to the failed site, it is

considered lost. Also, the sites, whose holder_as_l_see_it variables are

equal to the failed site's identifier, cannot make a request. This

problem appears in the second case also. It may be handled by waiting

till the failed site recovers (at the cost of wasting parallelism).

But these (dependent) sites can be allowed to reorganize themselves

1 n the dynamic graph formed by the algorithm. The details are given

1n Recovery Procedure 5.

Recovery Procedure 5 -

There are two parts of this recovery procedure -

(1) Reorganization of the sites dependent on the failed site, and

(2) Recovery of the failed site (same as Recovery Procedure 3).

The sites whose holder_as_l_see_it variable contains the name of

the failed site send a "help me" message to all other sites. On

receiving this "help me" message, the site holding the token and

having who_to_pass_token ="none" sends an "inform" message containing

its name to the site which sent the "help me" message. Other sites

ignore the "help me" message. On receiving this "inform" message, a

site sets its variable holder_as_l_see_it to contain the name of the site

which sent the "inform" message. Thus, these sites are connected back

in the dynamic graph of the algorithm and they can now make a request

to enter the critical section.

145

Case Four - When a site fails during its recovery from previous

failure, it starts the recovery procedure again from the beginning.

There is however one problem - an old "inform" message may reach this

site during its current recovery procedure. This can be handled by

using timestamps.

The recovery procedures given above demonstrate that the

proposed algorithm allows dynamic reconfiguration of the network. A

new node can be added to the system by following the Recovery

Procedure 3. In fact, the dynamic nature of the algorithm makes it

easier to handle these cases.

5.2.2 Mutual Exclusion in case of M instances of the Resource

In practical systems, it happens quite often that there exists

more than one resource of the same kind and each resource can be used

by at most one process at any given time. A process does not care

which resource it uses as long as it gets to use a resource. Example

2, given at the beginning of this chapter, fits this description very

well.

The solution of this problem is built upon the mutual exclusion

algorithm for one shared resource. Extensions are proposed to the

Ricart-Agrawala algorithm, the Suzuki-Kasami algorithm, and the

algorithm from the previous section to solve this problem.

In the following discussions, N IS the number of sites and M 1s

the number of resources available.

146

5.2.2.1 Extension to the Ricart-Agrawala Algorithm -

The following changes to the Ricart-Agrawala algorithm are

proposed to solve this problem -

(1) Instead of waiting for (N-1) "replies" in the entry code

for access to the critical section, wait for (N-M) "replies" only.

(2) Since nothing is assumed about the time taken for a

message to reach its destination node, it is now possible (because of

step 1 above) that a site receives a "reply" (from a site) to an old

request while this site has made another request to access the

critical section. This can be handled by having a site timestamp its

"replies" like it timestamps its "requests". Then, on receipt of a

reply, it can be decided, whether or not that "reply" pertains to the

current request, by comparing the timestamp of the "request" made

with that of the "reply" received.

5.2.2.2 Extension to the Suzuki-Kasami Algorithm -

In the Suzuki-Kasami algorithm, the token determines which site

enters its critical section. Since there is only one token In the

system, only one site can access the shared resource at a time. Two

extensions are proposed to the Suzuki-Kasami algorithm to achieve

mutual exclusion In case of M copies of the shared resource. The

basic idea in both of these extensions can be applied to any token­

based algorithm and is given below

(1) the token carries the number of available shared

resources, which is represented here by M. In the Suzuki-Kasami

algorithm, M can be considered to carry the value 1, or

(2) there are M tokens in the system.

147

In the first extension, a site decrements M on getting the

token and may retransmit it to another requesting site if M > 0. After

a site finishes execution of its critical section, it broadcasts a

"release" message, if it does not have the token; otherwise, it

increments the value of M on the token. Special care has to be taken

so as not to update M at different sites for the same "release"

message, and also in the situation when the token is in transit at

the time of broadcast of the "release" message. This can be handled

by having each site maintain sequence number of the "release" message

received from all the sites, like it does for the "request" message.

In the Suzuki-Kasami algorithm, the token carries the sequence number

of the last request satisfied for each site. So by comparing the

sequence number of the last request satisfied and the sequence number

of the "release" message, it can be found whether or not M has to be

updated.

In the second extension, there are M tokens in the system, one

for each instance of the resource. Assume these M tokens to be

distributed among the nodes. Sine� in the Suzuki-Kasami algorithm, a

request message is sent to all the nodes, it is possible that a site

receives more than 1 token in response to its one request. This site

must immediately pass the extra tokens to the other requesting sites

so as not to waste parallelism. It is also possible for a site to

receive a token when it is finished executing its critical section

148

and has not made a request to enter the critical section again. Since

a site sends a request message to all the sites, this does not pose

any problems except for some extra message transmissions and loss of

parallelism. This M tokens approach is more useful than the former

scheme (where there 1s one token and it carries the value M) if the

system involves processes like 1n the readers-writers problem. In that

case, a writer (site) waits until it has obtained all tokens, where

as a reader (site) can read with just one token.

5.2.2.3 Extension of the Proposed Algorithm -

The algorithm proposed 1n §5. 2. 1. 2 is also token-based.

Therefore, the same two extensions are possible - one involving only

one token which carries the value M and the other involving M tokens.

In the first extension, assume that initially the token with

value M is at site 1. In the algorithm 1n Figure 5.1, the token is

not transmitted by a site if it is 1n its critical section. Since

more than one site can be in its critical section, the token is

allowed to be transmitted by a site even if it is executing the

critical section, but with the condition that M>O.

On receiving the token, a site decrements the value of M by 1.

The token stays at that site if M=O, otherwise it is transmitted to

a requesting site. When a site finishes execution of its critical

section, M needs to be incremented by 1. If the site has the token,

the task of incrementing is no problem. If the site does not possess

the token, it needs to be handled with care. Two methods are given

149

here for handling this -

(1) Broadcast a "release" message to all the sites. The site

with the token increments M by 1 after receiving a "release" message.

Broadcast of "release" message introduces the need for each site to

maintain sequence numbers like in the Suzuki-Kasami algorithm.

(2) Transmit the "release" message to the site given by its

holder_as_I_see_it variable. On receiving a "release" message, the site

holding the token increments M by 1; a site not possessing the token

forwards it to its holder_as_I_see_it site. This method reduces the

number of messages but there is a risk involved the "release"

message may end up chasing the token. This is not very likely to

occur unless the critical section is very short or there is a heavy

demand to use the shared resources. Parallelism could be lost (by

saving on the number of messages) as the "release" message may visit

many nodes before reaching the node with the token.

In the second extension, there are M tokens in the system.

Assume the tokens are initially distributed among all the sites. Also

assume that each site has a set which contains the names of the sites

which it thinks have the token. Initially, each such set 1s

initialized to contain the names of the token holding sites. A reader

site picks a site from its set of sites (can be random) as the one

which it thinks has the token and then follows the protocol as given

in Figure 5.1. A writer site follows a "greedy" approach by sending a

request message to all the sites in its set. A site may update its

set according to the following rules -

150

(i) When a site, say i, sends a request for itself to

another site (one from its set), say j, it removes j from the set and

adds its own name i to the set.

(i i) When a site, say k, sends a request on behalf of i to

another site (one from its set), say j, it removes j from the set and

adds i to the set.

(iii) The site, which transmits the token, removes its own

name from its set and adds the name of the site to which it sends the

token.

This extension has a serious problem - what if two writers try

to capture (all M) tokens at the same time? This can be solved by

using timestamps with the request messages. Then the writer with the

lower timestamp has precedence over the other writer and thus,

deadlock is avoided.

5.3 Summary :

In this chapter, a new distributed mutual exclusion algorithm

which requires between 0 and N message exchanges is proposed. Ideas

are presented for extending one resource mutual exclusion algorithms

to solve the mutual exclusion problem in the case where there is more

than one copy of the resource.

CHAPTER VI

CONCLUSIONS

The goal of this work was to consider various methods of

implementing mutual exclusion in both centralized and distributed

systems.

Most of the currently available computer systems provide at

least one of the mechanisms of Chapter II at the hardware level. So

the mutual exclusion problem, local to a computer system, can be

solved efficiently using the hardware mechanism available on that

system. Algorithms In Chapter III implement the required

synchronization within a system using the standard operators of a

high-level programming language. These solutions are important not

only from a historical point of VIew but also because they illustrate

how concurrent programs behave.

Since the solutions of Chapters II and III are dependent on the

existence of a shared memory, they cannot be used In distributed

systems. Chapter IV discusses mutual exclusion solutions based on

message-passing. The main characteristic of these solutions is the

multiplicity of decision-making centers. And the major source of

problems is the unpredictability of transmission delays along

communication channels.

It is shown in Chapter V that new solutions to the problem of

mutual exclusion can be formed by using heuristics. These heuristics

are developed by considering real-world situations which require

151

152

mutual exclusion. An algorithm, which is shown to be more economical

than most of the other existing algorithms, is proposed. It requires

between 0 and N message exchanges per critical section execution. The

token size in this algorithm is smaller In comparison to that in

other token-based algorithms. The effects of both site and link

failures on the algorithm are considered in detail and procedures for

recovery from these failures are also given.

In the proposed algorithm, requests are ordered based on their

time of arrival at a site. Since all requests cannot be serviced at

the same time, there does exist an order among the requests and this

is made use of. Raymond uses a similar ordering scheme in his mutual

exclusion algorithm [Raymond 1989]. The algorithm in Chapter V does

not grant access to the critical section in a first-come-first-served

order like [Lamport 1978] and [Ricart 1981]. But those two algorithms

do so at the cost of more message exchanges.

The algorithm assumes that each site is equally likely to

access the critical section and each access to the critical section

is equally important. These assumptions may be relaxed a little bit.

An example of why this would be desirable is given In terms of

Example 1 from the beginning of C�apter V - "What if one person has

an exam and the others don't? So that person needs the book more than

anybody else".

This situation can be handled by introducing an "urgent"

message and making all sites respect this "urgent" message. Of

course, it is assumed that there are no false "urgent" messages. This

153

gives rise to new problems. What if two sites 1ssue an "urgent"

message? Timestamps may be used by a site to determine the "more

urgent" message of the two.

It was also assumed in the algorithm that a site serializes its

multiple requests. This may be relaxed when a site possesses the

token. If an internal request 1s generated to access the critical

section and there is a request from another site pending to be

serviced, the internal request may be satisfied first to save on the

number of message exchanges. Theoretically speaking, this can cause

starvation. But in practice, it is unlikely. (Based on this

assumption, Lamport gave a "fast" mutual exclusion algorithm for

shared memory systems [Lamport 1987].)

The distributed mutual exclusion solutions for one shared

resource are extended in Chapter V to solve the problem of mutual

exclusion 1n the case where there is more than one instance of the

shared resource. It is assumed in these extensions that availability

of any shared resource (from that pool of shared resources) satisfies

a request. These extensions can be modified to include specific

resource demands, if any.

The solutions to the problerrr of mutual exclusion in this work

assume presence of only one critical section. The problem when

processes have more than one critical section, which overlap with

each other, needs to be considered in future.

Due to time constraints, we could not do a performance

evaluation of the proposed algorithm. Gravey and Dupis proposed a

154

modeling method for performance evaluation of distributed mutual

exclusion protocols. They analyzed the performance of two such

algorithms implemented in a distributed system consisting of two

nodes only as the cardinality of the state space of the Markov Chain

used grows rapidly with the number of nodes in the system [Gravey

1987]. A complete analytic study of the proposed algorithm is a topic

of research in itself.

To sum up, the problem of mutual exclusion is something which

cannot be overlooked by a system designer. A variety of solutions to

this problem are available. Each solution has its own advantages and

disadvantages - one has to choose a suitable solution for the problem

depending on what factors (availability of shared memory, centralized

or distributed control, cost, network topology, reliability, etc.)

need to be emphasized.

BIBLIOGRAPHY

[Agrawal 1991] D. Agrawal, and A. E. Abbadi: An Efficient and Fault- Tolerant

Solution for Distributed Mutual Exclusion, ACM TOCS, 9 (1) , Feb. 1991 , 1-20.

[Andre 1985] F. Andre, D. Herman, and J. -P. Ver jus: Synchronization of

Parallel Programs, North Oxford Academic, 1985.

[Andrews 1982] G. R. Andrews, D. P. Dobkin, and P. J. Downey: D�tribu�d

Allocation with Pools of Servers, in ACM SIGACT-SIGOPS Symposium on

Principles of Distributed Computing, Ottawa, Canada, Aug. 18-20,

1982, 73-83.

[Andrews 1983] G. R. Andrews, and F. B. Schneider: Concepts and Notations

for Concurrent Programming, ACM Computing Surveys, 15(1), March 1983,

3-43.

[Andrews 1991a J G. R. Andrews: Paradigms for Process Interaction in Distributed

Programs, ACM Computing Surveys, 23(1), March 1991, 49-90.

[Andrews 1991 b J G. R. Andrews: Concurrent Programming - Principles and Practice,

The Benjamin/Cummings Publishing Co., Inc., California, 1991.

[Axford 1989] Tom Axford: Concurrent Programming - Fundamental Techniques for

Real- Time and Parallel Software Design, John W i 1 ey & Sons, 1989.

[Bagrodia 1989 J R. Bag rod ia: Process Synchronization - Design and Performance

Evaluation of Distributed Algorithms, IEEE Transactions on Software

Engineering, 15(9), Sept. 1989, 1053-1065.

[Beauquier 1990] J. Beauquier:

Lecture Notes in Computer

Berlin, 1990, 50-61.

Fault- Tolerant Naming and Mutual Exclusion, in

Science, Vol. 469, Springer-Verlag,

[Belpaire 1975] G. Belpaire: Synchronization - Is a synthesis of the problems

possible?, in Proceedings of the ACM SIGCOMM/SIGOPS Interprocess

Communications Workshop, 1975, 3-10.

[Ben-Ari 1990] M. Ben-Ari: Principles of Concurrent and Distributed Programming,

Prentice Hall International, 1990.

155

156

[Bernstein 1981] P. A. Bernstein, and N. Goodman: Concurrency Control in

Distributed Database Systems, Computing Surveys, 13(2), June 1981, 185-

221.

[Birman 1987] K. Birman, and T. Joseph: Reliable Communication 1n Presence of

Failures, ACM TOCS, 5(1), Feb. 1987, 47-76.

[Brown 1989] G. M. Brown, M. G. Gouda, and C. -L. Wu, Token Systems that

Self-Stabilize, IEEE Transactions on Computers, C-38(6), June 1989,

845-852.

[Burns 1982] J. E. Burns, P. Jackson, N. A. Lynch, M. J. Fischer, and

G. L. Peterson: Data Requirements for Implementation of N-process Mutual Exclusion

Using a Single Shared Variable, Journal of the ACM, 29(1), Jan. 1982,

183-205.

[Burns 1987] J. E. Burns, and G. L. Peterson: Constructing Multi-reader

Atomic Values from Non-atomic Values, in Proceedings of the Sixth Annual

ACM Symposium on Principles of Distributed Computing, Aug.

1987, 222-231.

[Campbell 197 4] R. H. Campbell , and A. N. Habermann: The Specification of

Process Synchronization by Path Expressions, in Lecture Notes in Computer

Science, Vol. 16, Springer-Verlag, Berlin, 1974, 89-102.

[Carvalho 1982] 0. S. F. Carvalho, and G. Roucairol: On the Distribution of

an Assertion, in ACM SIGACT -SIGOPS Symposium on Principles of

Distributed Computing, Ottawa, Canada, Aug. 18-20, 1982, 121-131.

[Carvalho 1983] 0. S. F. Carvalho, and G. Roucairol: On Mutual Exclusion in

Computer Networks, CACM, 26(2), Feb. 1983, 146-147.

[Chandy 1984 J K. M. Chandy, and J. Misra: The Drinking Philosophers Problem,

ACM TOPLAS, 6(4), Oct. 1984, 632-646.

[Chandy 1985 J K. M. Chandy, and L. Lamport: Distributed Snapshots - Determining

Global States of Distributed Systems, ACM TOCS, 3(1), Feb. 1985, 63-75.

[Chandy 1988 J K. Man i Chandy, and J. Misra: Parallel Program Design - A

Foundation, Addison-Wesley Publishing Co., 1988.

157

[Chen 1975] R. C. Chen: Representation of Process Synchronization, in Proceedings

of the ACM SIGCOMM/SIGOPS Interprocess Communications Workshop,

1975, 37-42.

[Chern 1989] S. E. Chern: The Generalized Mutual Exclusion Problem in a Computer

System, Ph.D. Dissertation, The University of Texas at Dallas,

Aug. 1989.

[Cornaf ion 1985 J Distributed Computing Systems - Communication, Cooperation,

Consistency, Elsevier Science Publishers B. V., Amsterdam, 1985.

[Courtois 1971] P. J. Courtois, F. Heymans, and D. L. Parnas: Concurrent

ControlwithReaders andWriters, CACM, 14(10), Oct. 1971, 667-668.

[deBru i jn 1967 J N. G. deBru i jn: Additional Comments on a Problem in Concurrent

Programming Control, CACM, 10(3), March 1967, 137-138.

[Dei tel 1990 J H. M. Dei tel : An Introduction to Operating Systems, Addison­

Wesley Publishing Co., 1990.

[Dijkstra 1965] E. W. Dijkstra: Solution of a Problem m Concurrent Programming

Control, CACM, 8(9), Sept. 1965, 569.

[Dijkstra 1968] E. W. Dijkstra: The Structure of 'THE" Multiprogramming System,

CACM, 11(5), May 1968, 341-346.

[Dijkstra 1968a] E. W. Dijkstra: Cooperating Sequential Processes, in

Programming Languages, F. Genuys (ed.), Academic Press, London,

1968' 43-112.

[Dijkstra 1971] E. W. Dijkstra: Hierarchical Ordering of Sequential Processes, Acta

Informatica, 1(2), 1971, 115-138.

[Dijkstra 1972] E. W. Dijkstra:- Information Streams Sharing Finite Buffer,

Information Processing Letters, 1, 1972, 179-180.

[Dijkstra 1974] E. W. Dijkstra: Self-stabilizing Systems in spite of Distributed

Control, CACM, 17(11), Nov. 1974, 643-644.

[Dijkstra 1980] E. W. Dijkstra, and C. S. Scholten: Termination Detection

for Diffusing Computations, Information Processing Letters, 11(1), Aug.

1980, 1-4.

158

[Dijkstra 1983] E. W. Dijkstra, W. H. J. Feijen, and A. J. M. van

Gasteren, Derivation of a Termination Detection Algorithm for Distributed

Computations, Information Processing Letters, 16(5), June 1983, 217-

219.

[Dijkstra 1986] E. W. Di jkstra: A Belated Proof of Self-stabilization,

Distributed Computing, 1, 1986, 5-6.

[Doran 1980] R. W. Doran, and L. K. Thomas: Variants of the Software Solution to

Mutual Exclusion, Information Processing Letters, 10(4,5), July 1980,

206-208.

[Dupis 1986] A. Dupis, and G. Hebuterne: On the Use of Quantitative Evaluation to

Assess and Study Distributed Algorithms Properties, in Proceedings of the IFIP

WG 6.1 Fifth International Workshop on Protocol Specification,

Testing, and Verification, France, June 10-13, 1985. Also in,

Protocol Specification, Testing, and Verification V, M. Diaz

(ed.), North-Holland, Amsterdam, 1986, 363-373.

[Eisenberg 1972] M. A. Eisenberg, and M. R. McGuire: Further Comments on

Dijkstra's Concurrent Programming Control Problem, CACM, 15(11), Nov. 1972,

999.

[Elshoff 1988] I. J. P. Elshoff, and G. R. Andrews: The Development of Two

Distributed Algorithms for Network Topology, Technical Report No. 88-13,

Department of Computer Science, University of Arizona, Tucson,

Arizona, 1988.

[Enslow 1978] P. H. Enslow: "What is a distributed data-processing system?", IEEE

Computer, Jan. 1978, 13-21.

[Eswaran 1976] K. P. Eswaran, J.- N. Gray, R. A. Lorie, and I. L.

Traiger: The Notions of Consistency and Predicate Locks in a Database System, CACM,

19(11), Nov. 1976, 624-633.

[Faulk 1988] Stuart R. Faulk, and David L. Parnas: On Synchronization 1n

Hard Real-Time Systems, CACM, 31(3), March 1988, 274-287.

[Francez 1986] Nissim Francez: Fairness, Springer-Verlag, 1986.

159

[Freisleben 1989] B. Freisleben, and J. L. Keedy: Priority Semaphores, The

Computer Journal, 32(1), 1989, 24-28.

[Garcia-Molina 1982] H. Garcia-Molina: Elections in a Distributed Computing

System, IEEE Transactions on Computers, C-31(1), Jan. 1982, 48-59.

[Garcia-Molina 1985] H. Garcia-Molina, and D. Barbara: How to Assign Votes

in a DistributedSystem, Journal of the ACM, 32(4), Oct. 1985, 841-860.

[Gifford 1979] D. K. Gifford: Weighted Voting for Replicated Data, in

Proceedings of the 7th Symposium on Operating System Principles,

ACM, New York, 1979, 150-162.

[Gottlieb 1983] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P.

McAuliffe, L. Rudolph, and M. Snir: The NYU Ultracomputer- Designing an

MIMD Shared Memory Parallel Computer, IEEE Transactions on Computers, C-

32(2), Feb. 1983, 175-189.

[Gottlieb 1987 J A. Gottlieb: An Overview of the NYU Ultracomputer Project, in

Experimental Parallel Computing Architectures, J. J. Dongarra

(ed.), Elsevier Science Publishers B.V., North-Holland, 1987, 25-

95.

[Gravey 1987] A. Gravey, and A. Dupis: Performance Evaluation of Two Mutual

Exclusion Distributed Protocols via Markovian Modeling, in Proceedings of the

IFIP WG 6.1 Sixth International Workshop Protocol Specification,

Testing, and Verification, Montreal, Qubec, Canada, June 10-13,

1986. Also, in Protocol Specification, Testing, and Verification

VI, edited by B. Sarikaya, and G. V. Bochmann, North-Holland,

Amsterdam, 1987, 335-346.

[Habermann 1972 J A. N. Habermann:- Synchronization of Communicating Processes,

CACM, 15(3), March 1972, 171-176.

[Hansen 1972a] Per Brinch Hansen: Structured Multiprogramming, CACM, 15(7),

July 1972, 574-578.

[Hansen 1972b] Per Brinch Hansen: A Comparison of Two Synchronizing Concepts,

Acta Informatica, 1(3), 1972, 190-199.

160

[Hansen 1973a] Per Brinch Hansen: Operating System Principles, Prentice-Hall,

1973.

[Hansen 1973b] Per Br inch Hansen: Concurrent Programming Concepts, ACM

Computing Surveys, 5, 1973, 223-245.

[Hansen 1977] Per Brinch Hansen: The Architecture of Concurrent Programs,

Prentice Hall, 1977.

[Hansen 1978] Per Brinch Hansen: Distributed Processes- A Concurrent Programming

Concept, CACM, 21 (11) , Nov. 1978, 934-941.

[Hehner 1981] E. C. R. Hehner, and R. K. Shyamasundar: An Implementation

of P and V, Information Processing Letters, 12(4) , Aug. 1981, 196-

198.

[Helary 1988] J. M. Helary, N. Plouzeau, and M. Raynal: A Distributed

Algorithm for Mutual Exclusion 1n an Arbitrary Network, The Computer Journal,

31 (4) , 1988, 289-295.

[Hirschberg 1980] D. S. Hirschberg, and J. B. Sinclair: Decentralized

Extrema- Finding in Circular Configuration of Processors, CACM, 23 (11) , Nov. 1980,

627-628.

[Hoare 1969] C. A. R. Hoare: An Axiomatic Basis for Computer Programming, CACM,

12(10) , Oct. 1969, 576-580.

[Hoare 197 4 J C. A. R. Hoare: Monitors - An Operating System Structuring Concept,

CACM, 17 (10) , Oct. 1974, 549-557.

[Hoare 1985] C. A. R. Hoare: Communicating Sequential Processes, Prentice Hall

International, 1985.

[Howard 1976] J. H. Howard: ProvingMonitors, CACM, 19(5) , May 1976, 273-

279.

[Hwang 1985 J K. Hwang, and F. A. Briggs: Computer Architecture and Parallel

Processing, McGraw-Hill Book Co., 1985.

[Hyman 1966 J H. Hyman: Comments on a Problem 1n Concurrent Programming Control,

CACM, 9 (1) , Jan. 1966, 45.

[Intel 386™] -, 386™SX Processor Programmer's Reference Manual.

161

[Intel 486™] - i486™ Microprocessor Programmer's Reference Manual.

[Intel 80286] - Introduction to the iAPX 286™, Intel Corp.

[Joseph 1989] T. A. Joseph, and K. P. Birman: Reliable Broadcast Protocols, in

Distributed Systems, S. Mullander (ed.), ACM Press Frontier

Series, Addison-Wesley Publishing Co., 1989, 293-317.

[Keedy 1979] J. L. Keedy, K. Ramamohanarao, and J. Rosenberg: On

Implementing Semaphores with Sets, The Computer Journal, 22(2), 1979,

146-150.

[Keedy 1982] J. L. Keedy, J. Rosenberg, and K. Ramamohanarao: On

Synchronizing Readers and Writers with Semaphores, The Computer Journal,

25(1), 1982, 121-125.

[Keedy 1985] J. L. Keedy, and B. Freisleben: On theEfficientUse ofSemaphore

Primitives, Information Processing Letters, 21(4), 1985, 199-205.

[Kessels 1977] J. L. W. Kessels: An Introduction to Event Queues for Synchronization

in Monitors, CACM, 20(7), July 1977, 500-503.

[Kessels 1979] J. L. W. Kessels, and A. J. Martin: Two Implementations of

the Conditional Critical Region Using a Split Binary Semaphore, Information

Processing Letters, 8(2), Feb. 1979, 67-71.

[Kessel s 1982 J J. L. W. Kessel s: Arbitration Without Common Modifiable Variables,

Acta Informatica, 17, 1982, 135-141.

[Kleinrock 1985] L. Kleinrock: Distributed Systems, CACM, 28(11), Nov.

1985, 1200-1213.

[Knuth 1966] D. E. Knuth: Additional Comments on a Problem m Concurrent

Programming Control, CACM, 9(5), May 1966, 321-322.

[Kohler 1981 J W. H. Kohler: A Survey of Techniques for Synchronization and Recovery in

Decentralized Computer Systems, ACM Computing Surveys, 13(2), June 1981,

149-183.

[Kosaraju 1973 J S. R. Kosaraju: Limitations of Dijkstra 's Semaphore Primitives and

Petri Nets, Operating Systems Review, 7(4), Oct. 1973, 122-126.

162

[Kruijer 1979] H. S. M. Kruijer: Self-Stabilization in spite of Distributed Control in

Tree-Structured Systems, Information Processing Letters, 8(2), 1979,

91-95.

[Kruskal 1988] C. P. Kruskal, L. Rudolph, and M. Snir: Efficient

Synchronization on Multiprocessors with Shared Memory, ACM TOPLAS, 10 (4) , Oct.

1988, 579-601.

[Lakshman 1986] T. V. Lakshman, and A. K. Agrawala: Efficient Decentralized

Consensus Protocols, IEEE Transactions on Software Engineering, SE-

12(5), May 1986, 600-607.

[Lamport 197 4] Leslie Lamport: A New Solution of Dijkstra 's Concurrent Programming

Problem, CACM, 17(8), Aug. 1974, 453-455.

[Lamport 1976 J Leslie Lamport: The Synchronization of Independent Processes, Acta

Informatica, 7, 1976, 15-34.

[Lamport 1977] Leslie Lamport: Concurrent Reading and Writing, CACM, 20(11),

Nov. 1977, 806-811.

[Lamport 1977b J Leslie Lamport: Proving the Correctness of Multiprocess Programs,

IEEE Transactions on Software Engineering, SE-3(2), March 1977,

125-143.

[Lamport 1978] Leslie Lamport: Time, Clocks, and the Ordering of Events 1n a

Distributed System, CACM, 21(7), July 1978, 558-565.

[Lamport 1978b J Leslie Lamport: The Implementation of Reliable Distributed

Multiprocess Systems, Computer Networks, 2, 1978, 95-114.

[Lamport 1979 J Leslie Lamport: How to make a multiprocessor computer that correctly

executes multiprocess programs, IEEE Transactions on Computers, C-28(9),

Sept. 1979, 690-691.

[Lamport 1980] Leslie Lamport: The 'Hoare Logic' of Concurrent Programs, Acta

Informatica, 14(1), 1980, 21-37.

[Lamport 1982] L. Lamport, R. Shostak, and M. Pease: The Byzantine Generals

Problem, ACM TOPLAS, 4(3), July 1982, 382-401.

163

[Lamport 1986a] Les 1 i e Lamport: The Mutual Exclusion Problem Part I - A Theory of

lnterprocess Communication, Journal of the ACM, 33 (2) , April 1986, 313-

326.

[Lamport 1986b] Leslie Lamport: The Mutual Exclusion Problem Part II - Statement

and Solutions, Journal of the ACM, 33 (2) , April 1986, 327-348.

[Lamport 1987] Les 1 i e Lamport: A Fast Mutual Exclusion Algorithm, ACM TOCS,

5 (1) , Feb. 1987, 1-11.

[Lamport 1990] Leslie Lamport: Concurrent Reading and Writing of Clocks, ACM

TOCS, 8 (4) , Nov. 1990, 305-310.

[Lauesen 1975] Soran Lauesen: A Large Semaphore Based Operating System, CACM,

18 (7) , July 1975, 377-389.

[Lawrie 1975] Duncan Lawrie: Access and Alignment of Data in an Array Processor,

IEEE Transactions on Computers, C-24, 1975, 1145-1155.

[Le Lann 1980] G. Le Lann: Consistency, Synchronization, and Concurrency Control, in

Distributed Databases, edited by I. W. Draffan, and F. Poole,

Cambridge University Press, 1980, 195-222.

[Liskov 1972] B. Liskov: The Design of Venus Operating System, CACM, 15 (3) ,

March 1972, 144-149.

[L i u 1986 J Y. C. L i u, and G. A. Gibson: Microcomputer Systems - The 8086/8088

Family, Architecture, Programming, and Design, Prentice Hall, Second Edition,

1986.

[Lorin 1972 J H. Lorin: Parallelism in Hardware and Software - Real and Apparent

Concurrency, Prentice Hall Inc., 1972.

[Lynch 1987] N. A. Lynch, and M. R. Tuttle: Hierarchical Correctness Proofs for

Distributed Algorithms, in Proceedings of the Sixth Annual ACM Symposium

on Principles of Distributed Computing, Vancouver, British

Columbia, Canada, Aug. 10-12, 1987, 137-151.

[Maekawa 1985] M. Maekawa: A {N Algorithm for Mutual Exclusion tn Decentralized

Systems, ACM TOCS, 3 (2) , May 1985, 145-159.

164

[Maekawa 1987] M. Maekawa, A. E. Oldehoeft, R. R. Oldehoeft: Operating

Systems - Advanced Concepts, The Benjamin/Cummings Publishing Co.,

Inc., 1987.

[Misra 1982a] J. Misra, and K. M. Chandy: Termination Detection of Diffusing

Computations 1n Communicating Sequential Processes, ACM TOP LAS, 4(1), Jan.

1982, 37-43.

[Misra 1982b] J. Misra, K. M. Chandy, and T. Smith: Proving Safety and

Liveness of Communicating Processes with Examples, in ACM SIGACT -SIGOPS

Symposium on Principles of Distributed Computing, Ottawa, Canada,

Aug. 18-20, 1982, 201-208.

[Morgan 1985] C. Morgan: Global and Logical Time m Distributed Algorithms,

Information Processing Letters, 20, May 1985, 189-194.

[Morris 1979] J. M. Morris: A Starvation-Free Solution to the Mutual Exclusion

Problem, Information Processing Letters, 8(2), Feb. 1979, 76-80.

[Mullender 1989] S. Mullender(ed.): Distributed Systems, ACM Press Frontier

Series, Addison-Wesley Publishing Co., 1989.

[Na tara jan 1986 J N. Na tara jan: A Distributed Synchronization Scheme for

Communicating Processes, The Computer Journal, 29(2), 1986, 109-117.

[Nishio 1990] S. Nishio, K. F. Li, and E. G. Manning: A Resilient Mutual

Exclusion Algorithm for Computer Networks, IEEE transactions on Parallel and

Distributed Systems, 1(3), July 1990, 344-355.

[Ow i ck i 1976a J S. Ow i ck i , and D. Gries: An Axiomatic Proof technique for Parallel

Programs, Acta Informatica, 6(4), 1976, 319-340.

[Ow i ck i 1976b J S. Ow i ck i , and D. Gries: Verifying Properties of Parallel Programs­

An Axiomatic Approach, CACM, 19(5), May 1976, 279-285.

[Owicki 1982] S. Owicki, and L. Lamport: Proving Liveness Properties of

Concurrent Programs, ACM TOPLAS, 4(3), July 1982, 455-495.

[Page 1989] I. P. Page, and R. T. Jacob: The Solution of Mutual Exclusion

Problems which can be Described Graphically, The Computer Journal , 32 (1) ,

Feb. 1989, 45-54.

165

[Paker 1983] Y. Paker, and J. -P. Verjus (ed.), Distributed Computing

Systems - Synchronization, Control, and Communication, Academic Press, 1983.

[Paker 1987] Y. Paker, J. P. Banatre, and M. Bozyigit: Distributed

Operating Systems - Theory and Practice, Springer-Verlag, Berlin, 1987.

[Parnas 1975] D. L. Parnas: On a Solution to the Cigarette Smoker's Problem (without

conditional statements), CACM, 18(3), March 1975, 181-183.

[Pa til 1971] S. S. Pa til : Limitations and Capabilities of Dijkstra 's Semaphore Primitives

for Coordination among Processes, Computation Structures Group Memo 57,

Project MAC, M.I.T., Cambridge, MA, Feb. 1971.

[Peterson 1979] G. L. Peterson: Concurrency and Complexity, Technical Report

59, Department of Computer Science, The University of Rochester,

Rochester, New York, Aug. 1979.

[Peterson 1980] G. L. Peterson: New Bounds on Mutual Exclusion Problem,

Technical Report 68, Department of Computer Science, The

University of Rochester, Rochester, New York, Nov. 1980.

[Peterson 1981] G. L. Peterson: Myths about the Mutual Exclusion Problem,

Information Processing Letters, 12(3), June 1981, 115-116.

[Peterson 1981 b J J. L. Peterson: Petri Net Theory and the Modeling of Systems,

Prentice Hall, 1981.

[Peterson 1982 J G. L. Peterson: An O(n log n) Unidirectional Algorithm for the

Circular Extrema Problem, ACM TOPLAS, 4(4), Oct. 1982, 758-762.

[Peterson 1983a J G. L. Peterson: Concurrent Reading While Writing, ACM TOP LAS,

5(1), Jan. 1983, 46-55.

[Peterson 1983b J G. L. Petersorr: A New Solution to Lamport's Concurrent

Programming Problem Using Small Shared Variables, ACM TOPLAS, 5(1), Jan.

1983, 56-65.

[Quinton 1986] P. Quinton, and J. -P. Verjus: Distributed Synchronization of

Parallel Programs Why and How?, in Parallel Algorithms and

Architectures, edited by M. Cosnard, Y. Tobert, P. Quinton, and

M. Tchuente, Elsevier Science Publishers B.V., North-Holland,

Amsterdam, 1986, 109-125.

166

[Ran a 1983] S. P. Ran a: A Distributed Solution of the Distributed Termination Problem,

Information Processing Letters, 17, 1983, 43-46.

[Raymond 1989] K. Raymond: A Tree- Based Algorithm for Distributed Mutual Exclusion,

ACM TOCS, 7 (1) , Feb. 1989, 61-77.

[Raynal 1986] Michel Raynal: Algorithms for Mutual Exclusion, North Oxford

Academic, 1986.

[Reed 1979] D. P. Reed, and R. K. Kanodia: Synchronization with Eventcounts and

Sequencers, CACM, 22(2) , Feb. 1979, 115-123.

[Rettberg 1986] R. Rettberg, and R. Thomas: Contention is no Obstacle to

Shared-Memory Multiprocessing, CACM, 29 (12) , Dec. 1986, 1202-1212.

[Ricart 1981] G. Ricart, and A. K. Agrawala: An Optimal Algorithm for Mutual

Exclusion inComputerNetworks, CACM, 24(1) , Jan. 1981, 9-17.

[Ricart 1983] G. Ricart, and A. K. Agrawala: Author's Response, CACM,

26(2) , Feb. 1983, 147-148.

[Sanders 1987 J B. A. Sanders: The Information Structure of Distributed Mutual

Exclusion Algorithms, ACM TOCS, 5(3) , Aug. 1987, 284-299.

[Schmid 1974] H. A. Schmid: On The Efficient Implementation of Conditional Critical

Regions and the Construction of Monitors, Acta Informatica, 6, 1976, 227-

249.

[Schneider 1982] F. B. Schneider: Synchronization tn Distributed Programs, ACM

TOPLAS, 4 (2) , April 1982, 179-195.

[Silberschatz 1988] A. Silberschatz, and J. L. Peterson: Operating System

Concepts, Addison-Wesley Publishing Co., 1988.

-

[Silberschatz 1991] A. Silberschatz, J. L. Peterson, and P. B.

Galvin: Operating System Concepts, Third Edition, Addison-Wesley

Publishing Co., 1991.

[Singhal 1988 J M. Singhal: A Dynamic Information Structure Mutual Exclusion

Algorithm for Distributed Systems, Technical Report No. OSU-CISRC-3/88-TR9,

The Ohio State University, 1988.

167

[Singhal 1989] M. Singhal: A Heuristically-Aided Algorithm for Mutual Exclusion in

Distributed Systems, IEEE Transactions on Computers, 38 (5) , May 1989,

651-662.

[Singhal 1989b] M. Singhal: Deadlock Detection tn Distributed Systems, IEEE

Computer, Nov. 1989, 37-48.

[Spector 1984] A. Spector, and D. Gifford: The Space Shuttle Primary Computer

System, CACM, 27(9), 1984, 874-900.

[Stark 1982] E. W. Stark: Semaphore Primitives and Starvation-Free Mutual Exclusion,

Journal of the ACM, 29(4), October 1982, 1049-1072.

[Stone 1984] Harold S. Stone: Database Applications of the Fetch-and-Add Instruction,

IEEE Transactions on Computers, C-33(7), July 1984, 604-612.

[Stone 1989] Harold S. Stone: High-Performance Computer Architecture, Addison­

Wesley Publishing Co., 1989.

[Suzuki 1985 J I. Suzuki, and T. Kasami: A Distributed Mutual Exclusion

Algorithm, ACM TOCS, 3(4), Nov. 1985, 344-349.

[Tanenbaum 1988] A. S. Tanenbaum: Computer Networks, Second Edition,

Prentice Hall, 1988.

[Thomas 1979 J R. H. Thomas: A Majority Consensus Approach to Concurrency Control for

Multiple Copy Databases, ACM Transactions on Database Systems, 4(2),

June 1979, 180-209.

[van de Snepscheut 1987] J. L. A. van de Snepscheut: Fair Mutual Exclusion

on a Graph of Processes, Distributed Computing, 2, 1987, 113-115.

[Vantilborgh 1972] H. Vantilborgh, and A. van Lamsweerde: On an Extension

of Dijkstra 's Semaphore Primitives, Information Processing Letters, 1,

1972, 181-186.

VITA

	Virginia Commonwealth University
	VCU Scholars Compass
	1991

	The Problem of Mutual Exclusion: A New Distributed Solution
	Rajeev Chawla
	Downloaded from

	cha_pro_002_R
	cha_pro_004_R
	cha_pro_006_R
	cha_pro_008_R
	cha_pro_010_R
	cha_pro_012_R
	cha_pro_014_R
	cha_pro_016_R
	cha_pro_018_R
	cha_pro_020_R
	cha_pro_022_R
	cha_pro_024_R
	cha_pro_026_R
	cha_pro_028_R
	cha_pro_030_R
	cha_pro_032_R
	cha_pro_034_R
	cha_pro_036_R
	cha_pro_038_R
	cha_pro_040_R
	cha_pro_042_R
	cha_pro_044_R
	cha_pro_046_R
	cha_pro_048_R
	cha_pro_050_R
	cha_pro_052_R
	cha_pro_054_R
	cha_pro_056_R
	cha_pro_058_R
	cha_pro_060_R
	cha_pro_062_R
	cha_pro_064_R
	cha_pro_066_R
	cha_pro_068_R
	cha_pro_070_R
	cha_pro_072_R
	cha_pro_074_R
	cha_pro_076_R
	cha_pro_078_R
	cha_pro_080_R
	cha_pro_082_R
	cha_pro_084_R
	cha_pro_086_R
	cha_pro_088_R
	cha_pro_090_R
	cha_pro_092_R
	cha_pro_094_R
	cha_pro_096_R
	cha_pro_098_R
	cha_pro_100_R
	cha_pro_102_R
	cha_pro_104_R
	cha_pro_106_R
	cha_pro_108_R
	cha_pro_110_R
	cha_pro_112_R
	cha_pro_114_R
	cha_pro_116_R
	cha_pro_118_R
	cha_pro_120_R
	cha_pro_122_R
	cha_pro_124_R
	cha_pro_126_R
	cha_pro_128_R
	cha_pro_130_R
	cha_pro_132_R
	cha_pro_134_R
	cha_pro_136_R
	cha_pro_138_R
	cha_pro_140_R
	cha_pro_142_R
	cha_pro_144_R
	cha_pro_146_R
	cha_pro_148_R
	cha_pro_150_R
	cha_pro_152_R
	cha_pro_154_R
	cha_pro_156_R
	cha_pro_158_R
	cha_pro_160_R
	cha_pro_162_R
	cha_pro_164_R
	cha_pro_166_R
	cha_pro_168_R
	cha_pro_170_R
	cha_pro_172_R
	cha_pro_174_R
	cha_pro_176_R
	cha_pro_178_R
	cha_pro_180_R
	cha_pro_182_R
	cha_pro_184_R
	cha_pro_186_R
	cha_pro_188_R
	cha_pro_190_R
	cha_pro_192_R
	cha_pro_194_R
	cha_pro_196_R
	cha_pro_198_R
	cha_pro_200_R
	cha_pro_202_R
	cha_pro_204_R
	cha_pro_206_R
	cha_pro_208_R
	cha_pro_210_R
	cha_pro_212_R
	cha_pro_214_R
	cha_pro_216_R
	cha_pro_218_R
	cha_pro_220_R
	cha_pro_222_R
	cha_pro_224_R
	cha_pro_226_R
	cha_pro_228_R
	cha_pro_230_R
	cha_pro_232_R
	cha_pro_234_R
	cha_pro_236_R
	cha_pro_238_R
	cha_pro_240_R
	cha_pro_242_R
	cha_pro_244_R
	cha_pro_246_R
	cha_pro_248_R
	cha_pro_250_R
	cha_pro_252_R
	cha_pro_254_R
	cha_pro_256_R
	cha_pro_258_R
	cha_pro_259_R
	cha_pro_260_R
	cha_pro_262_R
	cha_pro_264_R
	cha_pro_266_R
	cha_pro_268_R
	cha_pro_270_R
	cha_pro_272_R
	cha_pro_274_R
	cha_pro_276_R
	cha_pro_278_R
	cha_pro_280_R
	cha_pro_282_R
	cha_pro_284_R
	cha_pro_286_R
	cha_pro_288_R
	cha_pro_290_R
	cha_pro_292_R
	cha_pro_294_R
	cha_pro_296_R
	cha_pro_298_R
	cha_pro_300_R
	cha_pro_302_R
	cha_pro_304_R
	cha_pro_306_R
	cha_pro_308_R
	cha_pro_310_R
	cha_pro_312_R
	cha_pro_314_R
	cha_pro_316_R
	cha_pro_318_R
	cha_pro_320_R
	cha_pro_322_R
	cha_pro_324_R
	cha_pro_326_R
	cha_pro_328_R
	cha_pro_330_R
	cha_pro_332_R
	cha_pro_334_R
	cha_pro_336_R
	cha_pro_338_R
	cha_pro_340_R
	cha_pro_342_R
	cha_pro_344_R
	cha_pro_346_R
	cha_pro_348_R
	cha_pro_350_R
	cha_pro_354_R
	cha_pro_356_R
	cha_pro_358_R
	cha_pro_360_R

