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Abstract 

THE PROBLEM OF MUTUAL EXCLUSION - A NEW DISTRIBUTED SOLUTION 

Rajeev Chawla 

Virginia Commonwealth University, 1991. 

Major Director: Dr. Lorraine M. Parker 

In both centralized and distributed systems, processes cooperate and 

compete with each other to access the system resources. Some of these 

resources must be used exclusively. It is then required that only one 

process access the shared resource at a given time. This is referred 

to as the problem of mutual exclusion. Several synchronization 

mechanisms have been proposed to solve this problem. In this thesis, 

an effort has been made to compile most of the existing mutual 

exclusion solutions for both shared memory and message-passing based 

systems. A new distributed algorithm, which uses a dynamic 

information structure, is presented to solve the problem of mutual 

exclusion. It is proved to be free from both deadlock and starvation. 

This solution 1s shown to be economical in terms of the number of 

message exchanges required per critical section execution. Procedures 

for recovery from both site and link failures are also given. 



CHAPTER I 

INTRODUCTION 

The availability of inexpensive processors has made possible 

the construction of distributed systems and multiprocessors, that 

were previously economically infeasible. However, there is more to 

making this a reality than just hooking the hardware together. There 

are many problems involved in the design of such systems, such as the 

management of common memory and memory local to various processors, 

the allocation of physical and virtual resources, and concurrency 

protection and management. One fundamental problem that stands out 

from all those involved in controlling parallelism, is the 

synchronization of concurrently executing programs. Further, mu�� 

exclusion, referred to as a "key-problem" by Dijkstra 1n [Dijkstra 

1971], 1s one of the most important synchronization problems 

encountered in concurrent programming [Axford 1989]. 

1.1 Concurrent Programming 

A concurrent program specifies two or more sequential programs 

that may be executed concurrently as parallel processes [Andrews 

1983]. It can be executed either, by allowing processes to share one 

processor, referred to as multiprogramming, or by running each 

process on its own processor, referred to as multiprocessing if 

processors share a common memory or as distributed processing if the 

processes are connected by a communication network. The problem of 

1 



2 

synchronization remains independent of whether a concurrent program 

is executed on multiple processors or on a single multi-programmed 

processor. Therefore, concurrent programming is the activity of 

constructing a program containing multiple processes that cooperate 

in performing some task [Andrews 1991 b J, and concurrent programming 

abstraction is the study of interleaved execution sequences of the 

atomic instructions of sequential processes [Ben-Ari 1990]. Since no 

assumptions can be made about the execution rates of concurrently 

executing processes, one process could complete hundreds of 

instructions before any other process executes one instruction. The 

only assumption made is that a process does not deliberately halt -

it keeps on executing at a positive rate. This is called the finite 

progress assumption [Andrews 1983 J. 

Since arbitrary interleavings of process instructions are 

possible, a concurrent program behaves in a non-deterministic 

fashion. Consider for example, a change-giving machine which accepts 

$1 and $5 bills and offers its customers change 1n any of the 

combinations of nickels, dimes, and quarters. The customer cannot 

predict the combination of denominations he is going to get, and the 

machine may behave differently a� different times for the same input, 

that is it may change a $1 bill into four quarters one time and ten 

dimes at a later time. The machine is said to behave in an arbitrary 

or non-deterministic fashion. 

For a concurrent program to be correct, it IS required to be 

correct under all interleavings of execution sequences and this leads 

to extensive case analysis as the number of interleavings that must 
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be considered grows exponentially with the size of the component 

sequential processes. For the change-giving machine example, it has 

to be ensured that the machine offers exact change irrespective of 

whatever combination of denominations is given to the customer. The 

exact time of execution of instructions is ignored as it has no 

relevance to program correctness, except in cases of time-critical 

(hard real-time) systems [Faulk 1988]. 

1.2 Process Interactions 

In concurrent programming, problems start appearing when two or 

more processes interact with each other. These interactions require 

simultaneous participation of both the processes involved. For 

example, a chocolate can be extracted from a vending machine only 

when its customer wants it and only when the vending machine is 

prepared to give it [Hoare 1985]. For any particular application, 

there are two kinds of interactions cooperative and competitive. 

Cooperative processes are directly or indirectly aware of each 

other's existence. On the other hand, competing processes are unaware 

of each other any interaction between them is indirect. The 

resolution of a competitive sjtuation may require creation of 

cooperating processes and conversely, cooperating processes could 

compete with one another for resources. The following examples from 

[Andre 1985] clarify this point -

Example 1: Consider a set of processes {P} which share (compete for) a single printer. Access 

to this printer is gained by cooperation between the calling processes of {P}, on one hand, and 
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a single print-server process, on the other. 

Example 2: Suppose there is a set of processes which cooperate in pairs to produce and print 

certain values. Since the buffers for all producer-printer pairs must reside m a store with 

limited capacity, the process pairs will compete for storage locations indirectly by means of 

cooperating producer and printer processes of each pair. This competition can be resolved by 

cooperation between the processes which allocate and retrieve the buffer space. 

In order to cooperate, concurrently executing processes must 

communicate and synchronize. Communication allows execution of one 

process to influence execution of another. Inter-process 

communication is based on the use of shared variables or on message 

passing [ Andrews 1983]. 

1.3 Definition of Synchronization 

A process is assumed to be executing in discrete steps. At each 

step, there is an "event", which can be either local to the process 

in which it occurs and not perceived by the rest of the system, or 

can have some significance on the whole system, in which case it is 

relevant to the general problem of synchronization. According to 

[ Andre 1985], synchronization consists of controlling the evolution of 

processes, and therefore the occurrence of events, as a function of 

the past history of the system. Simply, synchronization can be 

thought as a set of constraints on the ordering of events [ Andrews 

1983] - this may involve delaying execution of a process to satisfy 

these constraints. In example 2 above, a printer process cannot print 

a value unless it is produced. 
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Conceptually, there are two major forms of synchronization in a 

system of sequential processes that run concurrently - one on behalf 

of accessing shared data and one on behalf of communication 

[Habermann 1972]. 

1.3.1 Condition Synchronization 

Communication may lead to a situation where one process is 

ready to process input which 1s yet to be produced by another 

process. In that case, the processes must be synchronized such that 

the consuming process cannot start processing the input before the 

producer has produced it. This is referred to as condition synchronization 

[Andrews 1983]. 

1.3.2 Mutual Exclusion 

In certain circumstances, it 1s necessary to ensure that 

portions of two concurrent processes do not run concurrently. These 

portions are called criticalsections. For example, if two or more processes 

share a common resource (memory, peripheral, CPU, clock, etc.), 

mutual exclusion must be enforced on the sections of these processes 

which access the shared resource to secure the integrity of the 

shared resource. 

Consider two processes, both of which put (enqueue) items onto 

a shared queue without bothering about a dequeue operation for this 

example. Suppose the queue is implemented as an array with variable 

name "queue", and an index, "tail", to the last i tern put into the 



6 

queue. The code In two processes could look like that given in Figure 

1.1 

Since nothing can be assumed about the relative speed of 

different processors, suppose processor! executes tail := tail + 1, and 

processor2 executes tail := tail + 1 followed immediately by queue[tail} := 

item2; then, processor! executes queue{tail} := item]. This order of 

execution shows that nothing is put into queue[tail+l ], and iteml is 

put into queue[tail +2 ] and item2 gets lost. 

The concurrent execution in the above example led to serious 

corruption of the queue. Therefore, it is required for all update 

operations on the shared variables to be mutually exclusive In time. 

The design of a mutual exclusion algorithm consists of defining 

the acquisition and release protocols used to coordinate entry into 

the critical section - acquisition protocol ( entry code ) is executed 

before entering the critical section, and release protocol ( exit 

Shared: queue 

tail 

Array(O .. queuesize) of anytype ; 

integer ; 

Local: item1 , item2 anytype; 

Process 2 Process 1 

tail := tail + 1 ; 

queue(tail) := item1 ; 

tail := tail + 1 ; 

queue(tail) := item2 ; 

Figure 1.1 - Enqueue operation in two processes 
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code) IS executed on leaving the critical section. Thus, all mutual 

exclusion algorithms can be depicted as -

acquisition protocol 

< CRITICAL SECTION > 

release protocol 

The acquisition and release protocols ensure that the critical 

section is used by only one process at a time and any other process 

trying to enter the critical section waits. In addition, the 

protocols can play a scheduling role in determining which of several 

contending processes is allowed to proceed. 

Enforcing mutual exclusion is not an easy task. Dijkstra was 

the first to show whether or not processes could be synchronized with 

just the standard operators of an ordinary programming language 

[Dijkstra 1965]. He states that this is the most difficult program he 

has ever written [Dijkstra 1971]. 

1.4 Properties of Mutual Exclusion Algorithms : 

There are a number of pitfalls to avoid while writing the 

solution (program) to provide synchronization. The first pitfall is 

deadlock. Consider several processes all attempting to enter their 

critical section to use the shared resource. As at most one process 

may be in the critical section, one solution would be to let none of 

them in. An analogy [Raynal 1986] would be - when several people meet 
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before a doorway (the resource) and suppose the protocol is, if I am 

alone, I go through; otherwise, I let others go first. If several 

people with this protocol arrive simultaneously at the doorway, they 

will all wait, blocking each other's access. This is deadlock. 

[Silberschatz 1988] defines deadlock as a state of processes where 

two or more processes are waiting indefinitely for an event that can 

only be caused by one of the waiting processes. Although it does 

provide mutual exclusion, it leads to a situation in which there is 

no useful activity by any of the processes (in other words, the 

system is 'hung'); it must therefore be avoided. 

The second pitfall to avoid is a situation whereby a process is 

postponed infinitely 1n entering its critical section. Consider the 

case where processor Pl is in the critical section and P2 and P3 are 

delayed in their acquisition protocol. Once Pl executes its release 

protocol, the first step is to end the delay of P2 or P3. Assume that 

P3 now enters the critical section and that Pl executes its 

acquisition protocol once more. Consider the situation when Pl again 

enters its critical section once P3 comes out of it. If this keeps on 

happening, the processes may end up behaving in such a way that P2 is 

indefinitely delayed 1n its acquj.sition protocol and will never get 

to enter the critical section. This situation is called starvation. 

It is important to note that in case of n processes competing 

for one resource, deadlock brings the whole system (all the 

processes) to a "standstill" state, whereas starvation does that to 

individual processes. 



"fair". 
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To rule out starvation, the mutual exclusion solution should be 

[ Francez 1986] defines fairness as a restriction on some 

infinite behavior according to eventual occurrence of some events. On 

the basis of eventuality, there are three main subclasses -

•Unconditional fairness, 

•Weak fairness, and 

•Strong fairness. 

Unconditional fairness implies that for each behavior each 

event occurs infinitely often without any further qualification 

[ Francez 1986]. For example, consider multi-programmed non-

communicating concurrency - here, n processes, totally independent of 

each other, conceptually are executed in parallel but use one common 

processor. An event is the execution of an atomic step 1n one 

process. In this case, unconditional fairness means that along an 

infinite execution each process lS allocated processor time 

infinitely many times. But, nothing IS implied about the length of 

the interval between consecutive processor time allocations to any 

given process, or about the length of time the processor is allocated 

to any given process. 

According to weak fairness, an event will not be indefinitely 

postponed from occurring provided that it remains continuously 

enabled from some time instant until it actually occurs. On the other 

hand, strong fairness guarantees eventual occurrence under the 

condition of being infinitely often enabled, but not necessarily 

continuously. Implementation of a strong fairness policy is tougher, 
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but it is a preferred choice in many cases. For example, consider a 

process in its acquisition protocol waiting for a condition. It must 

repeatedly (infinitely often) test the shared variable to gain entry 

into the critical section. This method of delaying a process 1s 

called busy-waiting and the process is said to be spinning on the shared 

variables, called spin-locks. A strongly fair mutual exclusion solution 

with busy-waiting will guarantee eventual entry to the critical 

section for each attempting process. 

These concepts of fairness are not very practical because they 

depend on 'eventually' and 'infinitely often'. A practical approach 

could be basing fairness on the "order of arrival" of the requesting 

processes. Linear and FIFO (first-in-first-out) fairness fall in this 

category. These are a by-product of queue implementation. For real-

time applications, a "bounded-delay" fairness policy, in which there 

exists a bound (hopefully small) on the length of the interval 

between consecutive occurrences of the same event, is preferred. 

[Dijkstra 1965] gives a minimum number of properties that all 

algorithms implementing mutual exclusion must have. These are -

• Algorithm should allow only one process in its critical section at any one point of time. 

• Algorithm should be deadlock-free, that is, if several processes are waiting to enter a 

critical section while no process is actually in its critical section, one of them must enter it 

within a finite time. 

• There should be complete independence between those parts of the algorithm which are 

involved in access conflicts and those parts that are not. 

• Algorithm should treat all processes in the same fashion, that is, it should not have any 

privileged process. 
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Dijkstra did not have 'starvation-free' property in his list of 

minimum properties, but it is a desirable property to include. 

1.5 Performance Measurement 

[Stone 1989] introduces the performance notion of SYPS 

(SYnchronizations Per Second), measured in MSYPS (Mega SYPS). The 

number of serial sections executed sequentially in one second gives 

the MSYPS rate. As a general rule, adding more processors increases 

the MIPS (Mega Instructions Per Second) rate of the system. But if 

processes need to have a lot of synchronization operations among 

themselves, increased MIPS does not effect the speedup at all; the 

MSYPS rate then determines the Increase in the speedup. Thus, 

throughput is limited both by the MIPS and MSYPS capacity of the 

system. 

1.6 Concurrent Program Correctness 

Programs, especially concurrent programs, are often described 

informally. A process can be studied without getting into formal 

notation and proof system. There are two approaches to arguing about 

the correctness of a program Operational Reasoning and Non-

Operational (Formal/Axiomatic) Reasoning. Operational reasoning 

involves arguments about the unfolding computations of a program, 

whereas non-operational reasoning focuses on static aspects (such as 

invariants) of the program [Chandy 1988]. Both approaches are useful 

and have advantages over each other. Since arbitrary interleavings of 

process execution sequences are allowed in concurrent processing and 
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for a concurrent program to be correct, it has to be correct under 

all interleavings, it 1s hard to convince skeptics about the 

correctness of concurrent programs by using operational arguments. A 

common mistake in operational arguments IS forgetting to consider 

certain sequences of events that could occur. Also, operational 

arguments tend to be longer. Nevertheless, creation of an algorithm 

is often based on operational reasoning and for this reason, the 

operational technique IS used extensively. 

Currently, there are several methodologies for verifying 

concurrent programs. These concentrate on the concurrency problems 

and sometimes leave the sequential parts of the program to be 

analyzed using other methods. Methodologies like Petri Nets [Peterson 

1981b], CSP [Hoare 1985], and UNITY [Chandy 1988] require the program 

to be modeled using their own specific 

primitives communication 

mathematical 

primitives. 

definitions, 

These 

and therefore, 

synchronization and 

and have simple 

permit a rigorous 

mathematical analysis of the programs written using these primitives. 

But, it is often inconvenient and tedious as these primitives are not 

the same as the primitives used in many common programming languages. 

Whatever approach lS used, all the properties (mutual 

exclusion, deadlock-free, starvation-free, fairness, etc.) of mutual 

exclusion protocols discussed in the algorithm need to be satisfied. 
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1.7 Outline of the Thesis 

This thesis is organized into six chapters. In Chapter II 

different hardware and low-level mechanisms available for 

implementing synchronization are discussed. In Chapters III and IV an 

outline of the existing software solutions for centralized and 

distributed systems is given. In Chapter V, a new algorithm for 

providing distributed mutual exclusion is submitted. In Chapter VI, a 

summary of the thesis and future work problems are given. 



CHAPTER II 

SHARED MEMORY LOW-LEVEL SOLUTIONS 

2.1 Concept of Indivisible Instructions 

It is conventional for computer hardware to be designed to 

permit interrupts to occur only between instructions. Normally, an 

instruction may not be interrupted in the middle of its execution. An 

interrupt request that arrives in the middle of an instruction is not 

lost but merely made to wait. This has an important effect - a single 

machine instruction is guaranteed to be indivisible; once execution 

of it has begun, no other process can interrupt until it has 

finished. 

On multiprocessor machines in which several processors share a 

common memory, the normal indivisibility of machine instructions does 

not provide mutual exclusion between different processors. Many 

instructions involve several memory accesses each. If another 

processor shares access to the same memory, there is normally nothing 

to prevent it from accessing memory between accesses by the first 

processor. Of course, a processor will have no way of knowing if 

consecutive memory accesses by another processor are part of one 

instruction or several instruction�. 

The memory unit enforces mutual exclusion on each individual 

memory access. This means that there is no risk that a memory 

location can ever be found 1n an intermediate state, it must either 
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contain its value before the write access or its value after it. 

Thus, memory read and write are indivisible operations. But some 

additional mechanisms are needed to enforce mutual exclusion 1n a 

multiprocessing system with shared memory. 

The idea of disabling interrupts during the execution of 

critical section also 1s ineffective on multiprocessor systems. 

Disabling interrupts only prevents other processes on the same 

processor from running concurrently; it has no effect on processes 

running on different processors. 

Multiprocessor machines provide a special memory lock instruction 

which is treated as a prefix to the instruction immediately following 

it, and causes a memory lock to be applied for the duration of that 

instruction. This means that no other processors or devices are 

permitted access to the shared memory during execution of the locked 

instruction. 

Memory locked instructions are thus effectively indivisible 

( i.e. mutually exclusive ) on multiprocessor systems, just as all 

machine instructions are indivisible on a uniprocessor system. 

2.1. 1 Memory Locks in Intel 8086 series 

The 8086 includes a memory lock prefix instruction which can be 

used to prefix any other instruction and cause a memory lock to be 

applied for the duration of that instruction. This can have 

disastrous effects if misused and it seems the LOCK instruction was 

added to the instruction set hurriedly at the eleventh hour, to 
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support concurrency [ Axford 1989]. The 8086 instruction set includes 

string instructions which will operate on strings of arbitrary 

length. These instructions can take a very long time to execute and 

involve many memory accesses ( depending on the length of string ) . If 

memory lock is applied to such instructions, other devices are locked 

out of memory for relatively long periods of time. This can be a 

disaster for a fast disk-controller, which has to read data from a 

disk rotating at a fixed speed, and store that data in memory at the 

rate at which it comes off disk. There are typically only a few 

micro-seconds in which to write each data word to memory. If access 

to memory is not obtained within this time, the data 1s lost and 

complete disk transfer has to be aborted. 

Probably, this anomaly is because 8086 is a single user 

machine. It does not provide memory protection, nor are user 

processes prevented from using I/ 0 instructions or other instructions 

which the operating system may prefer to keep for its own use alone 

in other environments. 

When the 80286 was designed, the philosophy changed. This 

processor was designed to be a multi-user machine with full memory 

protection and other features to' prevent processes from interfering 

with each other 1n uncontrolled ways. Of course, the unconstrained 

use of memory lock cannot be permitted for ordinary user processes. 

Instead, unconstrained use of memory lock is permitted for the 

operating system only, and all other programs are prevented from 

using it - the operating system decides whether or not a user process 

can use memory lock. Nevertheless, memory lock 1s automatically 
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implemented on all exchange instructions, whether requested or not, 

so that all processes can obtain some mutual exclusion facilities in 

a multiprocessor system. [ Liu 1986; Intel 80286] 

This solution was fine, until the 386™ was designed. The 386™ 

includes support for paging. This made it impractical to implement 

memory lock on some instructions, even though the use of memory lock 

was confined to the operating system and privileged processes only. 

The culprit 1s again the string instruction. Suppose the string 

crosses a page boundary into a non-resident page. It is impossible to 

maintain the memory lock while the page is recovered from disk ( swap 

space ) , as the disk-controller cannot access memory while the lock is 

on. But if the lock is released, this destroys the mutual exclusion 

which was the whole point of using the lock in first place. 

Therefore, the 386™ designers abandoned the 80286 approach. Instead, 

the 386™ adopts an approach that totally prohibits any process from 

using memory lock on specified types of instructions, which include 

string instructions. Having restricted the use of memory lock to only 

those instructions for which it is always safe, i.e., those whose 

execution time is always fairly short, there is no longer any need to 

prevent ordinary user processes ,from using it. So, on the 386™ 

machine, memory lock is no longer regarded as a privileged 

instruction. Table 2.1 lists the instructions which can use LOCK 

instruction as a prefix. [ Liu 1986; Intel 386™] 

The 486™ processor also supports paging and therefore, like 

386™, the usage of LOCK instruction is restricted to the 

instructions which have small execution time. Table 2.2 lists the 



ADC, ADD, AND, BT 

BTS, BTR, BTC, OR 

SBB, SUB, XOR 

XCHG 

XCHG 

DEC, INC, NEG, NOT 

mem,reg/immediate 

mem,reg/immediate 

mem,reg/immediate 

reg,reg 

mem,reg 

mem 

Table 2.1- Valid 386™ lnstructioDB with the Lock Prefix 

Bit test and Change Instructions 

Exchange Instructions 

BTS, BTR, BTC 

XCHG,XADD, CMPXCHG 

1 operand arithmetic and logical instructions INC, DEC, NOT, NEG 

2 operand arithmetic and logical instructions ADD, ADC, SUB, SBB, 

AND, OR, XOR 

Table 2.2- Valid 486™ InstructioDB with the Lock Prefix 
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486™ CPU instructions which can use the lock prefix. An invalid­

opcode exception results from using the lock prefix before any other 

instruction, or with these instructions when no write operation is 

made to memory (that is, when the destination operand is 1n a 

register). 

A locked instruction is guaranteed to lock only the area of 

memory defined by the destination operand, but may lock a larger 

memory area, if execution is going on in 8086/80286 configuration. 

Locked cycles are implemented in hardware with the LOCK# pin. 

When LOCK# is active, the processor is performing a read-modify-write 

operation and the external bus 1s not relinquished until the cycle is 
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complete. Multiple reads or writes can be locked. The 486™ also has 

a PLOCK# pin which indicates that the current bus cycle and the 

following one should be treated as an atomic transfer. This can be 

used to generate atomic reads and writes of 64-bit operands. 

The 486™ processor always asserts LOCK# during an XCHG 

( exchange ) instruction which references memory, even if the wck prefix 

is not used. It also provides two instructions XADD ( Exchange and 

Add ) and CMPXCHG ( Compare and Exchange ) , which if prefixed with the 

LOCK instruction, can be used ( as explained in the next sections ) to 

implement mutual exclusion protocols. [ Intel 486™ ] 

2.1.2 Memory Locks 1n Pyramid System 

The Pyramid system supports paging. So, like 386™, the string 

instructions provided for commercial applications do not allow memory 

to be locked. The Pyramid Reference Manual makes it clear by adding a 

note in all the string instructions, that these instructions are 

interruptible. 

2.2 Synchronization with Indivisible Instructions 

Most modern computers provide a number of special instructions 

that are particularly useful for concurrent programming because they 

are guaranteed to be indivisible, i.e., mutually exclusive with other 

instructions. The most common are listed 1n Table 2.3. 

The common factor linking all these instructions and 

distinguishing from all others, is the fact that they carry out two 



20 

• EXCHANGE INSTRUCTION 

• TEST and SET INSTRUCTION 

• LOCK INSTRUCTION 

• INCREMENT AND DECREMENT INSTRUCTION 

• COMPARE and SWAP INSTRUCTION 

• FETCH and ADD INSTRUCTION 

Table 2.3 - Atomic Instructions for Synchronization 

actions atomically - reading and writing or reading and testing of a 

single memory location with in one instruction cycle. The classical 

form of READ/MODIFY/WRITE is a key characteristic of synchronizing 

instructions. [Stone 1989; Raynal 1986] 

2.2.1 Exchange Instruction : [Raynal 1986; Axford 1989] 

The instruction exchange(r,m) exchanges the contents of register r 

with those of memory location m. During execution of this 

instruction, access to m is blocked for any instruction using m. 

The mutual exclusion protocol (in Figure 2.1) uses a variable 

shared by all processes - memory location bolt initialized to 1; it may 

take values 0 or 1. Each process Pi uses a local variable key (a 

processor register) initialized t� 0; it also only takes values 0 or 

1. The protocol for process Pi is as follows -

A process will only be allowed to enter its critical section if 

it finds boh set to 1. It will then exclude all other processes from 

the critical section by setting bolt to 0. It rel�ases the critical 

section by setting bolt to 1, thereby allowing a waiting process to 



var bolt shared integer; {initially 1} 

key integer; {initially 0} 

repeat exchange(keyi , bolt); 

until keyi = 1; 

< CRITICAL SECTION > 

exchange(keyi , bolt); 

Figure 2.1 - Mutual Exclusion Using Exchange 

Instruction 

enter the critical section. 

Note that only process P-1 ln its critical 
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section satisfies 

keyi= 1, and that the following relation on variables key and bolt is 

true at all times-

L keyi + bolt 1, 

which is the invariant for this solution to the problem - it 

ensures, given the range of values ( integers 0 & 1), that not more 

than one process 1s 1n its critical section; while if bolt equals 1, no 

process is in its critical section. 

Both 386™ and 486™ microprocessors provide this instruction 

as an atomic instruction. 

2.2.2 Test and Set Instruction : [ Stone 1989; Raynal 1986] 

The instruction testset(m) ( Figure 2.2) carries out a series of 

actions atomically - it tests the value of variable m· ' if the value 

is 0, it replaces it by 1, otherwise it makes no change to the value 

of m. It returns value of m 1n condition code 1n both cases. 



The 

Defmition: TestSet(mem_address); 

{The [) operator fetches the contents of the specified 

memory address location.} 

begin condition_code := [mem_address]; 

if condition_code = 0 then [mem_address] 

end; {Return Condition_code} 

Figure 2.2 - Definition of Test-and-Set Instruction 

mutual exclusion protocol implemented 
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1· ' 

using this 

instruction requires a shared memory location initialized to 0. The 

protocol for each process Pi is given 1n Figure 2.3. 

The only process that can be in its critical section 1s the one 

that found bolt set to 0. 

2.2.3 Lock Instruction : [ Raynal 1986] 

The definition of this instruction 1s very similar to that of 

testset. Here, however, the wait loop is an integral part of the 

instruction itself. 

The behavior of atomic lock and unlock instruction can be best 

described as given in Figure 2.4. , 

var bolt : shared integer; {initially 0} 

repeat condition_code .- Testset(bolt); 

until condition_code 0; 

< CRITICAL SECTION > 

bolt 0; 

Figure 2.3 - Mutual Exclusion Protocol Using TestSet 



Defmition : lock(m); 

begin 

while m 1 do; 

m 1· ' 

end; 

Definition : unlock(m); 

m +- 0; 

Figure 2.4 - Definition of "Lock" 
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A separate "unlock" instruction need not be specially provided 

as its effect can be obtained simply by m +- 0; each memory access 

being mutually exclusive. 

On a uniprocessor machine, the lock instruction will lead to 

deadlock if interrupts are not permitted during execution of the 

instruction. If m lS initially 1' the only way this instruction can 

terminate lS for some other process to reset m to 0. On a 

uniprocessor, the only way to start another process lS by an 

interrupt, hence interrupts must be permitted during this 

instruction, but only after the first statement, i.e., inside the 

wait loop. This instruction 1s intended primarily for use 1n a 

multiprocessing environment. 

For a shared variable bolt initialized to 0, the mutual exclusion 

protocol is given 1n Figure 2.5. 

The lock instruction is sometimes called test-and-switch-branch (TSB). 

If several processors are all waiting for the same m, only one 

will be allowed to proceed when m returns to 0. But which one is 



allowed depends 

var bolt : shared integer; {initially 0} 

lock( bolt); 

< CRITICAL SECTION > 

unJock(bolt ); 

Figure 2.5 - Mutual Exclusion Protocol 

using "Lock" 

upon the hardware implementation of 
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the lock 

instruction it may be completely unpredictable in some machines 

while a fixed priority order may operate 1n others. 

2.2.4 Increment and Decrement Instructions [Stone 1989;Raynal 1986] 

The effect of increment and decrement instructions, increment(r,m) 

and decrement(r,m), 1 s to increment or decrement, respectively, the 

contents of the memory location m by 1 and to load the result into 

register r. Of course, this instruction 1s executed 1n one cycle 

(i.e., is uninterruptible) to make it mutually exclusive. 

The exclusion protocol, given 1n Figure 2.6, for process Pi is 

implemented using the decrement(r,m) instruction alone (as shown). Here, 

bolt 1s initialized to 1. Mutual exclusion can be implemented in an 

var bolt : shared integer; {initially 1} 

repeat dccrement(key,bolt); 

until key = 0; 

< CRITICAL SECTION > 

bolt <--- 1· ' 

Figure 2.6 - Mutual Exclusion Protocol 

using "Decrement" 
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entirely analogous way using instruction increment(key,bolt), but with 

variable bolt initialized to -1. 

In practice, the use of either of these instructions on 

machines implementing them would have one major disadvantage - if a 

process remains in possession of the critical section for a long 

time, while others are trying to access it, variable bolt will grow 

(decrease) indefinitely, when using increment (decrement) instruction. 

Depending on the size of the memory location, this could lead to 

major problems causing mutual exclusion to fail because of one of 

these two reasons -

• overflow causing memory failure, 

• variable returns to value 1 ( -1) in case of decrement( increment) instruction 1. 

The ICL 2900 series computers provide two similar indivisible 

instructions, called "dect" and "tine" [Keedy 1985]. 

These two instructions together are more powerful than Test-and-Set 

instruction and help in reducing the number of instructions required 

for synchronization.(See §2.4.1) 

1
This is more likely because of the way numbers are coded in memory words. For example, in case of 

16-bits word size, (7FFF)16 is maximum positive number and (8000)16 is the maximum negative number. 

Therefore, adding 1 to FFFF (= -1) would yield a 0 and so we can cycle back to value 1. This is a serious 

matter and gives problems in case of theoretical verification of programs. Verification of program on one 

machine may not be correct on another because of a different word-size. 
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2.2.5 Compare and Swap Instruction [Stone 1989; Hwang 1985] 

The compare-and-swap instruction (Figure 2. 7) uses two registers, 

one to hold an old value of the shared datum, and one to hold a new 

value. The advantage of using this instruction is that it computes 

the new value of the shared datum without locking it; it refetches 

the shared datum, checks to see if its value is unchanged, and if so, 

performs the update. If the value has changed, the current value is 

loaded into the register that holds the old value. This instruction 

is available on the IBM 370/168. 

The compare-and-swap instruction is more powerful than the rest of 

instructions shown before. But, it is useful in a limited number of 

Definition: compare_and_swap(address,reg_old_ val,reg_new _val); 

{The [] operator fetches the contents of the specified memory address.} 

temp := [address]; 

NOTE : condition-code is returned and it can be used to check 

if the update took place. 

if temp = reg_ old_ val then 

begin [address] := reg_new _val; 

condition_code := 1; 

end 

else begin reg_ old_ val := temp; 

condition_code := 0 

end; 

end { of definition }; 

Figure 2. 7 - Definition of "Compare and Swap" 
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important circumstances only, including the queueing and dequeueing 

of tasks. 

The mutual exclusion protocol using compare-and-swap instruction 

for enqueueing an i tern, assuming no dequeue operations are allowed, 

is given in Figure 2.8a. A general mutual exclusion solution using 

compare-and-swap may be obtained by making compare-and-swap behave 

like the exchange instruction. This is given in Figure 2.8b. 

(item_address).Link .- nil; { Initialize items for insertion 

at end of queue} 

Reg_tail := tail; { Read tail to a register } 

LOOP: compare_and_swap( tail,reg_ tail,item_address ); 

if condition_code = 0 then goto LOOP; 

{ Loop back on failure of compare-and-swap } 

(reg_tail).Link := item; 

Figure 2.8 a - Mutual Exclusion Protocol Using "Compare and Swap" 

for enqueueing an item 

Initial Values: 

(address) := 1; 

reg_ old_ val := 0; 

reg_new_val := 1; 

Protocol for Pi : 

Repeat 

compare_and_swap(address,reg_old_ val,reg_new _val); 

Until condition_code = 0; 

< CRITICAL SECTION > 

reg_ old_ val := 0; 

Figure 2.8 b - General Mutual Exclusion Protocol 

Using Compare_and_Swap 
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The reason compare-and-swap 1s more powerful is that the shared 

datum 1s locked at the beginning of the instruction, updated during 

the instruction, and unlocked at the end. This is in contrast to the 

prior instructions, which lock the critical section and release the 

critical section by manipulating a shared variable; the critical 

section remains locked for a long time till its execution. The compare­

and-swap instruction, therefore, produces the maximum possible MSYPS 

rate by reducing locked regions of a program to a single instruction. 

2.2.6 Fetch and Add Instruction [Stone 1989; Gottlieb 1987] 

Instruction fetch-and-add was proposed by Gottlieb for MIMD 

( Multiple Instruction Multiple Data ) shared memory machines using a 

message switching network with the geometry of the Omega-network 

[ Lawrie 1975]. The NYU Ultracomputer [ Gottlieb 1987] provides a 

primitive fetch-and-add that permits every PE ( processing element ) to 

read and write a shared memory location 1n one cycle. In particular, 

simultaneous reads and writes directed at the same memory location 

are done in a single cycle, and therefore, this primitive allows 

synchronization of multiple processes in a parallel manner. 

It is based on the serialization 'principle [Eswaran 1976], which states 

that the effect of simultaneous actions by the PEs 1s as if the 

actions had occurred 1n some unspecified serial order. Thus, for 

example, a load simultaneous with two stores directed at the same 

memory location will return either the original value or one of the 

two stored values, possibly different from the value that the cell 

finally comes to contain. 
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Fetch-and-add IS essentially an indivisible add to memory; its 

format is F&A(V,e), where V is an integer variable and e is an 

integer expression. This indivisible operation IS defined to return 

the old value of V and to replace V by the sum V+e. If V is a shared 

variable and many fetch-and-add operations simultaneously address V, the 

effect of these operations IS exactly what it would be if they 

occurred in some (unspecified) serial order, i.e., V is modified by 

the appropriate total increment and each operation yields the 

intermediate value of V corresponding to its position In this order. 

The following example illustrates the semantics of fetch-and-add, 

assuming V Is a shared variable. If PE. I processing element) 

executes 

F&A(V,�), and if PEj simultaneously executes 

ANSj +- F&A(V,ej), and if V is not simultaneously updated by yet 

another processor, then either 

ANS. +- V + e-
J I 

V +e. 
J 

ANS. +- V 
J 

and, in either case, the value of V becomes V + ei + ej. 

An example which demonstrates the concurrent updation of shared 

memory IS the concurrent execution of F&A(i,l) by several PEs. Here, 

'i' is a shared variable used to index into a shared array. Each PE 

obtains an index to a distinct array element, although one cannot 
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predict which element will be assigned to which PE, and (i' receives 

the appropriate total increment. 

[Gottlieb 1983] showed that fetch-and-add can be generalized to a 

fetch-and-� operation that fetches the value in V and replaces it with 

�(V,e). Of course, defining �(a,b)=a+b gives fetch-and-add. It is easy 

to see that defining � to be a boolean OR function gives test-and-set and 

defining � to be a second value projection function 7r2 

7r2(a,b)=b) gives exchange ( swap) . Therefore, 

TestSet(V) is equivalent to 

Exchange(L, V) is equivalent to 

F&OR(V,TRUE), and 

L ,_ F& 1r2(V,L). 

(i.e.' 

Thus, use of fetch-and-add operation allows many processes to perform 

in a completely parallel manner. No locking and unlocking is 

required, nor is a retry test and loop required as with compare-and-swap. 

For multiprocessor systems with fewer processors, compare-and-swap 

is found to be better approach, whereas fetch-and-add lS preferable as 

the number of processors increases, since it can execute all the 

requests for shared memory access-simultaneously. But whether or not 

fetch-and-add is cost-effective, is still a matter of research interest 

[Stone 1989] its implementation cost is high, and is limited to 

simultaneous access of the same shared variable by all contending 

processes. 
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2.3 PERFORMANCE CONSIDERATIONS 

The MIPS rate of a system can be increased by adding more 

processors, but MSYPS may not increase at all. The exclusive access 

requirement limits the performance of most multiprocessor 

architectures. When access to a shared variable is saturated, no 

additional speed improvement is possible no matter how many more 

processors are added to the system. Actually, the computation time 

may increase by adding more processors, as more processors will be 

active contending to access the shared data. The MSYPS bottleneck is 

one of the sources of performance degradation. 

The instructions exchange, test-and-set, lock, increment-and-decrement are 

another source of performance degradation - processes attempting to 

enter critical sections are busy accessing and testing global 

variables. This is called busy wait or spin-lock. When a processor is 

spinning, it actively consumes memory bandwidth that might otherwise 

have been used more constructively. If the spinning period is too 

long, a processor is not effectively utilized during that period and 

therefore ends up wasting lots of computer cycles. Moreover, when 

many processors are spinning, the contention causes additional cycles 

of delay while a process is attempting to release the critical 

section. 

A number of methods have been proposed to reduce degradation 

due to spin-locks. One of the methods is ai�ed at reducing the 

request rate to memory and, hence, the degree of memory conflicts. 

This is accomplished by delaying retesting of the global variable for 
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an interval T. Thus, for example, the mutual exclusion protocol using 

test-and-set instruction canbe modified as given in Figure2.9. 

var bolt shared integer; {initially 0} 

begin 

condition_code testset(bolt ); 

while condition_code op 0 do 

begin PAUSE(T); 

condition_code +- testset(bolt ); 

end; 

end; 

Figure 2.9 - Modification of protocol in Figure 2.3 

Another method is directed at making available cycles to do 

useful work. This can be accomplished by suspending the blocked 

process and enqueueing its status on a queue associated with a global 

variable; and then reassigning the processor to another ready-to-run 

process in its local memory. When the processor is signaled that the 

lock has been allocated, it resumes execution of the waiting process. 

The resumption would be immediate ,if the process is not swapped out; 

but in real-time systems a process may need to be resumed regardless 

of whether or not it is swapped out. Though suspending and resuming 

processes appears to be very efficient, the overheads involved with 

enqueue and dequeue operations would be very high and may be greater 

in cost than the cost of the cycles lost 1n spin-lock. Moreover, 
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enqueueing a task means that a processor has to access and update a 

shared queue pointer. This access itself involves a lock/unlock of 

some kind. If this lock is not granted, the problem of enqueueing a 

task at one queue to enqueue it at another queue 1s encountered, and 

this could repeat ad infinitum. Therefore, this chain of events has to be 

broken by forcing a lock to be implemented by means of a spin-lock. 

Now, this is the place where the instruction compare-and-swap comes very 

handy; the shared queue can be accessed and updated using compare-and­

swap as queue would be locked for just one cycle, i.e., the time for 

execution of compare-and-swap instruction. This implies that, for 

efficient use, there ought to be at least two primitives built-in the 

processor - one being compare-and-swap and another could be any from test­

and-set/ lock/ exchange/ increment & decrement. 

Blocking a task could be worthwhile, but only if the s1ze of 

the critical section is very large; otherwise it should be sufficient 

to delay the retesting of global variable by putting a PAUSE 

statement to avoid memory contention. 

In terms of performance, task enqueueing tends to Increase 

available MIPS by reassigning the idle processors to other useful 

work; whereas spin-locks tend to decrease MIPS by wasting useful 

machine cycles. Task enqueueing increases the number and length of 

critical sections protected by locks. By increasing the number of 

critical sections, the MSYPS demand is increased, and hence the 

overall effect of task enqueueing 1s to decrease the maximum 

potential MSYPS rate. 
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Another important issue is implementation of UNLOCK. The 

unlocking process has to compete with the (N-1) processes spinning on 

the shared variable, and the result of this may be a delay of time 

proportional to N. Giving priority to a WRITE request over a 

READ/MODIFY/WRITE request can avoid this problem; but it must be done 

carefully as giving priority to writers may postpone readers forever 

(starvation). 

The distribution of locks in memory is also an important factor 

in the performance of concurrent processes accessing lockable 

resources. If all locks are stored 1n one memory module, the 

contention for these locks can become excessive. 

2.4 SEMAPHORES 

Dijkstra was one of the first to appreciate the difficulties of 

using low-level mechanisms for process synchronization, and this 

prompted his development of semaphores [Dijkstra 1968; Dijkstra 

1971]. Semaphores can be implemented using statements of the testset 

type, and are generally offered as fundamental tools of system 

kernels. 

A semaphore S is a non-negative integer variable that can be 

handled only by two primi tives2 
P and V (defined in Figure 2.10), 

besides initialization. 

2P is the first letter of the Dutch word "passeren", which means "to pass"; V is the first letter of 

"vrygeven", the Dutch word for "to release". Reflecting on the definitions of P and V, Oijkstra and his group 

observed P might better stand for "prolagen" formed from the Dutch words 11proberen" (meaning "to try") 

and "verlagen" (meaning "to decrease") and V for the Dutch word "verhogen" meaning "to increase". 
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The notation wait and signal is also used for P and V respectively 

[Habermann 1972]. By definition, both P and V primitives are atomic, 

i.e., only a single primitive may be executed on any one semaphore at 

any one time. 

P(S) S +- S - 1; 

if S ::; 0 then wait in a queue associated with S endif; 

V(S) : s s + 1; 

if S ::; 0 then unblock one of the waiting processes endif; 

Figure 2.10- Definition of P and V operations 

In this definition of semaphores, processes that are blocked 

within a P operation on a semaphore variable S are distinguished from 

processes that are about to execute a P(S) but have not yet become 

blocked. This distinction 1s important as the execution of a V(S) 

will cause a blocked process to be selected 1n preference to a 

process that is not blocked. However, all blocked processes are 

treated equally as far as being selected is concerned - no effort is 

made to distinguish processes that have been blocked for a short 

length of time from those that hav� been blocked for a longer period. 

The group of blocked processes at any instant of time can, therefore 

be modeled as a set, from which a V operation chooses at random a 

process to be signaled. Stark calls semaphores with this type of 

blocking discipline blocked-set semaphores. He also defines two more types 

of semaphores blocked-queue semaphores and weak semaphores. Blocked-queue 
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semaphores are like blocked-set semaphores except that the group of blocked 

processes is maintained as a FIFO queue, instead of a set. In case of 

a weak semaphore, a process attempting to perform a P operation on a 

semaphore variable S executes a busy-waiting loop in which the value 

of S is continually tested. As soon as S is discovered to have a 

value greater than zero, it is decremented; the decrement and 

immediately preceding test are performed as one indivisible step. A V 

operation simply increments S in an indivisible step. A weak semaphore 

is also called a busy-wait semaphore. [Stark 1982] 

Each one of these, namely weak, blocked-set, and blocked-queue, 

semaphores has a different starvation property. These properties can 

easily be deduced from their definitions, and are given below -

• For a weak-semaphore, starvation is possible. 

• For a blocked-set semaphore, starvation is possible, if the number of processes 

contending for the critical section is greater than two. 

• For a blocked-queue semaphore, starvation is impossible. 

[Morris 1978] showed that starvation-free mutual exclusion with 

blocked-set semaphores is possible, but the solution employs three 

(instead of one) binary blocked-set semaphores. [Stark 1982] showed 

that weak semaphores can be used to implement starvation-free mutual 

exclusion if processes can retain and use information about previous 

synchronization history to modify future synchronization protocols. 

Dijkstra also distinguished between binary and counting ( general) 

semaphores [Dijkstra 1968; Di jkstra 1971 J. When the semaphore 

variable S can take values 0 or 1 only, it is called a binary 
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semaphore, and if S takes any integer value, it is called a counting 

( general) semaphore. 

It is important to be able to distinguish between the various 

definitions of semaphores because the correctness of a program will 

depend on the exact definition used. 

The Venus operating system [ Liskov 1972] provides P and V 

operations as the basic interprocess communication mechanism. [ Lausen 

1975] describes the internal structure of a semaphore based operating 

system BOSS2, developed for RC4000. 

2.4.1 Implementation of P k V Primitives 

The binary semaphores allow only one process at a time within 

an associated critical section. The mutual exclusion protocols given 

In §2.2.1, §2.2.2, and §2.2.3 achieve this, though they do not adhere 

to the definition of P and V. 

The implementation ( in Figure 2.11) of counting semaphores IS 

more interesting, and binary semaphores easily follow from this 

implementation by initializing the semaphore to 1. 

Initialization : S = M , where M is the number of processes 

which can enter critical section concurrently. 

P(S) decrement(S); 

if S < 0 then block the process and put m a queue; 

V(S): increment(S); 

if S < 0 then wakeup one of the waiting processes; 

Figure 2.11 - An Implementation of Counting Semaphores 
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This implementation has the problem of underflow if a "huge" 

number of processors execute P(S). 

Here, the power of increment and decrement instructions becomes 

clear. A semaphore i mpl em en ted with test-and-set permits only one process 

to pass, whereas, the solution using increment and decrement instructions 

permits up to M processes to pass concurrently. 

Keedy et a/ proposed to supplement the semaphore integer variable 

with a set, which can be thought of occupying one or more words 

adjacent to the integer word. Each bit in the words for the set 

represents the absence ( 0) or presence ( 1) of a member of the set; 

this set can be used to indicate when the resource is free, or when 

no resources are free, it may be used to identify the processes, 

which are waiting on a resource. The MONADS operating system was 

developed with microcoded set semaphores. [Keedy 1979] 

[Hehner 1981] gave an implementation of P and V semaphore 

operations, based on the local memory concept where no variable is 

written by more than one process. This implementation technique is 

very similar to Lamport's Bakery Algorithm [Lamport 1974], discussed 

in §4.2.1. 

2.4.2 Extensions of P and V Primitives 

Semaphores with P and V primitives have been demonstrated to be 

adequate and sufficient to solve a wide variety of synchronization 

problems. However, solutions for synchronization problems involving 

the scheduling of processes or classes of processes according to 
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different priorities, can be very cumbersome and difficult to 

discover. The reason for this complexity is that while semaphores are 

well sui ted to inhibiting other processes, they cannot directly be 

used by one class of processes to inhibit other classes of processes. 

As a consequence, new synchronization primitives and some extensions 

of P and V primitives were proposed to facilitate solutions for 

complex synchronization problems. 

2.4.2.1 Parallel P and V (PV Multiple) : 

[Patil 1971] presented a synchronization problem, Cigarette Smoker's 

problem, and proved that the necessary synchronization cannot be 

achieved with just P and V operations. He suggested a generalization 

of P to include simultaneous operations over a finite number of 

semaphores. That is, 

P(S1, · · ·  ,Sn): ifS1 > OA···ASn 

then S1:= s1 -1; · · · ; Sn:= Sn -1 

else Suspend; 

the execution decreases each of s1,s2,s3 by 1. 

[Parnas 1975] however gave a realization of Cigarette Smoker's 

problem by using an array of semaphores, and showed that Patil's 

claim was wrong. 

[Kosaraju 1973] presented a two producer two consumer 

synchronization problem, and proved that it can not be realized with 

either arrays of semaphores or multiple P and V primitives. 
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2.4.2.2 PP and VV Operations : 

[ Campbell 1973] introduced PP and VV operations which allow 

several processes to execute a procedure simultaneously. Their 

definition is given in Figure 2.12. 

procedure PP(integer count; 

semaphore mutex,sem); 

begin 

P(mutex); 

count := count+1; 

if count = 1 then P(sem); 

V(mutex); 

end; 

procedure VV(integer count; 

semaphore mutex,sem); 

begin 

P(mutex); 

count := count-1; 

if count = 1 then V(sem); 

V(mutex); 

end; 

Figure 2.12- Defrnition of PP and VV operations 

In the solution of readers-writers problem [ Courtois 1971], the 

code within PP and VV appears several times, and therefore can be 

replaced easily by these two operations. 

2.4.2.3 PV Chunk Operations : 

[Vantilborgh 1972] defined the generalized operations P( n,s ) 

and V ( n,s ) based on the concept of "order" of a blocked ( on a 

semaphore ) process. The definition of these operations is given in 

Figure 2.13. Both P ( n,s ) and V ( n,s ) are indivisible operations. 

From the definition, it follows that semaphore s IS always non-
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P(n,s) : if n :S s then s := s-n 

else add the performing process to the s-queue 

(i.e., the queue associated with s) and store n; n 

is called the order of the blocked process and n 2: 0. 

V(n,s) : s := s+n; 

The 

remove from the s-queue a set of processes such that their 

order sum is less than or equal to the current value of s and such 

that there is no other set with this property strictly including 

this set; the current value of s is then decreased by that sum. 

Figure 2.13- Definition of P(n,s) and V(n,s) Operations 

major changes with respect to the original p 
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and v 

operations are that semaphore s can be updated by a value greater 

than one, and V(n,s) can select a "maximal" set of processes, the 

order sum of which is less than or equal to the semaphore value. 

The "order" feature 1n this set of semaphores operations 

distinguishes amongst different processes waiting at the same 

semaphore and thus, makes it easier to find out solutions for complex 

synchronization problems such as the reader-writer problem. 

2.4.2.4 PRIORITY SEMAPHORES 

[Freisleben 1989] presented 'a new set of primitives, called 

priority semaphores, to solve general scheduling problems involving 

arbitrary levels of priority. Usage of these new primitives is 

described in terms of the reader-writer problem and then generalized by 

presenting an algorithm which involves arbitrary levels of priority 

with support for preemption and shared access by certain process 

classes. 
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Here, two new primitives priority_ P and priority_ V are introduced. 

The algorithm presented with these new primitives works, but the 

primitives may be too big in definition to be defined at machine 

level. Moreover, the implementation of these primitives would be 

unlike that of semaphores, which could be implemented using one of 

the indivisible instructions from §2.1.1 to §2.1.5. 

Freisleben et a/ implemented these primitives 1n microcode for an 

ICL PERQ system. This implementation revealed execution times of 

about 8 microseconds for priority_ P and 5 microseconds for priority_ V 

instruction. 

2.4.2.5 Higher-level Constructs : 

Although semaphores can be used to program almost any kind of 

synchronization, P and V are rather unstructured primitives. It is 

easy to make mistakes while using these P and V primitives and the 

protection of critical sections is left to the programmer. Therefore, 

structured concurrent programming notations like conditional critical region 

[Hansen 1972a; Hansen 1972b], monitors [Hoare 1974; Howard 1976], 

distributed processes [Hansen 1978] and path expressions [Campbell 1974] were 

proposed for specifying synchronization. 

2.5 CONCURRENT READING and VRITING 

Mutual exclusion effectively creates a serialization and 

therefore reduces parallelism. So the search for synchronization 

solutions which do not implement mutual exclusion 1s consistently 
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growing. [Lamport 1977] and [Peterson 1983] presented algorithms 

which show that it is possible to solve synchronization problems like 

readers-writers without resorting to mutual exclusion. There is no 

serialization at all in these algorithms, and therefore, if MSYPS 1s 

a big bottleneck, it would be worth implementing synchronization 

using one of these two solutions, and then better use of the power of 

parallel computing would be achieved. 

2.5.1 Lamport's Solution 

[Lamport 1977] suggested a synchronization mechanism which 

permits concurrent reading and writing. In all of the previous 

solutions, the global variable/semaphore is a basic (atomic) unit of 

data 1 n memory. However, a data i tern may be composed of several 

atomic units. Lamport considered the problem of concurrent reading 

and writing without introducing mutual exclusion for two reasons 

(!)Mutual exclusion requires that a writer wait until all current 

read operations are completed [Courtois 1971]. This may be 

undesirable if the writer has higher priority than the readers. 

(2)The concurrent reading and writing may be needed to implement 

mutual exclusion. 

His paper assumes that there are certain basic units of data 

whose reading and writing are indivisible, i.e., hardware 

automatically sequences concurrent operations to the basic unit of 

data; a basic unit of data may just be a single bit. Lamport 

considered the case of n readers and one writer and therefore, in his 

algorithm mutual exclusion of writers is not provided; it needs to be 
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enforced using some other algorithm. A simple solution using 

semaphore w is given in Figure 2.14. 

P(W); 

WRITER's CODE 

V(W); 

Figure 2.14- Mutual 

exclusion of writers 

Concepts Involved in Concurrent Reading and �riting : 

Let V = d1d2 ... dm be an m-digit variable that assumes a 
[0] [1] sequence of values V , V , ... such that i:::; j implies y[i]:::; vul, that 

is, write of y[i] precedes the write of yUJ. Also, for k:Sl, let y[k,l] 

denote both the value obtained by a read and the assertion that the 

read saw versions y[k] 
' y[k+l], ... , y[l] and no other versions. Since 

reading may be concurrent with writing, reading v yields 
[i l [i·] where dj J is a part of the version V J of V; and 

If k = l, then the read obtained the consistent version 

d�kJ ... d�] =V[kJ. It IS possible for the read to obtain a consistent 

version even if k # l. For example, if d�5] = d�6], then a read could 

obtain the value y[S,6] = d�5Jd�6l ... d�] = y[6J. 

If a read of V obtai ned the value y[k,l], then 

(i) The beginning of the read preceded the end of the write of y[k+lJ. 

(ii) The end of the read followed the beginning of the write of y[IJ. 
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A read(write) of V is performed from left to right if for each j, the 

read(write) of v. 
J 

IS COmpleted before the read of Vj+1 is begun. 

Reading or writing from right to left is defined in the analogous way. 

The following results proved in [Lamport 1977] form the basis 

of the solution (given in §2.5.1.2) to the readers-writers problem -

• If V is always written from right to left, then a read from left to right obtains a 
value V�l,ll] ... y�m•1ml with k1::; 11::; k2::; . . . km ::; lm. This result holds even when V is 
not composed of digits; V could be made up of any basic data items then. 

• If V is always written from right to left, then a read from left to right yields a 
value y[k,l] ::; y[l]_ In other words, a left-to-right reading of V while V is changing from y[k] 
to y[l] yields a value that will.not exceed y[IJ. If k = I, then V was not changed during the 
reading process. 

• If V is always written from left to right, then reading V from right to left yields a 
value y[k,l] 2: y[l]_ In this case, it is assured that the value will be at least as large as the 
stored value at the beginning of the read operation. 

It is worth demonstrating these theorems using an example. For 

the example, a digit is an atomic unit of data. If y[O] = 0999, 

vl1l = 1000, vl2l = 1001, reading V may produce a value y[0,1l, y[0,2J, y[1,2l, 

depending on the relative speed of the read and write operations, and 

assuming that V actually changes during the reading :-

(writing from right to left and reading from left to right : result # 2) 

y[0,1] = 0[o]9[0]9[o]0[1] or 0[o]9[0]0[1]0[1] or 0[0]0[1]0[1]0[1] . 

In any case, y[O,l] ::; y[l] = 1000. 

y[0,2] = o[O]g[O]g[O]l [2] or o[O]g[OJo[1]1 (2] or o[O]o[llo[l]1 (2] or o[O]g[OJo[2]1 [2] or 

0(0]0[1]0[2]1 [2] or 0[0]0[2]0[2]1 [2] ; 

Thus, y[0,2] ::; vl2l = 1001. 
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Similar examples can be used to demonstrate the third 

result. 

Concurrent Reading k Writing of Readers-Writers Problem 

Using the results In §2.5.1.1, Lamport gave a solution (Figure 

2.15) to the general readers-writers problem in the case of a single 

writer. 

This algorithm may be used if either (i)it is undesirable to 

make the writer wait for a reader to finish reading, or (ii)the 

probability of having to repeat a read is small enough so that it 

does not pay to incur the overheads of a solution employing mutual 

exclusion. The algorithm allows the possibility of a reader looping 

forever (starving) if writing is done often enough. 

WRITER READER 

--+ --+ 
vl :> vl; repeat temp · - v2; 

WRITE READ 

+- +-
v2 · - vl; until vl .- temp; 

1. ': >' means set greater than. Therefore, v 1 : > v 1 can be 

replaced by v 1 := v 1 + 1. 

2. The arrow directions on top of variables give the direction 

of read and write. The variables without arrowheads 

can be read or written in any direction at that place. 

Figure 2.15- Lamport's Concurrent Reading and Writing Solution 

to the "Readers-Writers" Problem 
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On the basis of the results given in §2.5.1.1, [Lamport 1990] 

gives algorithms for implementing (without forcing mutual exclusion) 

both a monotonic and a cyclic multiple-word clock that 1s updated by 

one process and read by one or more other processes. 

2.5.2 Peterson's Solution 

[Peterson 1983] considered the more general Concurrent Reading 

While Writing (CRWW) problem and provided algorithms which simulate 

atomic reads or writes for a data i tern composed of several atomic 

units so that the writer can modify the data while the readers can 

obtain a correct, recent value. 

[Lamport 1977] considered the concurrent reading and writing 

problem where the writer is not allowed to wait, but the readers can 

then be locked out. Lamport's solution (in Figure 2.15) depends on 

the direction of read and write, and requires shared variables whose 

values are unbounded (v1:>v1 statement sets v1 to a higher value than 

before every time a write operation is performed). Peterson solved 

the CRWW problem with higher level constructs with no direction 

specification for read and write, and used a bounded number of small, 

indivisible shared variables. 

Peterson's solution is given in Figure 2.16. Here, the writer 

is wait-free and readers may be locked out (starved). The writer uses 

a flag wflag to signal when it is writing the buffer. A reader can test 

this wflag before and after reading the buffer and determine if it 

partially overlapped a write. The shared variable switch is inverted 



Algorithm for the ith reader 

T1: reading[i] := not writing[i]; 

T2: sfalg := wflag; 

sswitch := switch; 

< Read Buffer >; 

if sflag or wflag or 

switch of= sswitch then goto T2; 

if reading[i]=writing[i] then goto T1; 

Algorithm for the writer 

wflag := true; 

< Write Buffer >; 

switch := not switch; 

wflag := false; 

for j := 1 step 1 until N do 

if readingUJ of= writing[i] then 

writing[i] := reading[i]; 

Figure 2.16- Peterson's CRWW Solution to the Readers-Writers Problem 
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after each write to detect a write that may have occurred entirely 

during the read. The problem of two or more writes occurring during a 

read is handled by a pair of variables, namely reading[ i J and writing[ i J, 

per reader one variable for that reader and the other for the 

writer.The reader initially sets them to be different, with the 

writer setting them equal between writes. Hence, the reader, after 

its read of the buffer, can determine if it overlapped part of a 

write, an entire write, or two or more writes, In which case it 

repeats. It is possible that readers may be locked out. 

2.6 Summary : 

This chapter contains low-level mechanisms which are provided 

as primitives to the user. The mutual exclusion solutions can be 

developed from these primitives without much difficulty. In the next 

chapter, software solutions, which do not depend on any such 

primitive, are given. 



CHAPTER Ill 

SHARED MEMORY HIGH-LEVEL SOLUTIONS 

3.1 Introduction 

The problem of how to implement mutual exclusion has been 

studied extensively. Until 1962, the problem of whether or not 

processes could be synchronized using just the standard operators of 

an ordinary programming language had still to be resolved. The first 

solution to this problem for two processes is credited to the Dutch 

mathematician T. Dekker. Di jkstra extended this solution to N 

processes, where N could take any value [Dijkstra 1965]. Since that 

time numerous extensions have been devised to simplify the algorithm 

[Doran 1980; Peterson 1981] or improve upon one of the issues of 

concurrent programming [Knuth 1966; deBruijn 1967; Eisenberg 1972; 

Lamport 1974; Burns 1982; Lamport 1987]. 

All of the software solutions 1n a centralized system use 

shared variables to achieve mutual exclusion. They assume that the 

memory hardware mechanism allows exclusive access to the storage 

locations, that is, several simultaneous accesses (reading and/or 

writing) to the same location are serialized 1n an order that is 

unknown beforehand. None of these solutions makes use of instructions 

that can perform uninterruptible read-modify-write operations because 

an ordinary higher level language does not supply this operation in 

any form as a primitive operation. But they do assume that if 

processor A performs WRITE X followed by WRITE Y, then all other 

49 
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processors will observe the VVRlTEs performed in this order. That is, 

if processor A executes VVRlTE X and then VVRlTE Y, no other processor 

that executes READY followed by READ X will see the new value of Y 

and the old value of X. If it sees the old value of X, it will also 

see the old value of Y because X is changed before Y 1s changed. This 

assumption is totally reasonable, yet it need not be obeyed in a 

multi-processor system unless it 1s specifically designed into the 

architecture. 

Any system that uses a multi-level switching network between 

processors and memory can potentially violate this assumption and 

then all of these software solutions will fail. In a switched network 

multi-processor system, it is possible that VVRlTE X hits a hot-spot1 

and is buffered, while VVRITE Y succeeds in reaching memory and 

updating Y. In the meantime, another processor 1ssues READ Y and 

READ X. Now, READ Y obtains the new value of Y and also, it lS 

possible for READ X to avoid the hot-spot that 1s holding back VVRITE 

X, and get the old value of X. [ Stone 1989] 

All of these software solutions also assume that processes do 

not start 1n their critical sections and they do not halt outside of 

their non-critical sections. These- are very reasonable assumptions, 

as otherwise a process hal ted in its critical section would prevent 

all other processes from entering the mutually exclusive critical 

section, and starting straight away in the critical section ( without 

going through the entry ( acquisition) protocol ) would defeat the 

1 A hot-spot is the region of memory that receives more than its share of access in a multi-processor 

system. 
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whole purpose of achieving mutual exclusion through these solutions. 

Although at present there are more efficient hardware solutions 

(discussed in Chapter 2) to the problem of mutual exclusion, study of 

these software solutions is important to realize the inherent 

difficulty of the problem. Even if there are a dozen or so lines of 

code in these software solutions, parallelism makes it difficult to 

understand their behavior and analyze their correctness. To make 

people realize that these solutions are far from trivial, Dijkstra in 

his paper [Dijkstra 1965] asked the readers to try (before reading 

his solution) writing a program to solve this problem. Hyman's 

incorrect solution is a good citation [Hyman 1966]. 

The rest of this chapter contains an outline of each of the 

software solutions (listed 1n Table 3.1) along with an informal 

• Hyman's Incorrect Solution 

• Dekker's Solution 

• Doran and Thomas' Solution 

• Dijkstra's Solution 

• Knuth's Solution 

• deBruijn's Solution 

• Eisenberg and McGuire's Solution 

• Peterson's Solution 

• Burn's and Lamport's Improvements 

Table 3.1 - List of Software Solutions 
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argument as its proof of preserving mutual exclusion and other 

properties of the mutual exclusion problem. 

3.2 Hyman's Incorrect S olution 

[Hyman 1966] proposed a solution for two processes P0 and P1, 

which compete for access to their critical sections. Knuth showed 

that Hyman's solution did not preserve mutual exclusion for all 

interleavings of the execution sequences of two processes [Knuth 

1966]. 

Hyman's solution, consisting of twelve lines of ALGOL program, 

contained 15 syntactic errors [Knuth 1966]. A structured version of 

his solution is given in Figure 3.1. 

Shared V ariablcs: 

b : array(0 .. 1] of boolean; (initialized to true) 

k : 0 .. 1; (can be either 0 or 1) 

Protocol for P 0 Protocol for P 1 

b(O] := false; b(1] := false; 

while (k f:. 0) do while (k f:. 1) do 

begin begin 

while not b(1] do; while not b(O] do; 

k := 0; k := 1; 

end; end; 

<CRITICAL SECTION> <CRITICAL SECTION> 

b(O] := true; b(1] := true; 

Figure 3.1- Hyman's Solution 
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For the counterexample, consider the case when k=O, and b(O]=b[1]=true. 

Now, process PI sets b[1] to false and then finds b(O] to be true. P0 

then sets b�] to false, finds k=O and enters its critical section. But 

PI now sets k=1 and executes its critical section at the same time. 

Thus, this solution does not achieve mutual exclusion. 

3.3 Dekker's Algorithm : [Dijkstra 1968; Silberschatz 1988] 

The first software solution to the problem of mutual exclusion 

was given by Dekker, but was described and proved correct by 

Dijkstra. The algorithm 1s given in Figure 3.2. 

Shared Variables : 

flag : array [0 .. 1] of boolean; (Initialized to false) 

turn : 0 .. 1; 

Note : i contains the process number and j is the other 

process's number. 

The Protocol for Pi is­

flag[i] := true; 

while flag[j] do begin 

if turn=j then begin 

flag[i] := false; 

while turn=j do; 

flag[i] := true; 

end; 

end; 

< CRITICAL SECTION > 

turn := j; 

flag[i] := false; 

Figure 3.2 - Dekker's Algorithm 
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It is clear from the algorithm (in Figure 3.2) that a process 

would enter its critical section only if other process's flag is set to 

false and its own flag is set to true. If both Po and P1 set their 

flag to true, turn decides who goes inside the critical section. So 

mutual exclusion is preserved. Since turn can be updated only in the 

postlude, the process with its "turn" will definitely enter the 

critical section (if it wishes to do so) and hence the algorithm is 

deadlock-free. However, there is a risk of starvation. It may happen 

if p. 1 is a very fast repetitive process; 

flag[j] =false, while p. 
J 

cannot set flag[ j J 

it may constantly find 

to true because of p. 's 1 

constant reading of the variable flag[j] and access to a memory 

location is exclusive. Process Pj will definitely be able to enter 

its critical section but only after it sets flag[j] to true. Therefore, 

the "fairness" of this algorithm depends on the fairness of the 

memory hardware. If the hardware is fair, Pj will get to set flag[j] to 

true in a finite time and eventually enter its critical section. 

3.4 Doran and Thomas' Algorithm : 

Doran and Thomas presented two variants of Dekker's algorithm 

as they thought Dekker's algorithm-to be difficult (with its nested 

loops) to comprehend [Doran 1980]. The first variant, given in Figure 

3.3, is a rephrasing of Dekker's algorithm, but it consists of two 

loops in success1on rather than the nested loops of Dekker's 

solution. And the second variant, given in Figure 3.4, has just one 

loop. 



Shared Variables : 

boolean A_needs, B_needs; 

integer turn; 

Note: The construct "wait until <cond.>" is used as an 

abbreviation for L: if not <cond.> then goto L. 

Protocol for Process A Protocol for Process B 

1. A_needs := true; B_needs := true; 

2. if B_needs then begin if A_needs then begin 

3. if turn= 'B' then begin if turn = 'A' then begin 

4. A_needs := false; B_needs := false; 

5. wait until turn = 'A'; wait until turn = 'B'; 

6. A_needs := true; B_needs := true; 

7. end; end; 

8. wait until not B_needs; wait until not A_needs; 

9. end; end; 

10. < CRITICAL SECTION > < CRITICAL SECTION > 

11. turn := 'B'; turn:= 'A'; 

12. A_needs := false; B_needs := false; 

13. < NON-CRITICAL SECTION > < NON-CRITICAL SECTION > 

Figure 3.3- Doran and Thomas' Algorithm Version 1 
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Mutual exclusion 1n the first variant ( Figure 3.3) is guaranteed by 

each process setting a flag before entering its critical section and 

then testing the other process's flag immediately before entry ( in 

lines 2 or/and 8). If one process is excluded because the other has 

already entered its critical section, then the "turn" indicator 
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guarantees that the excluded process will be the next to enter. The 

proofs for mutual exclusion and no deadlock are similar to the ones 

given for Dekker's solution. 

Both, Dekker's algorithm and this first variant, avoid deadlock 

by having each process reset its critical section flag before 

awaiting its turn. This is, in effect, like saying "after-you" to the 

other process, but use of the critical section flag for this purpose 

obscures the intended politeness [ Doran 1980]. The second variant, 

given in Figure 3.4, introduces an explicit pair of flags to stand 

for "after-you". This second variant appears to mirror real life -

'if the other process is using something, or wants to, then say 

"after-you" politely and wait until it has finished or until it also 

says "after-you" in which case be well-mannered and do not go first 

if you had the last turn' [ Doran 1980]. 

In the second variant, the condition tested before entry to the 

critical section is weaker than 1n Dekker's solution or the first 

variant, since it is possible for one process, say A, to enter the 

critical section while the critical section flag of the other 

process, i.e. B_needs, is true. However, when this occurs, the 

B_said_after_you flag guarantees that B is in its entry protocol and has 

not entered the critical section. This second variant uses one wait 

loop and two flags as compared to two wait loops and one flag in the 

first variant. 

The proofs for mutual exclusion and no deadlock for the second 

variant ( in Figure 3.4) are based on reductio ad absurdum. Assume that 



Shared Variables : 

boolean A_needs, B_needs, A_said_after_you, B_said_after_you; 

integer turn; 

Note : The construct "wait until <cond.>" is used as an 

abbreviation for L: if not <cond.> then goto L. 

Protocol for Process A Protocol for Process B 

1. A_needs := true; B_needs := true; 

2. if B_needs then begin if A_needs then begin 

3. A_said_after_you :=true; B_said_after_you := true; 

4. wait until not B_needs or wait until not A_needs or 

5. {turn= 'A' and (turn= 'B' and 

6. B_said_after _you); A_said_after _you); 

7. A_said_after _you := false; B_said_after_you := false; 

8. end; end; 

9. < CRITICAL SECTION > < CRITICAL SECTION > 

10. turn := 'B'; turn:= 'A'; 

11. A_needs := false; B_needs := false; 

12. < NON-CRITICAL SECTION > < NON-CRITICAL SECTION > 

Figure 3.4- Doran and Thomas' Algorithm Version 2 
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both processes are 1n their critical section at the same time. Both A 

and B must get past lines 4-6 in the program to get to their critical 

section. If A is in its critical section, it must have set A_ needs to 

true at line 1, and found either B_needs false at line 4 or (turn= (A' 

and B_said_after_you) true at lines 5 and 6 respectively. Since by 

assumption B is also in its critical section, it must have set B_needs 
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true and found either A_needs false or (turn='B' and A_said_after_you) 

true. Therefore, the only way A and B could have got into their 

critical section at the same time is when A found �rn= 'A' when B was 

in its critical section or attempting to enter it, and B found 

turn= 'B' when A was in its critical section or attempting to enter 

it. Since turn is a shared variable and is updated only In the exit 

protocol, it can be either 'A' or 'B' and never both 'A' and 'B'. 

This is a contradiction and thus mutual exclusion is achieved. 

Deadlock cannot occur In this algorithm. If one of the 

processes IS hal ted In its non-critical section, the other process 

will find the halted process's n�� flag to be false and will then be 

able to go past lines 2 to 8 in the protocol in Figure 3.4 and hence 

access the critical section without any resistance from the hal ted 

process. If both A and B are attempting to enter the critical section 

at the same time, then �rn (being either 'A' or 'B') will decide who 

goes into the critical section. Therefore, both 'A' and 'B' cannot be 

blocked and hence there is no deadlock. 

Both of these variants, like Dekker's, depend on the fairness 

of the memory hardware to be "fair" to the processes competing to 

enter the critical section. 

3.5 Dijkstra1s Generalization to N Processes 

[Dijkstra 1965] generalized Dekker's solution to the case of N 

processes. Dijkstra's algorithm IS given in Figure 3.5. 

This algorithm allows a process to enter its critical section 



Shared Variables : 

Boolean array b, c [1: N]; (initialized to true) 

integer k; 

Note: 1 :S k :S N. b[i] and c[i] are set by Pi only, where as all 

other processes can only read them. Here, i contains the process 

number, and N is the total number of processes. 

Local Variables: integer j; 

Protocol for Process Pi (1 :S i :S N) is-

LiO: b(i] := false; 

Li1 :  i f  k of; i then 

Li2: begin c[i] := true; 

Li3: if b[k] then k := i; 

goto Li1; 

end 

Li4: else begin 

c[i] := false; 

for j := 1 step 1 until N do 

if (j of; i) and (not c[i]) then goto Li1; 

end; 

< CRITICAL SECTION > 

c[i] := true; 

b[i] := true; 

< NON-CRITICAL SECTION > 

goto LiO; 

Figure 3.5 - Dijkstra's Solution 
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only when it finds all other c's true after having set its own c to 

false. Mutual exclusion is achieved and to prove this, assume, to the 

contrary, that two processes Pi and Pj are in their critical section 

simultaneously. To enter critical section, Pi must set c[ i ] to false 
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and find c[j] to be true. On the other hand, Pj must have found c[i] 

to be true after setting c[j] to false. This leads to a 

contradiction, and hence the assumption that two processes are in 

their critical section at the same time is wrong, and mutual 

exclusion is achieved. 

This solution also avoids "after you"-"after you" kind of 

blocking (deadlock). If the process Pk is not trying to enter the 

critical section, b[k] will be true and all the other processes 

trying to enter the critical section will find (k f i) true. As a 

result, several processes may execute the assignment statement in 

Li3, 1.e. k :=i. After the first assignment, no new process can assign 

a new value to k as they all will find b[k] false. Since k is a shared 

variable, it will contain the number of the last process, say i, to 

have had carried out the assignment (k := i), and will not change until 

b[i] becomes true. Now, Pi will wait (in Li4) until all other 

processes set their c true, and then p. 1 will enter its critical 

section. Therefore, when none of the processes 1s 1n the critical 

section, one process will be able to do so. Hence, there is no 

deadlock. 

If a number of processes aPe constantly competing for the 

critical section, there is nothing to stop one of the processes from 

always entering the critical section as this process can always be 

the last one to modify k. So in this algorithm it is possible that a 

process may get starved. 
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3.6 Knuth's Solution 

[ Knuth 1966] presented the first "fair" software solution to 

the problem of mutual exclusion. By providing "fairness" In the 

algorithm, a process trying to enter its critical section is 

guaranteed to do so within a finite time. The bound is given by the 

number of times that other processes may enter the critical section 

between the moment a process submits a request to enter its own 

critical section and the moment it actually does so [Knuth 1966]. 

After this algorithm, it became possible to measure the maximum 

waiting time ( in number of times) for a process to enter its critical 

section. Knuth's algorithm appears in Figure 3.6. 

This solution guarantees mutual exclusion for it is impossible 

for two processes to go past the loop in line L2 in Figure 3.6. To 

prove this, assume that two processes Pi and Pj are in the critical 

section simultaneously. For Pi to be in the critical section, contro/[i] 

must be equal to 2, and contro/[j] must be either 0 or 1 ( i.e., not 2). 

But, for p. to be in its critical section, contro/[j] must be 2. This 
J 

shows that the assumption that two processes may be in the critical 

section simultaneously leads to a contradiction. 

The algorithm also guarantees that the critical section is 

reachable, that Is the system cannot be deadlocked; because if no 

process enters the critical section, the value of k remains constant 

and the first process ( in the cyclic ordering 

k, k- 1, ... , 1, N, N- 1, ... , k+ 1) attempting to enter will have no 

restraint to do so. 



Shared Variables : 

integer array control [1:N); 

integer k; 

(initialized to 0) 

(initialized to 0) 

Note : Here, i contains the process number, 

and N is the total number of processes. 

Local Variables : integer j; 

Protocol for Process P. is -
I 

LO: control[i) := 1; 

L1: for j := k step -1 until 1, N step -1 until 1 do 

begin 

if j = i then goto L2; 

if control[j) :f. 0 then goto L1 

end; 

L2: control[i) := 2; 

for j := N step -1 until 1 do 

if (j :f. i) 1\ (control[i) = 2) then goto LO; 

L3: k := i; 

< CRITICAL SECTION > 

k := if i = 1 then N else (i-1); 

L4: control[i) := 0; 

L5: < NON-CRITICAL SECTION > 

goto LO; 

Figure 3.6 - Knuth's Solution 
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Knuth's solution 1s "fair". Since the critical section is 

reachable, a process Pi can be blocked only if there is at least one 

other process p. 
J 

that gets to execute its critical section 

arbitrarily often. But every time Pj gets through from LO to L4, with 

control[i]:j:.O, it encounters the value of k ( in L1 ) that must have been 

set by a process P1 which follows i and precedes j in the cyclic 

ordering N,N-1, ... ,2,1, i.e., i>l>j. Since by assumption p. 
J 
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continually overtakes Pi, the effect allowing this to happen must 

occur continually, i.e. P1 should always then enter the critical 

section before Pj. There must therefore be a process Pk' that follows 

Pi and preceded P1, that is i>k'>l, and so on. Since the number of 

processes N is finite, Pi must at some stage enter its critical 

section. Thus, the fairness of the solution is guaranteed. 

Knuth claims that a process has to wait at most 2N-l_1 turns, 

where N is the number of processes, and turn is defined as one process 

using its critical section. Proof for this maximum delay function is 

not trivial [deBruijn 1968]. In unfavorable circumstances, a process 

Pi trying to enter its critical section may be positioned at L1, and 

all other (N-1) processes at L2. The worst case (2N-l -1 turns) would be 

when Pi misses all the momentary values of k which would enable it to 

get through to L2. But after this worst case delay, the value of k 

cannot be changed further by any other process and then Pi would be 

able to enter its critical section. 

The value of k is changed in L3 only, and a careful look shows 

that the new value of k is computed using modulo N arithmetic. The 

process numbers 1 .. N can be mapped to O .. N-1 and k can be thought to 

be computed as k (k-1) mod N.- For the worst case computation, 

assume Pj, such that j=(i+1) mod N, gets into the critical section 

first, and therefore sets k= i after exiting the critical section. 

Now, there are (N-2) processes (left at L2) which can potentially 

change the value of k and assume that Pj joins Pi at L1. Again, assume 

P1, such that l=(i+2) mod N=(j+1) mod N, enters the critical 

section and therefore, changes k to j. Now, process Pj can cross the 
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barrier at L1 and join the other processes at L2. Assume this happens 

and therefore there are again (N-2) processes at L2 with Pi at L1. 

Further, assume that Pj again enters the critical section before all 

the other waiting processes at L2. Now, there are (N-3) processes 

left at L2 and possibly, P
j waiting at L1 with Pi and P1 at LO. Again 

assume that Pm, such that m=(i+3) mod N=(j+2) mod N=(l+1) mod 

N, is the next to enter the critical section, and therefore the new 

value of k is l, after Pm exits its critical section. This new value 

of k enables both Pj and P1 to cross L1, assuming Pi again misses the 

chance. Now, assume that Pj goes inside the critical section first, 

then P1, and then again Pj. Thus, by continuing the situations 

unfavorable to Pi' it can be seen that Pj, such that j=(i+1) mod 

N, enters the critical section (1 (enabled itself)+ 2° (enabled by P(j+1)modN) + 

21 (enabled by P(j+2)modN)+···+ 2N-3 (enabled by P(j+N-2)modN=(i-1)mod N) times 

20(2N-2- 1) 
=1+ 2_1 =)2N-2 times. And then generalizing, 

p(i+l)modN 

p
(i+2)modN 

p 
(i+N-l)modN 

enters critical section 
enters critical section 

enters critical section 

2N·2 times 
2N-3 times 

2° times 

The sum total of the number of times would give the maximum 

delay. Therefore, maximum delay is =2N
- 2+ 2N

-3+ . . .  + 2° 

20 * (2N-l -1) 

(2 _1) 
(Sum of a Geometric Progression) 
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Knuth gave a simpler version of his N process algorithm to 

solve the mutual exclusion problem in case of two processes [Knuth 

1966]. It appears in Figure 3.7. 

It is interesting to compare Knuth's two process solution 

(Figure 3.7) with that of Dekker (Figure 3.2), and Doran and Thomas 

(Figures 3.3 and 3.4). The latter solutions depend on the fairness of 

the hardware, whereas Knuth's algorithm ensures fair behavior. 

LO: control[i] := 1; 

Ll: if k = i then goto L2; 

if control[i] i- 0 then goto Ll; 

L2: control[i] := 2; 

if control[i] = 2 then goto LO; 

L3: k := i; 

< CRITICAL SECTION > 

k :=j; 

L4: control[i] := 0; 

Figure 3.7- Knuth's Two Process Solution 

3.7 deBruijn's Solution 

Knuth's solution 1s not efficient, when N is very large. 

[deBruijn 1967] proposed an improvement to Knuth's algorithm. 

deBruijn suggested a very small change in Knuth's solution and 

reduced the order of maximum number of waits from exponential to 

polynomial time. The change is in line L3 of Knuth's algorithm, that 

is the part of the protocol where k 1s updated. The change is given 1n 

Figure 3.8 and the complete algorithm in Figure 3.9. 



L3: k := i; 

< CRITICAL SECTION > 

k := if i = 1 then N else i- 1; 

L3: < CRITICAL SECTION > 

!!y if (control(k] = 0) V (k = i) 

then k := if k = 1 then N else k- 1; 

Figure 3.8 - Changes in Knuth's Solution 
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The modification made to Knuth's algorithm does not effect the 

proofs of mutual exclusion and of critical section reachability; they 

Shared Variables : 

integer array control (1:N]; 

integer k; 

(initialized to 0) 

(initialized to 0) 

Note: Here, i contains the process number , 

and N is the total number of processes. 

Local Variables: integer j; 

Protocol for Process Pi is-

LO: control(i] := 1; 

L1: for j := k step -1 until 1, N step -1 until 1 do 

begin 

if j = i then goto L2; 

if controlm #- 0 then goto L1 

end; 

L2: control(i] := 2; 

for j := N step -1 until1 do 

if (j ;f. i) 1\ (control [if= 2) then goto LO; 

L3: < CRITICAL SECTION > 

if (control(k] = 0) V (k = i) then 

k := if i = 1 then N else (i-1); 

L4: control(i] := 0; 

L5: < NON-CRITICAL SECTION > 

goto LO; 

Figure 3.9- deBruijn's Solution 
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rema1n the same. The alterations however affect the "fairness" issue. 

With these changes, if at a given moment k is i, and if controf[i] -:j;O, 

then k does not change its value before process Pi has executed the 

critical section. For the time k is constant, no process can enter the 

critical section twice. Suppose p. 
J 

passes twice, then j -:j; k and 

contro/[k] -:j; 0, for otherwise k would have changed the first time P j went 

through the critical section. Further, Pk does not pass its critical 

section before Pj does; otherwise the value of k would change before 

P j gets its second turn. Therefore, contro/[k] -:j; 0 all the time between 

the two turns of P j, and this means that P j cannot get to L2 after 

its first turn. Now following the arguments similar to those in §3.6, 

the worst case delay can be computed. Therefore, if a process 

attempts to enter the critical section, then in the worst case -

p(i+l)modN 

p(i+2)modN 

p (i+N-l)modN 

can enter the critical section 

can enter the critical section 

can enter the critical section 

before Pi gets inside the critical section. 

(N- 1) times, 

(N - 2) times, 

... , and 

1 time, 

Therefore, max1mum delay =(N-l)+(N-2)+ ... +1 

N-1 
I::CN-j) 
j=l 

p. 1 

deBruijn's algorithm highlights the difficulties encountered in 

writing efficient concurrent programs a small change in the 

algorithm can do wonders! 
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3.8 Eisenberg and McGuire's Algorithm 

After deBruijn's optimization over Knuth's solution, [Eisenberg 

1972] proposed a solution which further optimizes the maximum delay 

by guaranteeing it to be no more than (N-1) turns, 1.e. a linear 

function over deBruijn's quadratic. Eisenberg and McGuire's algorithm 

1s given in Figure 3.10. 

The solution in Figure 3.10 ensures that no two processes are 

simultaneously processing between their statements L3 and L6 for the 

same reason as in Knuth's algorithm, and hence mutual exclusion is 

achieved. Also, the algorithm is deadlock-free, for if no process has 

yet passed the statement L3 before entering the critical section, the 

value of k will be constant and the first contending process in the 

cyclic ordering (k,k+1, ... ,N,1, ... ,k-1) will meet no resistance and 

enter the critical section. 

The algorithm is "fair" and guarantees that no process will be 

starved. When a process exits its critical section, it designates the 

first contending process (in the cyclic ordering) as its unique 

successor by setting k to that process's identification number. This 

also ensures that, 1n the worst case, where all processes are 

attempting to enter the critical ·section, the maximum wait for 

process Pi (with k=i+1) to enter the critical section 1s limited to 

(N -1)turns. Since the delay function is linear, a process may 

overtake another at most once. 



Shared Variables : 

integer array control (1:N] ; 

integer k; 

(initialized to 0) 

Note : 1 :S k :S N. Each element of control is either 0, 1, or 2. 

Here, i contains the process number and N is the total number 

of processes. 

Local Variables : integer j; 

Protocol for process Pi is -

LO: control (i] := 1; 

L1: for j := k step 1 until N, 1 step 1 until k do 

begin 

if j = i then goto L2; 

if control[i] f 0 then goto L1 

end; 

L2: control (i] := 2; 

for j := 1 step 1 until N do 

if (j f i) 1\ (control[i] = 2) then goto LO; 

L3: if (control (k] f 0) 1\ (k f i) then goto LO; 

L4: k := i; 

< CRITICAL SECTION > 

L5: for j := k step 1 until N, 1 step 1 until k do 

if (j f k) 1\ ( control[i] f 0) then 

begin 

k := j; 

goto L6 

end; 

L6: control(i] := 0; 

L7: remainder of cycle; 

goto LO; 

Figure 3.10- Eisenberg and McGuire's Solution 
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3.9 Peterson's Solution 

[Peterson 1981] presented a very simple solution to the problem 

of mutual exclusion for two processes and claimed to put an end to 

the "myth" that the two process mutual exclusion problem requires 

complex solutions with complex proofs. 

Peterson gave two primitive algorithms (given in Figures 3.11 

and 3.12), which preserve mutual exclusion but suffer from deadlock, 

and then derived the working algorithm (Figure 3.13) from these two 

primitive algorithms. 

Shared Variables : 

turn : integer; 

Note : The construct wait until <cond.> means that wait 

until condition is true and can be replaced by the standard 

construct repeat until <cond.>. 

Protocol for Process 1 Protocol for Process 2 

turn:= 1; turn:= 2; 

wait until (turn= 2); wait until (turn= 1); 

< CRITICAL SECTION > < CRITICAL SECTION > 

Figure 3.11 - Peterson's First Primitive Algorithm 

The first primitive algorithm (Figure 3.11) suffers from 

deadlock only when one of the processes does not cyclically try for 

the critical section. The second primitive algorithm (Figure 3.12) 

has deadlock only when both the processes are attempting to get into 

their critical section. 



Shared Variables : 

Q1, Q2 : boolean; 

Note : The construct wait until <cond.> means that wait 

until condition is true and can be replaced by the standard 

construct repeat until <cond.>. 

Protocol for Process 1 Protocol for Process 2 

Q1 :=true; Q2 :=true; 

wait until not Q2; wait until not Q1; 

< CRITICAL SECTION > < CRITICAL SECTION > 

Q1 := false; Q2 :=false; 

Figure 3.12- Peterson's Second Primitive Algorithm 
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To prove that the algorithm in Figure 3.13 achieves mutual exclusion, 

assume that both processes Pl and P2 are in their critical section at 

the same time. That would then mean Ql=Q2=true. Now, the compound 

condition 1n the wait loop could not be true for both the 

Shared Variables : 

Q1, Q2 boolean; 

turn : integer; 

Note : The construct wait until <cond.> means that wait 

until condition is true and can be replaced by the standard 

construct repeat until <cond.>. 
' 

Protocol for Process 1 Protocol for Process 2 

Q1 :=true; Q2 :=true; 

turn:= 1; turn:= 2; 

wait until (not Q2) or (turn= 2); wait until (not Q1) or (turn= 1); 

< CRITICAL SECTION > < CRITICAL SECTION > 

Q1 :=false; Q2 :=false; 

Figure 3.13- Peterson's Solution to Two Process Mutual Exclusion Problem 
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processes at the same time, as the shared variable turn would be 

favorable to only one of the processes and the other condition (notQl 

for P1 and not Q2 for P2) would have failed for both. It implies that 

one process first passed its test and therefore entered its critical 

section. Now the second process can enter its critical section only 

when it finds turn favorable to it, but it can only make turn 

unfavorable to itself. Therefore the second process is definite to 

fail the test and thus mutual exclusion is preserved. 

Deadlock is also not possible for the algorithm in Figure 3.13. 

To prove this, consider P1 blocked 1n its wait loop forever. After a 

finite amount of time, P2 will be doing one of three things - not 

trying to enter its critical section, waiting 1n its protocol for 

entry to critical section, or using the critical section again and 

again. In the first case, P1 finds that Q2 is false and then it may 

proceed to enter its critical section. The second case 1s impossible 

as turn must be either 1 or 2, and this will make the condition true 

for one of the processes to proceed. In the third case, when P2 

attempts to use its critical section again, it will set turn to 2 

(unfavorable to itself), and therefore permit P1 to proceed. The 

third case demonstrates that this algorithm guarantees fairness also. 

Peterson thought that there was no need of a formal proof for 

this simple algorithm and opined that "possibly the prevalent 

attitude on formal correctness arguments is based on poorly 

structured algorithms and good parallel programs are not really that 

hard to understand". In fact, he found Di jkstra' s formal proof of 

mutual exclusion for the "simple" algorithm ln Figure 3.13 
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"unnaturally complex". 

Peterson also showed that his two process solution could easily 

be generalized to N processes. The N process solution, given in 

Figure 3.14, IS formed by using the two process solution repeatedly 

(N - 1 ) times to eliminate at least one process each time until only 

one remains. In this algorithm, variable Q has been generalized to 

take N values, ranging from 0 to N-1. The value 0 plays the same role 

as "false" does for two process solution, that is to convey that the 

process is not in its critical section. A process's entry to the 

critical section, expressed by "true" in two process solution, is now 

specified with respect to the other processes. 

Shared Variables : 

Q 

turn 

array [l ..n] of integer; 

array [l..n-1] of integer; 

Local Variables: i, n, j : integer; 

(initially 0) 

(initially 1) 

Note : The construct wait until <cond.> means that wait 

until condition is true and can be replaced by the standard 

construct repeat until <cond.>. Here, i contains the process 

number and N is the total number of processes. 

Protocol for Pi is -

for j := 1 to N-1 do 

begin 

Q[i] :=j; 

turn[i] := i; 

wait until ('v'k =/= i, Q[k] < j) V (turn[i] =/= i) 

end; 

< CRITICAL SECTION > 

Q[i] := 0; 

Figure 3.14- Peterson's Solution toN Process Mutual Exclusion 
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3.10 Further Improvements : 

The mutual exclusion algorithms in §3.6 to §3.9 are improvements 

over Dijkstra's solution in terms of either simplicity or "fairness". 

All of these algorithms do not pay any attention to the number of 

shared memory variables used and the number of reads and writes to 

the shared memory. These aspects of concurrent programming cannot be 

overlooked if the shared memory size and the execution time of the 

mutual algorithm is as critical as providing mutual exclusion. 

3.10.1 Burn's Improvements 

Burns proved that any protocol (based on exclusive read and 

write access to the shared memory) providing deadlock-free mutual 

exclusion of N processes must use at least N + 1 shared variables, N of 

s1ze 2 (i.e., contains only one of the two values, like boolean 

variables) and one whose size must be at least N (i.e., contains one 

out of N different values) [Raynal 1986]. Burns also studied mutual 

exclusion solutions based on test-and-set operations and gave upper 

and lower limits on the amount of shared memory, measured by counting 

the number of distinct values which it can assume. Table 3.2 contains 

Mutual Exclusion Algorithms Upper-limit Lower-limit 

Values Values 

Deadlock-free 2 2 

Deadlock-free and Starvation-free lN/2j+9 �+! 

Deadlock-free and Bounded waiting N +3 N + 1 

Table 3.2 - Burn's results for the amount of shared memory used 
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these limits. Based on these results, he developed mutual exclusion 

solutions which use the optimal number of shared values [ Burns 1982]. 

3.10.2 Lamport's Improvement : 

A great deal of effort was spent in developing algorithms (in 

§3. 6 to §3. 9) that do not allow a process to wait longer than it 

"should" while other processes are entering and leaving the critical 

section. However, the current belief among operating system designers 

is that contention for a critical section is rare in a well-designed 

system; most of the time, a process will be able to enter without 

having to wait. Even an algorithm that allows individual processes to 

starve, while other processes keep on entering the critical section, 

is considered to be acceptable, since such situations are unlikely to 

occur. [ Lamport 1987] 

Lamport judged the solutions by how fast they are in the 

absence of contention. With modern high-speed processors, an 

operation that accesses shared memory takes much more time than one 

that can be performed locally. Hence, the number of reads and writes 

to shared memory is a good measure of an algorithm's execution time. 

All the published N process solutions require a process to 

execute O(N) operations to shared memory in the absence of contention 

[ Lamport 1987]. Lamport presented an N process mutual exclusion 

solution that does only 5 writes and 2 reads of shared memory. 

Lamport gave a step-by-step description of his solution to 

support his claim of minimum sequence of memory accesses needed to 
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guarantee mutual exclusion. He claimed that the best possible 

algorithm is one in which the sequence of reads and writes is given 

by the sequence -

write x, ready, write y, read x, critical section, write y. 

The arguments for this sequence run like this -

•There is no point making the first operation 1n the 

sequence a read, since all processes could execute the read and find 

the initial value before any process executes its next step. So the 

first operation should be a write of some variable x. 

•It makes no sense for the second operation in the sequence 

to be another write to x. There is also no reason to make it a write 

to another variable y, since the two successive writes could be 

replaced by a single write to a longer word. Therefore, the second 

operation 1n the sequence should be a read. This operation should not 

be a read of x because the second operation of each process could be 

executed immediately after its first operation, with no intervening 

operations from other processes, in which case every process reads 

exactly what it had just written and obtains no new information. 

Therefore, each process must perform a write to x followed by a read 

of another variable y. 

•There is no reason to read a variable that is not written 

or write a variable that is not read. So the sequence must also 

contain a read of x and a write of y. 

•The last operation performed, before entering the critical 

section in the absence of contention, should not be a write because 

that write could not help the process decide whether or not to enter 
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the critical section. Therefore, the best possible algorithm, before 

entering the critical section, has the following sequence of memory 

accesses -

write x, ready, write y, read x. 

The algorithm based on these arguments is given in Figure 3.15. 

Here, each process first writes x, then reads y. If it finds that y 

has its initial value, then it writes y and reads x. If it finds that 

x has the value it wrote in the first operation, then it enters the 

critical section. 

Shared V ariablcs : 

x, y : integer; (y = 0 initially) 

Note : 1. Atomic operations are enclosed by angular brackets. 

2. The 'delay' in the second then clause must be long enough so that, 

if another process j read y equal to 0 in the first if before i set y = i, 

then j will either enter the second then clause or else execute the 

critical section and reset y to 0 before i finishes executing the delay. 

Protocol for Pi is -

start: < x := i >; 

if < y =P 0 > then goto start 6; 

< y := i >; 

if < x =P i > then delay; 

if < y =P i > then goto start fi fi; 

CRITICAL SECTION 

< y := 0 >; 

Figure 3.15- Lamport's Algorithm for N Process Mutual Exclusion with 

3 Writes and 2 Reads to the shared memory 
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•After executing its critical section, a process must 

execute at least one write operation to indicate that the critical 

section is vacant, so processes entering later realize there is no 

contention. It cannot be done with a write of x, since every process 

writes x as the first access to shared memory when performing the 

protocol. Therefore, a process must write y, resetting y to its 

initial value after exiting the critical section. 

The algorithm 1n Figure 3.15 requires not only an upper bound 

Shared Variables : 

x, y: integer; (y = 0 initially) 

b : array [l..N] of boolean; (initially false) 

Note : 1. Atomic operations are enclosed by angular brackets. 

2. await cond. is an abbreviation for while not cond. do; 

Protocol for Pi is -

start: < b[i] := true >; 

<X:= j >; 

if< y :f:- 0 > then < b[i] := false; 

await < y = 0>; 

goto start fi; 

< y := i >; 

if< x :/=- i > then < b[i] := false >; 

for j := 1 toN do a�ait < not b[i] > od; 

if< y :f:- i > then await < y = 0 >; 

goto start fi fi; 

CRITICAL SECTION 

< y := 0 >; 

< b[i] := false >; 

Figure 3.16- Lamport's Algorithm for N Process Mutual Exclusion 

with 5 writes and 2 Reads to the shared memory 
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on the time required to perform an individual operation such as 

memory reference, but also on the time needed to execute the critical 

section. In most situations, an algorithm that does not require this 

upper bound is needed. Therefore, the algorithm in Figure 3.15 is not 

acceptable. Lamport introduced a new variable b[ i ] to improve upon the 

algorithm in Figure 3.15. This new variable indicates when a process 

is inside its critical section and therefore removes the knowledge of 

how long a process can stay 1n its critical section. Now, a process 

must set this new variable to indicate that it 1s 1n its critical 

section, and must reset that variable to indicate that it has left 

the critical section. But, it brings two additional memory writes to 

the shared memory. This optimal algorithm, in Figure 3.16, performs 

only 5 writes and 2 reads to the shared memory to achieve mutual 

exclusion for N processes. 

Both the algorithms ( Figures 3.15 and 3.16) guarantee deadlock­

free mutual exclusion, but allow starvation of individual processes. 

3.11 Summary : 

The software solutions 1n this chapter depend on the 

availability of shared memory to implement mutual exclusion. In 

distributed systems, there is no common memory. Therefore, these 

solutions will not work. In the next chapter, solutions which use 

message-passing primitives are given to solve the mutual exclusion 

problem in distributed systems. 



4.1 Introduction 

CHAPTER IV 

DISTRIBUTED SOLUTIONS 

A distributed system is a collection of independent processors 

(referred to as sites or nodes) which are spatially separated and which 

communicate with one another only by exchanging messages [Lamport 

1978]. Independent processors have neither a shared memory nor a 

common clock. Instead, each processor has its own local memory to 

which it has the sole access. [Enslow 1978] characterized a 

distributed system to contain the following five components a 

multiplicity of resources, a physical distribution of the resources, 

a high-level operating system, system transparency, and cooperative 

autonomy. [Silberschatz 1991] gave four major reasons for building 

distributed systems resource sharing, computation speedup, 

reliability, and communication. 

An important characteristic of distributed systems 1s that the 

message transmission delay is not negligible, compared to the time 

between events in a single process [Lamport 1978]. In the following 

discussion, the term 'process' means a process on a site and the term 

'processes' is used to mean processes-on different sites. 

A distributed system can have any topology of a physical 

communication network, e.g. fully connected, partially connected, 

tree, ring, bus, etc. [Tanenbaum 1988]. The only assumption made is 

that there is a logical connection between any two sites and a 
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routing mechanism exists that delivers messages between sites. The 

mutual exclusion algorithms In a distributed system may logically 

organize the sites to form a structure such as tree, ring, etc. 

Each site is assigned a unique identifier to distinguish it 

from other sites and almost all distributed algorithms assume this as 

a precondition. The task of assigning unique identifiers is referred 

to as the naming problem [ Beauquier 1990]. One method of naming is to 

have a token circulating in the network that has an integer variable 

whose value at start is 1. A site chooses the value of this integer 

variable as its unique name ( identifier ) on the token's first arrival 

at that site, and it Increases the value by 1 on the token's first 

departure. Thus each site gets a unique identifier even if it does 

not know about the entire network. However, this method depends on 

the fact that each site transmits the token and increases its value 

correctly. If a given site decreases the value of the token instead 

of increasing it, two sites would receive the same identifier. Also, 

a failed site may decide to keep the token forever, and then this 

naming method would fail. [ Lamport 1982] referred to the problem of 

"bad" sites performing anything ( for example, sending false messages 

or not sending messages at all ) as the Byzantine Generals Problem. 

[ Beauquier 1990] studied the naming problem in distributed systems in 

which some sites can have byzantine faulty behavior. All of the 

mutual exclusion algorithms in this chapter assume that sites do not 

malfunction on failing, that is, there are no byzantine failures. 

The underlying network IS also assumed to be reliable. The 

network protocols are responsible for error-free and loss-free 
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Two primitives, namely send and receive, 
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are defined for 

interprocess communication. All processes in a distributed system 

exchange information using these two primitives. Since a message can 

be received only after it has been sent, message passing also forms 

the basis of process synchronization. In fact, 'send' and 'receive' 

can be considered as V and P semaphore operations on the number of 

queued messages [ Andrews 1991b]. 

Interprocess communication can be synchronous or asynchronous. With 

synchronous message passing, a process sending a message is delayed 

until the other process is ready to receive the message. Asynchronous 

message passing, on the other hand, does not cause the sending 

process to block, rather it allows the process to continue executing 

while a message 1s being sent on its behalf. Since synchronous 

communication may decrease the overall throughput of the system, 

asynchronous communication is a preferred choice [Schneider 1982 ]. 

But with asynchronous message passing, senders can get far ahead of 

receivers, and therefore receivers can never be sure of obtaining the 

current state of the sending process - a sender process may change 

its state by the time the receiver- receives the message containing 

sender's state information. Consequently, in a distributed system, no 

single process can have a complete knowledge of the global state of 

the system [ Chandy 1985 ]. 

The problem of mutual exclusion arises 1n distributed systems 

like it does 1n centralized shared memory systems. That is, 
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concurrent access to a physically or logically shared resource by 

several sites needs to be serialized. But it is more complex to 

implement mutual exclusion In distributed systems because of the lack 

of knowledge about the global state of the system (which is not a 

problem in centralized systems as it can be obtained from the shared 

memory), lack of a common physical clock and unpredictable message 

delays. 

One of the inherent advantages of a distributed system is failure­

�k�n� [Sanders 1987], since when one site fails, others can continue 

operating. When a site fails, or when the communication subsystem 

(links between sites) fails, a failure-tolerant mutual exclusion 

algorithm should be able to adapt to the new conditions so that it 

continues to operate with the remaining processors and still maintain 

mutual exclusion. [Spector 1984] describes how the first launch of 

the space shuttle was delayed because of a fault In the 

synchronization between the main computer and the back-up computer. 

Distributed solutions tend to be more fault-tolerant than centralized 

systems, because they do not depend on any global variables [Raynal 

1986]. 

The shared memory mutual exclusion solutions in Chapters II and 

III assume that access to a shared memory location is mutually 

exclusive. Since these solutions assume a lower level hardware 

solution (conflicting memory access arbiter) to the problem they are 

solving, Lamport found them unsatisfactory [Lamport 1986a]. He 

defined interprocess communication based on a communication variable 

that does not assume any lower-level mutual exclusion [Lamport 
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1986a], and then gave a mutual exclusion solution using this 

communication variable [Lamport 1986b]. The distributed mutual 

exclusion solutions in this chapter do not assume any lower-level 

mutual exclusion and can be used to achieve mutual exclusion in 

centralized systems which provide 'send' and 'receive' primitives. 

[Kessels 1982] showed that the shared modifiable variables of 

Peterson's algorithm (see §3.9) could be distributed to form a 

distributed mutual exclusion algorithm which does not require an 

arbiter on a lower-level. 

The mutual exclusion problem in distributed systems can be 

solved by two kinds of mechanisms centralized control or distributed 

(decentralized) control. In centralized control mechanisms, all requests to 

use the critical section pass through a single site which is 

responsible for granting access to the critical section. In a 

distributed control mechanism, each site in the distributed system is 

equally responsible for controlling mutual exclusion. The primary 

disadvantages of a centralized control mutual exclusion algorithm are 

that the central site becomes a source of contention and when the 

central site is "down" or inaccessible because of communication 

network failure, the critical sec�ion cannot be reached by any 

process. On the other hand, distributed control, in principle, allows 

at least one process to access the critical section even when one or 

more sites are inaccessible. Creation of a mutual exclusion solution 

in a computer network under distributed control is not trivial 

[Maekawa 1985]. This chapter describes only distributed control 

algorithms. Centralized control algorithms can be derived from some 
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of these as a special case. 

The distributed mutual exclusion algorithms can be classified 

into two categories one which does not use message passing 

primitives explicitly (§4.2) and the other that uses 'send' and 

'receive' primitives explicitly (§4.3). 

A distributed mutual exclusion algorithm is evaluated in terms 

of the number of messages exchanged, the number of information bits 

exchanged, delay and resilience to failure-tolerance [ Suzuki 1985]. 

All solutions in this chapter implement mutual exclusion at the 

node level. If there is more than one process within a site trying to 

access the shared resource, then it is assumed that these intra-site 

conflicts are resolved using one of the techniques given in Chapters 

II and III. 

4.2 Solutions �ithout Explicit Usage of Message Passing Primitives 

The solutions 1n this section achieve mutual exclusion by 

having a site, which is trying to access critical section, obtain 

state information from other sites. The state information of a site 

corresponds to the values of the variables used for serializing 

access to the shared resource. And the act of obtaining a site's ( say 

A's ) state information by another site ( say B ) involves transmission 

of a message from B to A requesting the value of A's variables, 

followed by B's receipt of a message from A containing the values. 

These algorithms are given using high-level abstraction and 

therefore do not use 'send' and 'receive' primitives explicitly in 
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the solution. Instead, these algorithms have 'read variable' 

statements to obtain the state information. In a distributed system, 

'read variable' statement is implemented using 'send' and 'receive' 

primitives. This abstraction hides the implementation details and 

makes the algorithm easier to understand. 

Another way to look at these solutions is that a process can 

both read from and write to its local memory, but can only read from 

other process's local memory. So there is no global variable, like 

centralized systems, which is written by more than one process. 

Multiprocessor systems offer read only access to a processor's 

memory by another processor. So the algorithms in this section may be 

implemented on a multiprocessor system without using message passing 

primitives. 

4.2.1 Lamport's Bakery Algorithm : [Lamport 1974] 

The first distributed algorithm for implementing mutual 

exclusion was proposed by Lamport. His algorithm is based upon one 

commonly used in bakeries, in which a customer receives a number upon 

entering the store and the holder of the lowest number is the next 

one served. In the algorithm in Figure 4.1, each process chooses its 

own number. The sites are named 1,2, ... ,N. So, if two processes choose 

the same number, then the process with lower identification number 

goes first. 

Two important features of this algorithm are that it allows for 
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a bounded number of process failures and restarts, and the 

possibility of read errors occurring during an overlapped read and 

write of the same ( shared ) memory location. 

In the algorithm in Figure 4.1, the statement labeled 12 

appears to be redundant at first glance. But it is important to have 

State Variables: 

integer array choosing[l..NJ, number[l..N]; {Both initially 0} 

Note: 1. The pair (choose[i],number[i]) belongs to the process at site i. 

Pi may read and write these variables, but Pj, such that j :/= i, may 

only read them. 

2. The relation "less than" on ordered pairs of integers is defined 

by (a,b) < (c,d) if a< c, or if a= c and b <d. 

Local Variable at each site: integer j; 

Protocol for Pi is -

begin 

11: choosing[i] := 1; 

number[i] := 1 + maximum(number[1], ... , number[N]); 

choosing[i] := 0; 

for j := 1 step 1 until N do 

begin 

12: if choosing[i] :j= 0 then goto 12; 

L3: if number[i] :j= 0 and (number[i]j) < (number[i],i) then goto L3; 

end; 

< CRITICAL SECTION > 

number[i] := 0; 

< NONCRITICAL SECTION > 

goto 11; 

end; 

Figure 4.1- Lamport's Bakery Algorithm 
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it there to preserve mutual exclusion. Assume that a process Pi is in 

the process of selecting a ticket (i.e. choosing[ i J = 1) and another 

process P j, such that j > i, has selected the ticket and is in the 

process of finding out if it has the lowest ticket. If L2 were not 

there, it is possible that Pj would find number[i] =0 and enter the 

critical section. Now if Pi selects a ticket whose value is same as 

that of Pj, Pi would find that it has the lowest ticket (since i < j), 

and therefore enter the critical section at the same time. Thus, L2 

makes a process wait if there is another process selecting a value 

for its ticket at the same time. Any process entering at the time, 

when other processes have already chosen a value, would select a 

higher value for its ticket and would cause no danger to the mutual 

exclusion property of the algorithm. 

This algorithm achieves mutual exclusion as can be shown by 

proving that if process Pi is in its critical section, while another 

process Pk (k,Ci) is in the 'for' loop (i.e., Pk has calculated 

number[k]), then the assertion (number[i],i) < (number[k],k) is true 

and consequently Pk cannot go past L3. The proof given below uses 

times from Pi's viewpoint. 

Let tL2 be the time at which Pi' read choosing[k] during its last 

execution of L2 for j = k, and let tL3 be the time at which Pi began 

its last execution of L3 for j = k. So tL2 < tL3• Let te be the time 

just after Pk set choosing[k] to 1, tw the time at which it finished 

writing the value of number[k], and tc the time just after it reset 

choosing[k] to 0. Then te < tw < tc. Since choosing[k] is equal to zero 

at time tL2, then either tL2<te or tc<tL2• The first case, tL2<te, 
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implies that number[k] :0:: 1 + number[i J, which in turn implies that 

number[ i J < number[k], and so the assertion (number[i],i) < 

(number[k],k) is true. The second case, implies that 

tw < tc < tL2 < tL3, which in turn implies that tw < tL3• This means that 

at p. 
1 

read the current value of number[k]. Since p. 
1 

did not 

execute L3 again for j = k, it must have found 

(number[i],i) < (number[k],k). Hence at most one process can be in its 

critical section at any given time. 

The protocol also avoids deadlock and guarantees fairness. 

Assume that a process Pk sets choosing[k] to 1, when Pi is past the 

statement choosing[i]:=O. This means that number[i] contains its 

current value at the time Pk chooses the current value of number[k]. 

Therefore, Pk must choose a value such that number[k] :0:: 1 +number[ i J. 

Hence Pi would enter its critical section before Pk. This protocol 

therefore implements mutual exclusion on a first-come-first-served 

basis. 

The bakery algorithm 1s fault-tolerant assuming that when a 

site fails, it immediately goes to its noncritical section and halts 

and it is restarted 1n its noncritical section only. With this 

assumption, the system continues to -operate despite a bounded number 

of site failures. However, if a process Pi breaks down and restarts 

an infinite number of times, the system could deadlock. If p. 
1 

constantly breaks down as it enters its protocol, then the other 

processes may always find choosing[i]=1, and hence loop forever at 

L2. 
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There is a problem with this algorithm. If there is always at 

least one process past the statement choosing[i]:=O, the value of 

number[i] can become arbitrarily large and this could cause overflow 

errors (depending on the size of memory allocated to an element of 

the number array) . 

4.2.2 Improvements to Lamport's Bakery Algorithm 

[Hebner 1981] gave a version of Lamport's Bakery algorithm for 

implementing P and V semaphore primitives. Hebner and Shayamasundar 

used only one variable (number) per process as compared to two (choosing 

and numbu) in Lamport's algorithm. 

[Peterson 1983b] proposed an algorithm that keeps every 

feature, 

critical 

(except first-in-first-out waiting for access to the 

section) of Lamport's algorithm, overcomes Lamport's 

unlimited growth of the number variable, and allows for unbounded 

process failures and restarts. In fact, Peterson's algorithm uses 

just four values of (shared) memory per process as compared to 

Lamport's (shared) variables of unbounded size. 

4.2.3 Dijkstra's Self-Stabilizing Distributed Algorithm 

A system is said to be self-stabilizing if it can recover from an 

illegitimate state within a finite number of state transitions. 

[Dijkstra 1974] proposed a distributed mutual algorithm that has this 

self-stabilizing property and [Dijkstra 1986] gave a correctness 

proof for this algorithm. 
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The algorithm is given in Figure 4.2. Here sites 0,1 ,2, ... ,N 

are assumed to be connected in a ring topology (can be a logical ring 

structure imposed on the physical network). A site can only exchange 

information with its neighbors. The decision to enter the critical 

section by a process (Pi) is made based on its own state variable and 

that of its left hand neighbor P
(i-l)mod(N+l)

" 

An important point to note is that Dijkstra's solution 1n 

Figure 4.2 is not symmetric - the ubottom" machine is differentiated 

from the other machines by having a different protocol. 

The beauty of this algorithm is that even if the system is not 

properly initialized to a legitimate configuration, the algorithm 

will drag the system to a legal configuration. The system may not 

preserve mutual exclusion in the illegitimate states, but once it is 

State Variable for Each Machine: nr 

Note- 1. In the algorithm below, for site i 

L: refers to the state of its left hand neighbor, machine nr.(i-l)mod(N+l), 

S : refers to the state of itself, machine nr.i, 

R: refers to the state of its right hand neighbor, machine nr.(i+l)mod(N+l). 

2. K is an integer such that K > N. 

Protocol for Site 0 -

(the "Bottom" machine) 

Ll: if L # S then goto Ll; 

< CRITICAL SECTION > 

S := (S + 1) mod K; 

Protocol for site i -

(i # 0, i.e. other machines) 

Ll: if L = S then goto Ll; 

< CRITICAL SECTION > 

S := L; 

Figure 4.2 - Dijkstra's Self-Stabilizing Algorithm 
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in a legal state, mutual exclusion is preserved. 

In this solution, the privilege to enter the critical section 

moves around the ring, and this causes a major drawback - a process 

is forced to wait to enter its critical section even when there is no 

other process attempting to enter the critical section. Also, a 

process, even when it is not trying to enter its critical section, is 

forced to execute its exit protocol to pass the privilege to its 

right hand neighbor. 

In the algorithm in Figure 4.2, each machine takes K states, 

where K > N. [Dijkstra 1974] proposed two more mutual exclusion 

algorithms, with the self-stabilization property, that have machines 

with three states and four states respectively. 

[Kruijer 1979] also gave a self-stabilizing distributed 

algorithm for sites connected In a tree network topology, instead of 

the ring network of Dijkstra. 

4.3 Solutions which use Message Passing Primitives Explicitly : 

The mutual exclusion algorithms in this section are based on 

explicit communication of messag�s among processes. The main 

characteristic of these solutions is that a site does not request 

another site for its state information. Rather, every time a process 

changes its state, and if that can affect the global state of the 

system, it broadcasts information about its new state to other 

processes on the system. For example, the following state changes 

would necessitate a broadcast message - from "non-critical section" 
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to "attempting to enter critical section", from "using critical 

section" to "exiting critical section", and from "failed" state to 

"restarting" state. 

[Raynal 1986] characterized these algorithms as "send-

information" type as compared to the "request-information" type of 

algorithms in §4.2. The advantage of "send-information" type 

algorithms is that communication costs are kept low as it avoids 

exchange of messages between processes if their states have not 

changed. 

4.3.1 Event Ordering : 

In a distributed system, synchronization among processes relies 

uniquely on establishing an order between events. Since there is no 

common real physical clock between different sites, this order can be 

realized only by exchanging messages. 

4.3.1.1 Logical Clocks 

Lamport examined the relationship of physical time and event 

ordering and then defined the happ_ened-before relation without using 

physical clocks [Lamport 1978]. 

A distributed system can be viewed as a collection of processes 

and a process as a sequence of events. The definition of an event 

depends on the application. Execution of a procedure, execution of a 

single machine instruction, sending or receiving a message are some 

examples of an event in a process. A single process is defined to be 
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a set of events with an a priori total ordering. The happened-before 

relation, denoted by �, satisfies the following three properties -

1.) If A and Bare events in the same process, and if A is executed before B, then A�B. 

2.) If event A is the sending of a message by one process and event B is the receipt of the 

same message by another process , then A�B. 

3.) If A�B, and B�C, then A�C. (Transitivity Property) 

It is assumed that A+A for any event A. The restrictions given 

above imply that � (happened-before) is an irreflexive partial ordering 

over all system events. 

Two distinct events A and B are said to be concurrent if A+B 

and B+A. This order is illustrated in Figure 4.3. 

Lamport associated this partial ordering of events with a 

system of logical clocks which can be implemented by counters. 

Pl P2 
Site 1 a • 

·s Site 2 •• 

Ql 

Local Order of Events : 

Q2 

Pl � P2 � P3 � P4 � P5 

Ql � Q2 � Q3 � Q4 

Transitivity : 

Pl � P2 � Q2 � Q3 � Q4 

Ql � Q2 � Q3 � P4 � P5 

P3 
•• 

P4 PS 

.Z 
I e � tim< 

•• 

QJ Q4 

Exchange of Messages : 

P2 � Q2, and 

Q3 � P4 

Some Incomparable Events : 

Ql and Pl, P2, P3 

P3 and Q2, Q3, Q4 

Pl � P2 � Q2 � Q3 � P4 � P5 

Figure 4.3 - Example of Partial Ordering of System Events 
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A logical clock ci for a process pi lS defined as a function which 

assigns a number Ci<A> to any event A in that process. This number 

can be thought of as the time at which the event occurred. Therefore, 

if an event A occurs before another event B, then C<A> < C<B>. But 

the converse, if C<A> < C<B> then A happened before B, 1 s not 

necessarily true. 

The following two rules are followed to satisfy the happened-before 

relation -+, when implementing logical clocks by counters -

1.) The logical clock value is incremented between any two successive events of 

the same process. 

2.) A site, which sends a message m, dates it with a timestamp Tm which equals 

the current value of the logical clock. Upon receiving the message m, the 

receiver site sets its own clock value greater than or equal to its present value 

and greater than T m· The "message reception" event at the receiving site is 

then dated by this new value of clock. This rule ensures that the time of 

message reception is later than that of its sending. 

[Andre 1985] showed that certain synchronization problems like 

the producer-consumer problem can be resolved by means of partial order 

only. However, all synchronization problems cannot be solved using a 

partial order. For example, it is necessary to totally order system 

events to solve the following problems - the problem of ensuring that 

there are identical copies of the same item of information at 

different sites, the problem of equitability, and the problem of 

introducing priority. 

Lamport extended happened-before -+ partial ordering to a strict 

total ordering by ordering the events by the times at which they 
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occur, and breaking ties by using any arbitrary total ordering of the 

processes. One such tie-breaking relation used very often 1s the 

unique identification number of sites. Then, for two events, A in 

process Pi and B in process Pj, the total order � is defined as -

A�B <=> (Ci<A> < Cj<B>) V ((Ci<A> = Cj<B>) 1\ (i < j)). 

Based on the above definition of total ordering, Lamport gave 

an algorithm to synchronize events on a first-come-first-served 

basis, and then applied it to the problem of synchronizing clocks. 

Most distributed mutual exclusion algorithms use time stamping 

to provide fairness in the system. 

4.3.1.2 Eventcounts and Sequencers 

[Reed 1979] proposed another synchronization mechanism based on 

observing and signaling the occurrence of events in the course of an 

asynchronous computation. Two abstract objects, namely eventcount and 

sequencer, are defined for this purpose. An eventcount is an object that 

counts the number of events in a particular class that have occurred 

in the execution of the system. Three operations are defined on an 

eventcount - advance, to signal the occurrence of an event associated 

with a particular eventcount, awa� and �ad to obtain the value of an 

eventcount. Reed and Kanodia modified Lamport's formalization of time 

(in §4.3.1.1) as a partial ordering of the events in the system. In 

their definition, execution of advance, await, and read primitives 

constitute events. 

Synchronization among processes is shown to be obtained from 
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the ability of the eventcount primitives to maintain partial ordering 

of events, rather than by mutual exclusion. Thus, all processes can 

be concurrent. 

For those cases where a total ordering IS necessary, the use of 

a ticketing operation on a sequencer object IS proposed. A sequencer S 

is a non-decreasing integer variable initialized to 0. There is only 

one operation, called 6cket(S), that can be applied to a sequencer, and 

this returns a non-negative integer as its result. Two uses of the 

ticket(S) operation always give different values. Unlike eventcounts, 

implementation of a sequencer requires some form of underlying 

mechanism to achieve mutual exclusion. 

4.3.1.3 Causal Ordering : 

[Birman 1987] proposed a weaker ordering than total ordering 

and called it causal ordering. 

Suppose occurrence of an event Send(Ml), corresponding to the 

site S1 sending M1, and timestamped with logical time T1. Suppose 

then a second event Send(M2), with timestamp T2, occurring on s'i te S2 

after S2 has received message Ml. Lamport's logical clocks (in 

§4.3.1.1) ensure that T1<T2. The "causal timestamping" ensures that 

event Send(Ml) precedes event Send(M2) for every site in the system. 

This does not say anything about the order in which messages M1 and 

M2 arrive at any given site in the system. That is, it is possible 

that a given site gets message M2 before Ml, even though event 

Send(Ml) occurs before event Send(M2). However, causal ordering of the 
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events Send(Ml ) and Send( M2) means that every recipient of both Ml and 

M2 receives messages Ml before message M2. 

Causal ordering can be achieved by having every message M, sent 

by a site, carry every other message sent before M that the site 

knows of. Causal ordering was first implemented in the ISIS system 

developed at Cornell University. The advantage of causal ordering in 

a distributed system IS that it is cheaper to realize than total 

ordering [ Joseph 1989]. 

4.3.2 Previous Vork on Distributed Mutual Exclusion Algorithms 

Several algorithms have been proposed to achieve mutual 

exclusion In distributed systems. These algorithms differ In their 

communication topology, degree of distribution of control ( which is 

determined by the amount of information a site maintains about other 

sites ) , and failure-tolerance. The differences in the algorithms 

influence the number of messages exchanged and delay incurred per 

invocation of critical section. 

All of the algorithms make some assumptions about the system. 

The common assumptions are listed below -

• Any site can communicate with any other site. 

• The communication subsystem 1s reliable and therefore there are no 

transmission errors nor message losses. 

• The communication delay is unpredictable, and therefore no assumption IS 

made about the delay between the time a message is sent and received. It is 

assumed that the delay is finite. 

• Each site executes the same algorithm and thus there are N control processes. 

• Sites do not crash. A separate failure-recovery mechanism is to be followed. 
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• There exists a method for serializing multiple requests for mutual exclusion 

within a site. 

• Access to common variables m entry code, exit code, and message handling 

routines is serialized. 

The only assumption where some of these algorithms differ is 

the order of message delivery between a pair of sites - some assume 

that messages between any pair of nodes are delivered in the order 

they are sent, and some do not assume so. This 1s not a big 

restriction as ordering between pairs can be implemented 1n network 

protocols by having message sequence numbers and message 

acknowledgements. 

In the following discussion, N is the number of nodes in the 

system. 

The distributed mutual exclusion algorithms can be classified 

into the following two categories -

Category I Solutions : Use a special unique message, called Token or Privilege 

message, to obtain mutual exclusion. The privilege to enter the 

critical section is equated to possession of the token. 

Category IT Solutions :Do not have any special message to achieve mutual exclusion. 

The first algorithm for mutuar exclusion ( in Category II ) was 

proposed by [ Lamport 1978]. In this algorithm, sites maintain logical 

clocks and all requests to use the critical section are assigned a 

timestamp. Mutual exclusion is achieved by having a requesting site 

communicate with all other sites. A site enters the critical section 

only after it has received a message from every other site, 
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timestamped later than its request message. A first-come-first-served 

discipline is thus observed by allowing sites to enter the critical 

section in the order of their request timestamps. A "RELEASE 

resource" message from a process causes removal of its request from 

every site's request queue. This algorithm was later improved in 

[Ricart 1981] by eliminating the need for the "RELEASE resource" 

message. Ricart and Agrawala's algorithm requires 2*(N-1) messages 

per invocation of critical section as compared to 3*(N-1) messages 

in Lamport's algorithm. In their algorithm, a site intending to 

execute critical section sends a REQUEST message to all other sites 

and executes critical section only after it has received a REPLY 

(permission) message from all other sites. Ricart-Agrawala's 

algorithm was further improved in [Carvalho 1983]. In Carvalho and 

Roucairol's algorithm, first-come-first-served discipline 1s not 

observed - once a site i has received a REPLY message from a site j, 

site does not have to ask for site j's permission to enter the 

critical section until site i sends a REPLY message to site j, and 

which can happen only after site j sends a REQUEST message to site 

1. Thus, site i can enter its critical section more than one time 

without consulting site j and therefore, the number of messages 

exchanged per critical section invocation is between 0 and 2*(N-1). 

Carvalho-Roucairol's algorithm violated Ricart-Agrawala's 

definition of a symmetric algorithm, which required an algorithm to 

have at least one message into and one message out of each site. This 

opened the door for more algorithms with improvements in terms of the 

number of messages exchanged and delay incurred per mutual exclusion 
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enforcement. 

[Thomas 1979] proposed a majority consensus algorithm to 

maintain synchronization of multiple copy databases in the presence 

of update activity. In order to obtain mutual exclusion, a site must 

obtain permission from a majority of sites in the network. Since 

there can be only one majority at any given time, mutual exclusion is 

achieved. Therefore, the number of permission messages required to 

obtain mutual exclusion is reduced to r(N + 1)/21. The algorithm is 

robust with respect to lost and duplicate messages and is resilient 

to both site and communication failures. 

[Gifford 1979] presented a weighted-voting algorithm. In his 

solution, a site can cast more than one vote as compared to one vote 

1n Thomas' algorithm. Therefore, in order to achieve mutual 

exclusion, it is sufficient to obtain a majority of votes, which may 

not be from a majority of sites. Gifford's algorithm can be reduced 

to a centralized algorithm by assigning all votes to one site. 

An important property of majority consensus is that the 

intersection of any two majorities has at least one site 1n common. 

[Maekawa 1985] presented a mutual exclusion algorithm which 

requires between 3{N and 5{N messages per mutual exclusion. In his 

algorithm, a set of sites is associated with each site using the 

property of finite projective planes, which makes any two such sets 

1n the system have at least one site in common and the size of each 

of these sets to be {N. A requesting site must obtain permission from 

all sites in the set associated with it. Since this set satisfies the 
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nonnull intersection property with every other set, mutual exclusion 

is guaranteed. 

The assignment of votes and the choice of a set consisting of 

sets of nodes with nonnull intersection property has a crucial effect 

on obtaining mutual exclusion and reliability of distributed systems. 

[ Garcia-Molina 1985] studied vote assignments and sets of nodes with 

pairwise nonnull intersections and showed that these two strategies 

of obtaining mutual exclusion are not equivalent, though they appear 

to be so. Garcia-Molina and Barbara proposed the notion of a coterie, 

which is a set of groups, where group is a set of nodes, with the 

property that any two members of a coterie ( i.e. groups ) have at 

least one common node. Coteries are shown to be more powerful than 

vote assignments by proving that there are coteries such that no vote 

assignments correspond to them. Maekawa's sets can be considered as a 

special case of a coterie where each group is of same size. 

[ Agrawal 1991] proposed another distributed mutual exclusion 

algorithm based on the notion of coteries. The communication network 

is assumed to be logically organized into a tree and intersecting 

quorums are formed by selecting paths starting from the root and 

ending with any of the leaves. In case of failure or inaccessibility 

of a site, the algorithm substitutes for that site two paths, both of 

which start with the children of that site and terminate with leaves. 

A tree quorum cannot be formed if any of the leaf nodes is 

inaccessible. For a tree with each nonleaf node having d children, it 

is shown that, in the best case, when there are no fai 1 ures, flogdNl 

sites are necessary to form a tree quorum. The worst case would be 
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when (N -logdN) sites fail and then the size of tree quorum is shown 

to be equal to reed -l)N + 1)/dl-

In Maekawa' s protocol, only one set 1s associated with each 

site, and therefore failure of any site in the associated set of a 

site prevents that site from accessing the critical section. Agrawal 

and Abbadi 's scheme provides several alternative sets to a site and 

IS therefore resilient to failures. They claimed their algorithm to 

be the first distributed mutual exclusion protocol which tolerates 

both site and network partitioning and requires O(log N) messages in 

the best case. 

In the token-based algorithms, the site possessing the token 

has the privilege to access the critical section. Since there is only 

one token in the system, only one site can possess it at any given 

time, and therefore, mutual exclusion is achieved as this site will 

be the only one executing the critical section. One of the earliest 

token-based mutual exclusion algorithm is by Lelann. He assumed the 

sites to be connected in a ring network and the token to be 

circulating on this ring of sites. A site is required to capture the 

token before entering critical section [Silberschatz 1991]. 

[Suzuki 1985 J and [Ricart 19S3] presented token-based mutual 

exclusion algorithms which require at most N message exchanges for 

one mutual exclusion invocation. A site possessing the token can 

enter the critical section without taking permission from any other 

site and therefore, no message exchanges are involved in this case. 

If a requesting site does not have the token, it sends a REQUEST 
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message to all other sites. When the site holding the token receives 

the REQUEST message, it transmits the token to the requesting site 

when it no longer needs the token. Thus, at most N messages are 

required per mutual exclusion invocation - (N -1) REQUEST messages 

and 1 for transmission of the token. 

This approach was improved 1n [ Singhal 1989]. In Singhal's 

algorithm, each site maintains information about the state of other 

sites. This state information is used to guess the sites which could 

be holding the token. A site intending to enter its critical section, 

sends REQUEST messages to these probable token holding sites only, 

and not to all other sites. Thus, the number of messages exchanged is 

between 0 and N per each execution of the critical section. In fact, 

the basic idea of this algorithm is very similar to the improvement 

made by Carvalho-Roucairol over Ricart-Agrawala algorithm. Use of a 

token to grant the privilege to enter the critical section saves 

(N - 1) permission (REPLY) messages over Carvalho-Roucairol's 

algorithm and Incurs the extra cost of one message to transmit the 

token message. 

[Raymond 1989] proposed another token-based algorithm which 

uses a spanning tree of the inteyconnection network topology. In 

Raymond's algorithm, a site communicates to its neighbors only and 

therefore it does not have to be aware of complete network topology. 

Because of the spanning tree topology, there exists a unique path 

from each site to the site holding the token. The request messages 

and the token travel along this path. For this algorithm the average 

number of messages exchanged per mutual exclusion invocation is 
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0( logN). 

[van de Snepscheut 1987] presented a similar tree-based 

algorithm and then extended the solution to the case in which the 

network is an arbitrary connected graph. He showed his mutual 

exclusion algorithm for a general graph to be fair. 

In the algorithms by Raymond and van de Snepscheu t, the 

internal nodes in the tree receive and send a higher number of 

messages compared to the leaf nodes. 

Helary, Plouzeau, and Raynal presented a token-based algorithm 

in a network with an a pnon unknown topology. All other mutual 

exclusion solutions are based on a priori known topology - complete, 

ring, tree, etc. [Helary 1988]. In their algorithm, a request is 

propagated in the network with a flooding broadcast (wave) technique 

- a site on receiving a request from one of its neighbors propagates 

it to its other neighbors. The path followed by a request from a 

requesting site to the token owner is marked. The token is 

transmitted along that path 1n the opposite direction to reach the 

requesting site. 

These token-based algorithms suffer from a major drawback - if 

the token 1s lost, the critical section cannot be reached by any 

site. To preserve mutual exclusion, it is necessary that the token is 

regenerated by only one site. [Garcia-Molina 1982] presented election 

algorithms that may be used for recovery from failures. [Nishio 1990] 

presented a token-based mutual exclusion algorithm which has failure 

detection and recovery from failures as an integral part of the 

I 
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algorithm. 

[Sanders 1987] introduced the concept of "information 

structures" as a unifying framework for different distributed mutual 

exclusion algorithms. The information structure describes which 

processes maintain state information about other processes and from 

which processes permission must be requested before entering the 

critical section. Information structures can be either static or 

dynamic. 

A comparison of some of these algorithms, 1n terms of the 

number of messages exchanged per critical section invocation, the 

logical structure imposed on the physical network topology, the 

number of nodes about which each node keeps static information, the 

number of nodes about which each node keeps dynamic information, and 

the kind of information structure (static or dynamic) used, is given 

in Table 4.1. It also lists whether the algorithm is token based or 

not, and whether it assumes that messages are delivered in the order 

they are sent or not. 

Once the idea behind an algorithm is clear, it is easier to 

give the details of the actual implementation of the algorithm. The 

following four algorithms are chosen as representative and their 

details are given below - (l)Ricart-Agrawala's Algorithm, (2)Suzuki-

Kasami's Algorithm, (3)Maekawa's Algorithm, and (4)Raymond's 

Algorithm. 
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Table 4.1 - A Comparison of Some Distributed Mutual Exclusion Algorithms 

1. Ricart and Agrawala Algorithm 

2. Carvalho and Roucairol Algorithm 

3. Logical structure imposed by finite projective planes 

4. Suzuki and Kasami Algorithm 

5. Neighbors 

6. van de Snepscheut Algorithm 

7. d is the degree of a node 

8. Helary, Plouzeau, and Raynal Algorithm 
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4.3.2.1 Ricart-Agrawala Algorithm [ Ricart 1981] 

The algorithm IS given in Figure 4.4. The sequence number 

concept used here implements Lamport's logical clocks. The algorithm 

implements a first-come-first-served discipline for entry to the 

critical section. It is achieved through the virtual ordering among 

requesting nodes formed by the sequence numbers and node numbers. A 

site enters its critical section only after it has received a REPLY 

message for its REQUEST message from all other sites. A site upon 

receiving a REQUEST message updates the value of its 

Highest_Sequence_N umber, and then sends a REPLY message to the 

requesting node if it has not requested the critical section for 

itself or if the requesting node made a request to enter the critical 

section before it did. 

Therefore, total number of messages exchanged (N -!)Request+ (N -!)Reply 

2*(N-l). 

4.3.2.2 Suzuki-Kasami Algorithm : [Suzuki 1985] 

In this algorithm, a PRIVILEGE message IS used to determine the 

(privileged) node which can enter the critical section. A node 

requesting the privilege sends a REQUEST message to all other nodes. 

A node receiving the PRIVILEGE message is allowed to enter its 

critical section repeatedly until the node sends PRIVILEGE to some 

other node. The algorithm is given in Figure 4.5. 

A REQUEST message from a site contains site's identification 

number and a sequence number indicating the number of times the site 

t 
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Shared Variables (Information Held by Each node): 

CONSTANT 
me, {This node's unique identification number} 
N; {The number of nodes in the network} 

INTEGER {Variable list begins here} 
Our_Sequence_Number, {Sequence number chosen by a request made here} 
Highest_Sequence_Number, {The highest sequence number seen in any 

REQUEST message sent or received. Initially 0} 
Outstanding_ Reply _Count; {Number of REPLY messages expected} 

BOOLEAN 
Requesting_Critical_Section{Initially False; True when this node is requesting 

access to the critical section} 
Reply _Deferred (l..N]; {Initially False; Reply _Deferred[j] is True when 

this node defers REPLY to j's REQUEST message} 
BINARY SEMAPHORE 

Shared_ vars; {Initially 1; To interlock access to the above shared variables} 

Process Which Invokes Mutual Exclusion For This Node : 

P(Shared_ vars); 
Requesting_Critical_Section := True; 
Our_Sequence_Number := Highest_Sequence_Number + 1; 

V(Shared_ vars ); 
Outstanding_Reply_Count := N -1; 

For j := 1 To N Do 

If j f:- me then Send_Message(REQUEST(Our_Sequence_Number,me), j); 
Waitfor (Outstanding_Reply_Count = 0); 
< CRITICAL SECTION > 
Requesting_ Critical_ Section := False; 
For j := 1 To N Do 

If Reply _Deferred[i] then 
Begin Reply _Deferred := False; 

Send_Message(REPLY, j); 
End; 

Process Which Receives Request(kj) Messages: (Defer_it is a local variable) 

Highest_ Sequence_ N urn her : = Max(Highest_Sequence_ Number ,k); 
P(Shared_ vars ); 

Defer_it := Requesting_Critical_Section AND ((k > Our_Sequence_Number) 
OR (k = Our_Sequence_Number AND j >me)); 

V(Shared_ vars ); 
If Defer_it then Reply _Deferred[j] := True else Send_Message(REPL Y, j); 

Process Which Receives Reply Messages : 

Outstanding_ Reply _Count := Outstanding_ Reply _Count- 1; 

Figure 4.4 - Ricart-Agrawala Algorithm 
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has requested the critical section invocation. Each site maintains an 

array RN (of size N) for recording the largest sequence number ever 

received from each one of the other nodes. 

The PRIVILEGE message contains a queue of requesting nodes and 

an array LN (of size N) for recording the number of times each site 

has entered the critical section. When a site finishes executing the 

critical section, the LN entry for that site in the PRIVILEGE message 

is updated, and all new requesting sites are appended to the queue. 

The next node to get the PRIVILEGE is the one at the head (front) of 

the queue. 

The algorithm requires, at most N message exchanges per one 

mutual exclusion invocation (N -1) REQUEST messages and 1 

PRIVILEGE message, or no message at all if the node having the 

PRIVILEGE is the only requesting node in the system. 

4.3.2.3 Maekawa's Algorithm : [Maekawa 1985] 

In this algorithm, each site i in the system has a set Si of 

sites associated with it such that any two such sets si and sj have 

at least one node in common. The problem of finding a set of Si's is 

equivalent to finding a finite projective plane of N points [Maekawa 

1985]. The size of each set Si is found to be�-



Shared Variables (Information Held by Each Node): 

Const 
I : Integer; 

Var 
{the identifier of this node} 

HavePrivilege, Requesting : Boolean; 
{Initially HavePrivilege=true in node 1 only; and Requesting=false initially} 
j, n : Integer; 
Q : Queue of Integer; {initially empty} 
RN, LN : Array (l..NJ of integer; {Initially RN[i]=LN[j]=- 1, 'v'j=1, .. . N} 

Note: Request Message Handler is executed indivisibly whenever a Request arrives. 

Process Which Invokes Mutual Exclusion For This Node: 

begin 
Requesting := true; 
if not HavePrivilege then 

begin 
RN(I] := RN(I] + 1; 

for all j in { 1,2, ... ,N}- {I} do 
Send Request(I,RN(I]) to node j; 

Wait Until PRIVILEGE(Q,LN) is received; 
HavePrivilege := true; 

end; 
< CRITICAL SECTION > 

LN(I] := RN(I]; 
for all j in { 1,2, ... ,N} -{I} do 

if not in (Q, j) and (RN[j] = LN[j] + 1) then Q := append(Q, j); 
if Q f- empty then 

begin 
HavePrivilege := false; 
Send PRIVILEGE(tail(Q), LN) to node head(Q) 

end; 
Requesting := false 

end; 

Process Which Receives Request(i, n) Messages: {executed indivisibly} 

begin 

RN[j] := max(RN[j], n); 

ifHavePrivilege and not Requesting and (R.N[j] = LN[j] + 1) then 

begin 

end; 

HavePrivilege := false; 

Send PRIVILEGE(Q, LN) to node j 

end 

Figure 4.5 - Suzuki-Kasami AJgorithm 
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The algorithm is given as -

1. When site i wants to enter critical section, it sends a REQUEST message to every member 

of Si. The REQUEST message contains site's identification number and a timestamp. 

2. Upon receiving a REQUEST, a member node of Si makes itself "locked" for the REQUEST, 

if it is not currently locked for another REQUEST, and then returns a LOCKED message to 

the requesting node i. If the node is locked for a REQUEST from another node, site i's 

REQUEST is placed in the WAITING QUEUE of the node. It is then tested to determine 

whether the current locking REQUEST or any other outstanding REQUEST in the Queue at 

the node precedes the received REQUEST. If so, a FAILED message is returned to node i. 

Otherwise, an INQUIRE message is sent to the node originating the current locking REQUEST 

to inquire whether this originating node has succeeded in locking all its members. If an 

INQUIRE has already been sent for a previous REQUEST and its reply has not yet been 

received, it is not necessary to send INQUIRE again. 

3. When a node receives an INQUIRE message, it returns a RELINQUISH message if it knows 

that it will not succeed in locking all its members, that is, it has received a FAILED message 

from some of its members. This RELINQUISH message relinquishes the member node to a 

more preceding request and thus deadlock is avoided. The node sending the RELINQUISH 

message cancels the LOCKED message previously received from the member node. If an 

INQUIRE message arrives before it is known whether the node will succeed or fail to lock all 

its members, a reply is deferred until this becomes known. If an INQUIRE message arrives 

after the node has sent a RELEASE message, it is simply ignored. 

4. When a node receives a RELINQUISH message, it relieves itself of the current locking 

REQUEST, and then locks itself for the most preceding REQUEST in the WAITING QUEUE. 

A LOCKED message is then returned to the node originating the new locking REQUEST. 

5. If all members of Si have returned a LOCKED message, node i enters its critical section. 

6. Upon completing the critical section, node i sends a RELEASE message to each member of 

7. When a node rece1ves a RELEASE message, it relieves itself from the current locking 

REQUEST. It deletes this locking REQUEST and then relocks itself for the most preceding 

REQUEST in the WAITING QUEUE, if the Queue is not empty. A LOCKED message is 

returned to the node originating the new locking REQUEST. If the Queue is empty, the node 

marks itself unlocked. 
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In case of light demand for the critical section, the algorithm 

requires 3{N messages per critical section invocation {N REQUEST 

messages, fN LOCKED messages, and {N RELEASE messages. Under heavy 

demand, a new REQUEST will most likely fail to lock its destination 

node and therefore, a total of 4{N ( {N REQUEST, {N FAILED, {N 

LOCKED, and fN RELEASE) messages are required per mutual exclusion. 

The worst case is when a new REQUEST 1s initiated from a node that 

has neither requested mutual exclusion nor participated in the 

algorithm as a member node for a certain period. It then causes an 

INQUIRE message to be sent, for which a RELINQUISH message 1s 

returned. Thus, a total of 5{N ({N REQUEST, {N INQUIRE, {N 

RELINQUISH, {N LOCKED, and {N RELEASE) messages are required to 

obtain mutual exclusion. 

4.3.2.4 Raymond's Algorithm : [Raymond 1989] 

In this algorithm, the communication network is assumed to be a 

spanning tree of the actual network topology. Each node communicates 

with only its neighboring nodes in the spanning tree and holds 

information pertaining only to those neighbors. There exists a 

PRIVILEGE message in the network; a ,site must possess this PRI VILEGE 

message 1n order to enter its critical section. The complete 

algorithm is given in Figure 4.6. 

Each node has a variable HOLDER that stores the location of 

the privilege relative to the node itself. Because of the spanning 

tree network topology, a unique directed path exists from a non-
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Shared Variables (Information Held by Each node) : 

HOLDER: Values= "self' or the name of one of the immediate neighbors. 
Indicates the relative position of the privileged node with 
respect to the node itself. 

USING: A Boolean Value. USING indicates if the node itself is currently 
executing the critical section. 

REQUEST_Q: A first-in-first-out queue. Possible elements are the names of 
immediate neighbors and "self'. It holds the name of those nodes 
that have sent a REQUEST but have not yet got the PRIVILEGE. 

ASKED: A Boolean Value. It is true when a nonprivileged node has sent 
a REQUEST message to its HOLDER value (=name of a node). 

Process Which Makes Request (MAKE_REQUEST Process): 

if HOLDER# self 1\ REQUEST _Q #empty 1\ not ASKED 
then begin 

Send REQUEST to HOLDER; 
ASKED := true; 

end; 

Process Which Sends PRIVILEGE message (ASSIGN_PRIVILEGE Process) : 

if HOLDER= self 1\ not USING 1\ REQUEST _Q #empty 
then begin 

HOLDER:= dequeue( REQUEST _Q); 
ASKED := false; 
if HOLDER= self 

then USING := true 
else Send PRIVILEGE to HOLDER; 

end; 

Node Wishes to Enter the Critical Section : 

enqueue( REQUEST _Q, self); {If this is the privileged node then Assign_ 
ASSIGN_PRIVILEGE; Privilege will allow this node to enter the critical section. 
MAKE_REQUEST; Otherwise, it makes a REQUEST to obtain the privilege.} 

Node Receives a REQUEST Message From Neighbor X : 

enqueue( REQUEST _Q, X); {If this node is the holder then Assign_Privilege 
ASSIGN_PRIVILEGE; may send the Privilege to the requesting node. Otherwise, 
MAKE_REQUEST; it propagates the Request to obtain the privilege.} 

Node Receives a PRIVILEGE Message; 

HOLDER:= self; {Assign_Privilege may pass the privilege to 
ASSIGN_PRIVILEGE; another node. And then, Make_Request may request 
MAKE_REQUEST; that the privilege be returned.} 

Node Exits the Critical Section : 

USING := false; {On releasing the critical section, Assign_ 
ASSIGN_PRIVILEGE; Privilege may pass the privilege to another node and 
MAKE_REQUEST; may then request it back through Make_Request} 

Figure 4.6 - Raymond's Algorithm 
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privileged site to the privileged site. When a nonprivileged node 

wishes to enter the critical section, it sends a REQUEST message to 

the holder of the PRIVILEGE message, as viewed by it. Upon receipt of 

a request message, a nonprivileged node on this unique path then 

makes a request to its 0believed" holder if a request was not already 

made by it for itself or on behalf of some other node. In the 

algorithm, a variable (ASKED) is used to find out if a request was 

already made by the node. Thus the number of request messages made is 

reduced. 

A node can transmit the PRIVILEGE message only if it holds the 

PRIVILEGE but not be using it, and the oldest request for the 

privilege came from another node. The PRIVILEGE is transmitted using 

the same path as used by the REQUEST message but In the opposite 

direction. 

There are four events that can alter the assignment of 

privilege and/or necessitate the sending of a REQUEST message - node 

wishing to enter the critical section, node exiting the critical 

section, the receipt of a REQUEST message by a node, and the receipt 

of the PRIVILEGE message. 

The upper bound for the number of messages exchanged per 

critical section is 2*0, where D is the diameter (longest path 

length) of the tree. The worst possible topology for this algorithm 

is a straight line arrangement, since the diameter of such a topology 

is N -1. The best topology for this algorithm is a radiating star 

formation. The diameter of such a topology, with k as the valence of 
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Thus the worst case for this topology 1s O(logk_1N). 

4.4 Summary : 
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The availability of such a variety of distributed mutual 

exclusion algorithms is a good evidence in itself of the nontrivial 

nature of the problem and the crucial role it plays in distributed 

systems. A distributed system designer would have to be very careful 

in selecting the "right" algorithm. Some of the factors to consider 

include network topology, reliability, cost (efficiency), and 

ex tens i bi li ty. 

In the next chapter, a new distributed mutual exclusion 

algorithm 1s developed by finding solutions to some real-life 

situations which require mutual exclusion. 



CHAPTER V 

A NEW DISTRIBUTED MUTUAL EXCLUSION SOLUTION 

DERIVED FROM REAL-LIFE EXAMPLES 

5.1 Introduction 

An extensive amount of work has been done to solve the problem 

of mutual exclusion in distributed systems. Chapter IV discussed all 

the available distributed mutual exclusion algorithms. This chapter 

presents some new solutions to achieve mutual exclusion in a 

distributed system when there is only one shared resource and also 

when there are M ( ;::: 1) identical instances of the resource. These 

solutions are obtained by considering real-life situations where 

mutual exclusion 1s required. Some of the solutions discussed 1n 

Chapter IV appear here again; they have been tailored to suit our 

real-life examples. 

The examples used through out this chapter are -

Example 1- Consider the situation when a book (resource) is shared among N 

persons (sites). For convenience, assume their names to be 1 through N such that they are 

unique and 1 < 2 < · · · < N (think of lexicographic sorting). No two persons can read (use) the 

book at the same time. The only way to find out if anybody is using the book is through 

exchange of messages. Everybody can talk to (communicate with) everyone else with the 

condition that communication between any two-persons is limited to exchange of postcards 

(messages) only. It is assumed that a postcard always reaches its destination without any 

changes to its contents. But a postcard from one person may take any amount of time to reach 

another person (Postal delays are possible!). 

The assumptions made In the above example fit a distributed 
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model. 

Example 2- An extension to the first example is when there are M ( > 1) copies of 

the same book. Considering M 2: N, i.e., when there are at least as many books available as the 

number of persons, is of no interest as each person then could have a personal copy of the book 

without any trouble. Therefore, we assume M < N, that is, at most M persons could be reading 

the book at the same time. Other assumptions are as made in the first example. 

One such real-life situation is seen everyday In a bank where 

tellers provide service to customers. We will have to modify the 

actual situation a little bit to fit a distributed model. Some of the 

assumptions to be made are - customers enter from different doors, 

they cannot see each other and communicate through messages only, and 

a customer IS not allowed to turn back to ask the teller a quick 

question once he/she is left the window. 

In the following discussion, informal language ( as In the first 

example ) IS used. This can easily be replaced with formal 

terminology. The words "call" and "call back" are used only for 

better understanding of the problem; they don't imply immediate 

delivery of the message. 

5.2 Search for Distributed Mutual Exclusion Solutions 

5.2.1 In Case of One Shared resource 

Initially, assume that the book is lying at a place known to 

everyone and everybody replaces the book back at that place after 

using it. 

A very simple and intuitive solution IS -
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Any person needing the book "calls" everybody else to inform "I need the book". 

On receiving the "call", a person answers back one of the following three things - "Go ahead", 

or "I am using it. I will call you back when I am done", or "I also want the book and so I will 

call you back when I am done". When the person currently using the book is finished reading 

it, he "calls back" all the "callers" to say "I am done. Go ahead and use the book". A person 

receiving "Go ahead" from everybody else can be sure that it would be then safe to use the 

book. 

The "I will call you back" message needs to reach a person 

before "Go ahead" message to avoid confusion. So assume that messages 

are delivered in the order they are sent. This restriction will be 

removed later on. 

This solution will work if not more than one person needs to 

use the book at the same time (formally, when there are no concurrent 

requests to use the shared resource); otherwise it will not work. For 

example, assume persons and j need to use the book at the same 

time. Also assume that they have got "Go ahead" from everyone else 

but from each other. Now, person i would wait for j to "call back" 

and j would wait for to "call back" and it will never happen. This 

problem stems from the "selfish" approach in the solution. To avoid 

it, we introduce some arbitration scheme in the protocol. One such 

rule is to let the book go to the person who asked for it first. It 

can be implemented using time of the "call" and person's name (it IS 

possible to have two persons to have exactly the same time even if 

they have different watches and therefore names having a 

lexicographic ordering are used to break the ties. This is similar to 

Lamport's logical clocks [Lamport 1978]). 

Assume that a person marks the same time (actually time of the 
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"first call") on all the "calls" made for each use of the book. By 

incorporating the arbitration rule into the protocol, person i 

requesting for the book would give "Go ahead" to another person j if 

i sees that j had started asking for the book before he did; 

otherwise, i "calls back" j to say "Sorry, you will have to wait 

since I asked for the book before you. I will call you later when I 

am done". 

The above protocol guarantees exclusive access to the book and 

it can be shown that it is free from deadlocks and starvation. 

Since the cost of a distributed algorithm is generally 

determined by the number of message exchanges, we determine for the 

above protocol the total number of message exchanges for each use of 

the book . It requires -

In the best case, when nobody is using the book -

(N- 1) "Call" (request) messages and (N- 1) "Go ahead" messages. And therefore, a total of 

2 * (N- 1) messages per use of the book. 

In the worst case, when someone is using the book and everybody else had already 

started asking for it -

(N -1) "Call" (request) messages, (N -1) "I will call back when I am done" messages, and 

(N- 1) "Go ahead" messages. And therefore, a total of 3 * (N- 1) messages per use of the 

book. 

Improvements : 

This protocol has been improved upon (in terms of number of 

message exchanges) in the literature (except [Lamport 1978]). [Ricart 

1981] improved upon it by eliminating "I will call back when I am 

done" messages. In Ricart-Agrawala algorithm, a person can defer the 
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reply if he either is using the book or made the "call" before the 

other requesting person ( since the protocol is to be used with 

processes and not persons, one can afford to be discourteous! ) . This 

saves (N-1) messages and therefore their algorithm requires a total 

of 2 * (N -1) messages to use the book. 

[ Carvalho 1983] further improved it by reducing the number of 

"call" ( request ) messages and thereby the number of "go ahead" 

messages. The reduction is achieved by having a person assume for 

next requests "go ahead" from the persons that sent "go ahead" for 

the current request. 

The number of requests and "go aheads" are also shown to be 

reduced by forming logical groups according to some rule in quorum­

based algorithms [Maekawa 1985; Agrawala 1991; Garcia-Molina 1985]. 

These algorithms require a person to "call" other persons 1n his 

group and obtain "go ahead" from them only. 

The number of "go ahead" messages is reduced from (N -1) to 1 by 

letting the book always stay with a person unless it is in transit; 

that is relax the initial assumption of replacing the book back at 

the previously known place. So, a person, after using the book, may 

pass it to one of the requesting persons or keep it if no one has 

asked for it. Thus, "go ahead" messages are replaced with actually 

passing the book. 

This new assumption corresponds to a situation where the shared 

resource is passed among processes. Since this 1s not physically 

possible, a special "token" message is introduced and possession of 
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the token is assumed to be equivalent to possession of the shared 

resource. For simplicity, we will stick to our assumption of 

circulating the shared resource. 

So with this assumption, if the person holding the book needs 

to use it, that person can "go aheadn without asking anyone. But if a 

person does not have the book and wants to use it, then he would have 

to "calln everyone else as the identity of the person holding the 

book is not known to anyone. Since it is allowable to be 

discourteous, one does not reply to a "calln if one does not possess 

the book. The person with the book replies by passing the book, after 

using it, to the person who requested for it first. Therefore, this 

protocol requires (N-1) "calln messages to make sure that the request 

reaches the "rightn person ( one with the book ) and one more to pass 

the book. 

Again, this protocol will work only if there are no concurrent 

requests to use the book. [ Suzuki 1985] gave a similar algorithm and 

handled concurrent requests by having the book carry a list of 

persons who need to use the book. The person holding the book updates 

this list by removing from it the name of the person to whom the book 

will be passed and adding the names of the persons who requested for 

the book but their names are not on the list ( to avoid duplicate 

names ) . Thus, the number of message exchanges is reduced to 0 or N 

per use of the book. 

Objective 

The goal in this chapter is to design a protocol which further 
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reduces the number of message exchanges. Since there is no scope left 

to reduce "go ahead" type of messages ( they have been reduced to 1 in 

the above protocol ) , the a1m is to reduce the number of "calls" 

( requests ) a person has to make to get the book. 

[ Singhal 1989] reduced the number of request messages by 

introducing asymmetry. In Singhal's algorithm, the initial 

configuration is such that the person named N is required to ask 

persons 1 through N -1, person named N- 1 is required to ask persons 1 

through N- 2, and so on to person 1 who does not need to ask anyone. 

This forms a step-ladder arrangement of persons. Asymmetry is 

maintained by letting people go up and down this ladder. The person 

at the bottom of the ladder 1s the one who possesses the book. 

[ Raymond 1989] and [ van de Snepscheut 1987] reduced the number of 

request messages by imposing a tree structure arrangement on people. 

The number of request messages can be reduced to one if 

everyone at any given time knows the name of the person who possesses 

the book. We reduce the number of request messages to at most ( N-1 ) 

by using a heuristic which helps in determining the location of the 

book. This heuristic is developed through a series of protocols and 

the next section gives a description of them. 

5.2.1.1 Informal Description of the New Algorithm's Development : 

The objective is to reduce the number of "calls" ( requests ) one 

has to make before getting the book and thereby reduce the total 

number of message exchanges. 
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We will start from the protocol 1n the last section where the 

book is held by the person who uses it last. Assume that, at the 

start, the book is given to the person named 1 and this fact is known 

to everyone 1n the system. 

Protocol 1 - A simple idea is that the person with the book informs 

everyone of the name of the person to whom he is going to pass the 

book. Since everybody always knows the name of the person who has the 

book, anyone needing the book has to make only 1 "call" to the person 

with the book. So the number of "call" (request) messages is reduced 

to 1 by introducing (N-2) "inform" messages (the person passing the 

book and the person going to get the book do not need to be 

informed). 

The "inform" messages are not only an overhead, but also a 

source of new problems. It is likely that everybody had already made 

a request to use the book before they got the information about new 

holder of the book. So there is a risk of (N- 2) "calls" going waste. 

Another serious problem with this protocol 1s that a person may just 

end up chasing the book. This 1s more likely to happen when there is 

a heavy demand for the book, but can happen otherwise as no 

assumption is made about the delay between the time a message is sent 

and received. 

The cause of all the problems in the above protocol is the 

transmission of "inform" messages, containing the name of the new 

holder of the book, to everyone. So we remove the broadcast of 

"inform" message and introduce "inform on request" with short-term 
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memory. 

Protocol 2 - Consider the case when person i is going to pass the 

book to person j. Person i, instead of broadcasting j as the new 

holder of the book, remembers the name j as the one with the book. 

Person i then informs the next "caller" (the person whose request is 

received next) that "Sorry, I gave/am giving the book to j. So call j 

now" and changes its (short-term) memory value from j to the name of 

this "caller". So the next "caller" is told to call the previous 

caller, and so on. This protocol thus requires a person to remember 

the name of the person who he thinks has the book. Since postal 

delays are possible, it is likely that a person has not yet received 

the book and there is already a "call" waiting to be serviced (that 

is, someone has already asked the book back from that person). It is 

also possible that while a person is using the book somebody else 

asks him for it. If it 1s the first "call" received by that person, 

then both of the above situations can be handled by having a person 

(i)tell the "caller" that he will pass the book after using it, and 

(ii)remember the name of the "caller" as the one with the book; 

otherwise, it is handled as described before. 

An example to explain this pro�ocol is given below -

Assume that 4 people (1, 2, 3, and 4) share a book and at start the book is with 1. 

Consider the situation when 2, 3, and 4 need the book. So, all three of them "call" 1. Assume 1 

receives the requests in the order 3, 2, and 4. So 1 is ready to pass the book to 3. 2 is told to 

call 3, and 4 is told to call 2. Now, 2 "calls" 3, and 4 "calls" 2 to ask for the book. Assume 4's 

request reaches 2 before 2 has got the book. So, 2 "informs" 4 to wait until he is done. Now, 3 

finishes using the book and passes it to 2, and then 2 starts using it. In the meantime, 1 and 3 

decide to use the book again. 2 has finished reading the book and so 2 passes it to 4. Since 1 
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thinks the book is with 4 and 3 considers it to be with 2, 1 "calls" 4 and 3 "calls" 2 

respectively. On getting 3's call, 2 "informs" 3 to "call" 4 . Assume 1 's message has still not 

reached 4 where as 3 has found out that 2 does not have the book and it may be with 4. So 3 

"calls" 4 and assume it reaches 4 before 1 's request does. Therefore, 4 passes the book to 3 and 

then on receiving 1 's call "informs" him to "call" 3. When 3 receives 1 's call, he passes the 

book to 1 after using it , and then 1 can use it. 

The final state of the system is - 1 has the book, 2 thinks 4 has the book, 3 thinks 1 

has the book, and 4 thinks 1 has the book. 

A careful look shows that the system begins with a directed 

star topology ( everybody knows 1 has the book ) and the second 

protocol tries to maintain it. If a directed star topology 1s 

maintained, only 1 "call" is needed to get to the person with the 

book. The example given above shows that the second protocol does not 

accomplish such a topology always - if 2 wanted to use the book, when 

the state of the system is as given at the end of the example, 2 will 

have to call 4 and 1 in this order to get the book provided no other 

requests are created. However, the protocol could be modified such 

that it always maintains a directed star topology. The change would 

be - whenever a person changes his value of the variable that holds 

the name of the person considered by this person to be the current 

holder of the book, he "informs" the person, from whom he got the 

book, of this change. A person on receiving such information then 

sets his value to the name contained in that message. By doing this, 

only 1 "call" message is required and possibly 1 "call" message is 

wasted because of unpredictable message delays. But this is achieved 

at the cost of more "inform" messages. Since the ultimate goal is to 

reduce the total number of message exchanges per use of the book, 
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this approach is abandoned. 

The third protocol given below accomplishes a reduction by 

being both "discourteous" and "helpful". 

Protocol 3 - In the second protocol, on receiving a "call", a person 

not having the book informs the "caller" who to "call" ( as he sees 

it) to get the book. These "inform" messages Increase the total 

number of messages, and therefore, an attempt to eliminate them is 

made here. 

Ideas from [ Ricart 1981] and [ Raymond 1989] are used to get rid 

of "inform" messages and still be able to maintain an approximate 

directed star topology. So, a person not having the book does not 

"call back" a "caller" ( discourteous approach from [ Ricart 1981]) to 

provide information about who to call to get the book; rather, he 

forwards the "call" ( helpful approach from [ Raymond 1989]) on behalf 

of the "caller" to the person who he thinks has the book and changes 

his value to contain the name of the caller as the new holder of the 

book for handling future requests. The other rules remain the same as 

those in the second protocol. 

In the next section, a formal description of this protocol is 

given. It is shown to be both deadlock-free and starvation-free. The 

cost of the algorithm is shown to be between 0 and N messages per use 

of the book. 
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5.2.1.2 Formal Description of Protocol 3 

The following assumptions are made in this mutual exclusion 

algorithm for a distributed system consisting of N nodes -

(1)any two nodes can communicate with each other, 

(2)messages are neither lost nor changed, 

(3)messages may be delivered out of order, and 

(4)there are no failures. (Recovery from failures is 

considered separately in §5.2.1.3) 

It is assumed that there exists a special privilege message, 

called token, in the system. A site can execute its critical section 

only if it possesses the token. The site holding the token IS 

referred to as the privileged site. 

The complete algorithm is given in Figure 5.1. 

Initialization The token IS initially assigned to site 1. 

Therefore, initially holder_as_l_see_it is set to "self" for site 1 and 1 

for all other sites, and have_token is true at site 1 only and false at 

all other sites. 

It is assumed that there are no requests at system start-up, 

and therefore, initially requesting_CS and using_CS are false, and 

who_to_pass_token is set to none for all the sites. 

The Algorithm Each node has three processes one for invoking 

mutual exclusion, one for handling receipt of request messages, and 

one for handling receipt of token message. These three processes 

execute 1n local (within a node) mutual exclusion which can be 

implemented using a shared memory mutual exclusion solution, such as 

semaphores, monitors, etc. However, wait and execution of the 



Shared Variables (Information Held by Each node) : 

Holder_as_l_see_it: Values= "self' or the name of one of the nodes. 
Indicates the current holder of the token as viewed by this site. 
Initially, site 1 's value is "self' and all other sites' value = 1. 

Using_CS: A Boolean Value. Using_CS indicates if the node itself is currently 
executing the critical section. Initially False for all the sites. 

Have_token: A Boolean Value. Initially true at site 1 and false at all other sites. 
Requesting_CS: A Boolean Value. True when a node is requesting access to the 

critical section. Initially false at all the sites. 
Who_to_pass_token: Values= "none" or name of one of the nodes. Indicates the 

node to whom the token is passed next by this site. Initially, its 
value = "none" at all the sites. 

Process Which Invokes Mutual Exclusion for this node i : 

who_to_pass_token := none; {There cannot be a request pending} 
requesting_CS := true; 
if not have_ token then begin 

Send Request(i) to holder_as_l_see_it; {Send a request message containing its 
holder _as_l_see_it := "self'; name to the node it thinks has token} 
Wait Until have_token =true; {Wait is interruptible} 

end; 
using_CS := true; 
< CRITICAL SECTION > {Can handle request messages here} 
requesting_CS := false; using_CS := false; 
if who_to_pass_token of: "none" then begin {Transmit the token to the site which 

Send token to who_to_pass_token; requested for it when this site was using 
have_ token := false; or waiting to use its critical section} 

end; 

Process Which Receives Request(k) messages : 

if holder _as_Lsee_it of: "self' {If this site does not have the token, 
then begin it forwards the request to the site who 

Send Request(k) to holder_as_l_see_it; it thinks has the token and then 
holder _as_l_see_it := k; updates its variable's name} 

end else if ((using_CS 1\ (who_to_pass_token ="none")) V 

(requesting_CS 1\ (who_to_pass_token = "none"))) 
then begin {If a request comes when this site is 

who_to_pass_token := k; waiting to execute or executing the 
holder_as_l_see_it := k; critical section, then save this name 

end else begin fot later use} 
Send token to k; {If this node has finished executing its 
have_token := false; critical section, pass the token to the 
holder _as_l_see_it := k; requesting node} 
end; 

Process Which Receives Token message : 

have_token := true; 

Figure 5.1 - Formal Description of Protocol 3 
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critical section 1n the process which invokes mutual exclusion are 

interruptible, that is the other two processes can be executed that 

time. It is also assumed that multiple requests within a node to 

access the critical section are serialized. 

A site not holding the token and wishing to enter the critical 

section sends a request message to the site given by holder_as_l_see_it. 

A non-privileged site, on receiving a request, forwards the request 

to the site who it thinks holds the token, and updates its variable 

holder_as_l_see_it to contain the requesting site's identifier for 

directing the next request to that site. The privileged node passes 

the token to the requesting node when it no longer needs the token 

for itself, that is when it has finished executing its critical 

section. 

There is only one implementation detail which is not covered in 

the informal discussion of the protocol. A privileged or going-to-be 

privileged site must remember who to pass the token to separately 

s1nce it is possible for this site to view the ultimate holder of the 

token different from the site to whom the token is passed by it. This 

happens when there is more than one request directed at a site while 

it is executing its critical section or waiting to execute the 

critical section as the token has not reached it yet. 

The proposed algorithm uses a dynamic information structure. 

Each site at any given time keeps dynamic information about two nodes 

only - the current holder of the token as viewed by it ( represented 

as holder_as_l_see_it in Figure 5.1), and the node which is passed the 
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token next by it (represented as who_to_p�s_token in Figure 5.1). 

Token Size - The token used in this algorithm does not contain any 

information other than it is a "special" message. This 1s an 

advantage over most of the other token-based algorithms where size of 

the token message is considerably big. For example, in the Ricart­

Agrawala algorithm, the token contains an array of size N to store 

sequence_ numbers of the sites [Ricart 1983]; in the Suzuki-Kasami 

algorithm, the token contains an array of size N to store sequence 

numbers of the sites and a queue, whose size varies from 0 to N-1, of 

requesting nodes [Suzuki 1985 J; in Singhal's algorithm, the token 

contains an array of size N to store sequence numbers of the sites 

and a vector of size N to store the state information of all the 

sites in the system [Singhal 1989]. 

Message Overtaking - In the proposed algorithm, the order of message 

deli very does not have to be preserved. Consider the situation when 

site i sends the token to site j and then issues a request to j to 

access the critical section again. There is no problem even if i's 

request is serviced by j before the token reaches j. On receiving i's 

request, j will set who_to_p�s_token to i and will transfer the token 

back to i only after using its crit!cal section. In the meantime, any 

other request to j will be forwarded to 1. 

5.2.1.3 Correctness Proofs 

The proofs for mutual exclusion and freedom from both deadlock 

and starvation are given below -



•Mutual Exclusion is Achieved -
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In token-based algorithms, a site cannot enter the critical 

section if it does not possess the token. So mutual exclusion may be 

violated only if a site passes the token to another site while it is 

executing the critical section. In the algorithm, the token can be 

passed to another site either in the exit code of the process which 

invokes mutual exclusion or in the process which receives the request 

messages. A site executes its exit code only after it has finished 

executing its critical section. In the process which receives request 

messages, the token is passed only if holder _as_l_see_it = "self' and both 

requesting_ CS and using_CS are false. Therefore, the algorithm 

guarantees mutual exclusion. 0 

For the proofs of following lemmas, the variable holder_as_l_see_it 

is represented at each node by suffixing the node's name to it. The 

nodes and the values of the variable holder_as_l_see_it at each node can 

be represented as a directed graph G=(V,E), where V=set of nodes, 

and E={(i,j)lholder_as_l_see_iti=ji\i,jEV}. In this notation, the value 

"self" for a node is denoted as its own unique name. The loops formed 

from the values of the variable holder_as_l_see_iti = i do not have any 

effect on the algorithm because of ,the following reasons - (i)a node 

possessing the token does not send a request to itself, (ii)a node, 

on receiving a request, does not send that request to itself again, 

and (iii)a node never transmits the token to itself. Therefore, these 

loops are not considered in the proofs given below. 



Lemma 1 - A node has at most one outgoing edge. 
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Proof - Since the variable holder_as_l_see_it at a node can hold only one 

value at a time, and an edge from this node is formed using the value 

of its holder_as_l_see_it variable, there can be only one outbound edge. 

Also, since it is possible for a site i to have holder_as_l_see_iti=i, 

there is no edge from this node then. 0 

Lemma 2 - It is impossible to have a cycle in the directed graph G. 

Proof - (1) Since the token always stays with the site that used it 

last, when there are no pending requests in the system, the variable 

holder_as_l_see_it for that site contains the value "self" . Therefore, 

one node in the system has no outgoing edge then. 

(2) If there are requests floating in the network (that is, 

they have not yet reached their destinations), then it is possible to 

have more than one site with holder_as_l_see_it="self". The graph is 

then disconnected. However, the algorithm in Figure 5.1 ensures that 

the requests are directed/going to be directed to all but one of 

these sites and that would change the variable holder_as_l_see_it at 

these sites in such a way that the graph is again connected with only 

one node having no outgoing edge. 

(3) Assume that a cycle is formed. This implies that each 

site involved in the cycle has an outgoing edge. The other sites, not 

involved in the cycle cannot remain permanently isolated as the final 

graph is connected. Further, these rest of the sites can only point, 

directly or indirectly, to one of the sites involved in the cycle as 

a site can have only one outgoing edge (from Lemma 1). Thus, all the 

sites in the graph have an outgoing edge. But from (1) and (2), there 
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is one node which has no outgoing edge. This is a contradiction and 

therefore, the assumption made IS wrong. 

Hence, a cycle is never formed. 0 

Lemma 3 - A request to access the critical section will always reach 

a node which possesses or IS going to possess the token and has 

who_to_pass_token = "none". 

Proof - (1) The communication network is assumed to be reliable. So 

a request IS never lost. 

(2) From Lemma 2, a cycle is never formed in the graph of 

nodes. Therefore, a request does not keep circulating among nodes. 

(3) Since a site cannot generate another request until one 

request is satisfied and the site with the token does not forward the 

first request it handles to another site, a request never reaches 

back to the node which generated it. 

(4) Transmissions delays are assumed to be finite. 

From (1), (2), (3), and (4), it follows that a request to 

access the critical section reaches a node, which has/is going to get 

the token and has the value of the variable who_�_pass_�ken equal to 

"none", in a finite amount of time. 0 

•Deadlock is Impossible -

Deadlock occurs when no node is in the critical section and 

there is at least one node trying to enter it and cannot do so. 

Proof - Let R. 
I 

be the request from site to use the critical 

section. If site i holds the token, then there is nothing that can 

prevent i from entering its critical section. (Of course, if site i 
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generated Ri and it has the token, then it is not executing the 

critical section as multiple requests are serialized. Also, there are 

no other requests when Ri is generated and serviced.) 

If site i does not hold the token, then it is guaranteed that 

Ri will reach a node, say m, which has/is going to get the token and 

it is the first request m is going to service (from Lemma 3). Now, 

according to the algorithm in Figure 5.1, if that node m is not using 

the critical section, it must immediately send the token to i 0 ' 

otherwise it sets its who_to_pa.ss_token to i and upon finishing 

execution of the critical section, it will send the token to i. That 

is, it 1s impossible that m keeps the token forever when it has 

serviced a request from another node. Since the token takes only a 

finite amount of time to reach i and the possession of the token is 

equivalent to accessing the critical section, i then enters its 

critical section. 

Hence, deadlock is impossible. D 

•Starvation is Impossible -

Starvation occurs when one node waits indefinitely to enter its 

critical section while other nodes are entering and leaving their 

critical section. So we wish to prove that every request to enter the 

critical section is satisfied within a finite time. 

(1) From Lemma 3, we know that a request R reaches the node 

which possesses or is going to possess the token and has not serviced 

a request. 



136 

(2) We also know that a node, on seeing R, will not forward 

any future requests directed at it to the node to which it forwards 

R. Rather, it would now forward the next request to the node which 

generated R. Therefore, no new requests from that node (its own or on 

behalf of other nodes) can precede R after it has serviced R. 

(3) Transmission delays are assumed to be finite. 

From (1), (2), and (3), it follows that any request R is 

eventually satisfied 1n finite time. Hence, starvation lS 

impossible.D 

5.2.1.4 Cost of the Algorithm : 

The cost of the algorithm is measured in terms of the number of 

messages required for one execution of the critical section. 

Like other token-based algorithms, if a node has the token and 

there are no pending requests to be serviced, that node can enter the 

critical section without communicating with anybody and therefore, 

the number of message exchanges is 0. 

When a node does not have the token, the best case would be 

when the request message is directed to the node which has the token 

and that node services this request first. In that case, only 2 

messages are needed for mutual exclusion invocation, the request and 

the passing of the token. 

The worst case occurs when the nodes arrange themselves in a 

straight line. This can happen because of the way requests to enter 

the critical section are satisfied. This is illustrated below. In 
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this case, if the node at one end holds the token and if the node at 

the other end wishes to enter the critical section, it needs (N-1) 

request messages and 1 token message to do so. Therefore, a total of 

N messages is required in the worst case. 

Example to demonstrate the worst case -

Assume 6 people (1 through 6) share a book. Also, assume the book is with 3, and the 

state of the system is as given -

holder_as_I_see_iti = 3, for i = 1 and 2, 

holder _as_I_see_iti = "self', for i = 3, 

holder _as_I_see_iti = 1, for i = 4 , 5, and 6, and 

who_to_pass_token = "none", for all i = 1 to 6. 

Consider the case, when 2 needs the book and the state of the system is as given 

above. So 2 sends a request to 3. Now assume that 4, 5, 6, and 1 use the book in this order 

before 2's request reaches 3. The state of the system then is -

holder _as_I_see_it 1 = "self', 

holder_as_I_see_it3 = 4, 

holder_as_I_see_it5 = 6, 

holder_as_I_see_it2 = "self', 

holder _as_I_see_it4 = 5, 

holder_as_I_see_it6 = 1, 

who_to_pass_tokeni = "none", for all i = 1 to 6. 

There is a request in the network from 2 to 3. 

On receiving 2's request, 3 forwards it to 4, 4 forwards it to 5, 5 forwards it to 6, and 6 

forwards it to 1. Also, 3, 4, 5, and 6 cannot use the book before 2 , once they have seen 2's 

request. So it takes 5 request messages (2-+3, 3-+4, 4-+5, 5-+6, 6-+1) and one for transferring 

the book ( 1 -+2) for 2's request to be satisfied. 

The example becomes more interesting when 2's request reaches 3 when 3 had just 

passed the book to 4, then 3's request on behalf of 2 reaches 4 when 4 had just passed the book 

to 5, and so on. But this does not affect the worst case analysis of the algorithm. 

Since the proposed algorithm uses a dynamic information 

structure, the number of messages vary between 0 and N. 
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5.2.1.5 Failure Considerations 

This section addresses the effects of both link and site 

failures on the proposed algorithm and presents methods for recovery 

from these failures. The Byzantine failures [ Lamport 1982] are not 

considered. 

There are many states in which a system can be when it fails 

[ Singhal 1989]. A crash recovery procedure should be able to pull the 

system back from all of these states. Such an exhaustive crash 

recovery procedure is not given here, but some of the more important 

cases are discussed. 

•Message Losses -

It is assumed that a message is either delivered correctly or 

not delivered at all by the network communication subsystem. This can 

be ensured by using error detecting codes [ Tanenbaum 1989]. Message 

loss can be detected using time-out mechanisms. 

If a request message 1s lost, the sending site will have to 

make the request again. So loss of a request message is not a big 

problem. However, if the token is lost, it needs to be handled 

carefully as only one site must regenerate the token. An election 

algorithm [ Garcia-Molina 1982; Peterson 1982; Hirschberg 1980] may be 

used to generate the new token. 

•Link Failures -

It is assumed that the underlying network layer informs the 

sender if a message cannot be sent because of a link failure. There 
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are two situations to be taken into account -

A) When the link failures cause network partitioning -

In this case, the network graph is divided into two different 

subgraphs. Following two situations may occur then -

(i)holder_as_Lsee_iti = j , where i and j belong to separate subgraphs. 

(ii)who_to_pass_tokeni = j , where i and j belong to separate subgraphs. 

In the first situation, a request cannot be made by i or 

forwarded by i on behalf of the other sites which have holder _as_l_see_it 

variable value equal to j (transitive closure). Other sites can still 

enter the critical section and mutual exclusion condition is still 

maintained. In the second situation, the token cannot be passed. The 

mutual exclusion constraint is not violated as the token remains with 

one site only. 

It is possible to have the token in the subgraph where all the 

sites have their holder_as_l_see_it variables set to sites from the other 

subgraph. In that case, critical section is inaccessible to all sites 

once the site with the token has found out that the token cannot be 

passed to the site 1n the other subgraph. This does not affect the 

mutual exclusion constraint; it only causes delay in execution of the 

critical section by a site. The system jumps back to full activity 

once the connectivity is restored. 

If the amount of parallelism is a big consideration and the 

estimated time to restore the system connectivity is large, the 

Recovery Procedure 2 given below may be used. The Recovery Procedure 

1 must be followed anyway once the system is restored as the sites in 
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the subgraph without the token will have no idea where the token is. 

These sites will have to issue a new request to access the critical 

section as the requests at the time of partition are not satisfied. 

Recovery Procedure 1 -

When system connectivity 1s restored, the sites 1n the 

partition (say A) which did not have the token need to be notified 

which site holds the token in the other partition (say B). This can 

be achieved by having all the sites in parti�ion A send a "recovery" 

message to all the sites in partition B. Sites in partition A cannot 

request for the critical section until an "inform" message reaches 

them. On receiving the "recovery" message, the site holding the token 

or going to have the token and having who_to_pass_token ="none" sends an 

"inform" message containing its identity to the site which sent that 

"recovery" message. Other sites ignore the "recovery" message. On 

receiving the "inform" message, a site sets its holder_as_l_see_it to 

contain the identity of the site which sent the "inform" message. The 

variable who_�_pass_�ken is set to "none" for the sites in partition 

A. Thus the connectivity of the graph formed by the sites and the 

values of the holder_as_l_see_it variable are restored. 

Recovery Procedure 2 -

Once it is found by a site (say i) that token can't be passed 

to the site given by who_to_pass_tokeni, it sends an "attention needed" 

message containing its identity to all the sites. The sites which are 

still connected to site i in the physical network graph will receive 

this message and then change their holder_as_l_see_it variable value to i 
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to reflect that change in the graph formed ( by sites and the values 

of the variable holder_as_l_see_it) in the algorithm. This would enable 

the sites in the partition to access the critical section. Once the 

connectivity is restored, Recovery Procedure 1 is followed. 

However, there is a problem - what if a request message was 

already sent to i by another site? This can be handled by using 

timestamps in the messages. would neglect all request messages 

marked with a timestamp value smaller than the "attention needed" 

message. A site on receiving the "attention needed" message would 

generate a request message again. 

B) �en the link failures do not cause network partitioning -

Even if 1 ink fai 1 ures do not cause the network graph to be 

disconnected, it is possible that the graph formed by the sites and 

the values of the variable holder_as_I_see_it gets partitioned. This does 

not pose problems as the strong connectivity feature can be exploited 

( network is assumed to be fully connected) to find alternate paths 

and complete message transmissions. 

• Site Failures -

It is assumed that site faill,!res can be detected by some kind 

of mechanism, such as time-outs. Once a site failure is detected, it 

is made known through messages to the other sites by the site 

detecting this failure. It 1s also assumed that a site does not 

malfunction on failing. 

The following situations that require action may occur at the 
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time a site (say j) fails -

(1) j had the token at the time of failure, or 

(2) j is going to get the token as it had made a request to enter 

the critical section before it failed, or 

(3) there is a request message directed at the failed site j, or 

(4) j was recovering from a previous failure. 

Each of these cases is handled separately. The recovery 

procedure for the failed site j is given first. This is common to all 

the four cases. 

Recovery Procedure 3 (recovery from a failed state) -

In the recovery phase, the failed site (j) sends a "recovery" 

message to all the sites. On receiving this "recovery" message, the 

site holding the token and having who_to_pass_token ="none" sends an 

"inform" message containing its name to the recovering site j. After 

the receipt of this "inform" message, site j sets its variable 

holder_as_l_see_it to contain the name of the site which sent the 

"inform" message. Site j assigns "none" to its variable 

who_to_pass_token. 

It is possible that more than one "inform" message is received 

by a recovering node (due to unpredictable communication delay). But 

it is sufficient to have the recovering node process only the first 

"inform" message and ignore the rest, because processing of one such 

message connects the recovering site back into the dynamic graph 

formed in the algorithm. 

The recovery procedures for each of the four cases are 
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Case One - The token is definitely lost. So it needs 
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to be 

regenerated. As mentioned earlier, detection of token-loss is not a 

trivial problem since the token may be considered to be lost when 

instead network connectivity is broken. Recovery Procedure 4 tries to 

bring back system activity in such a situation. 

Recovery Procedure 4 -

(1) Run a token-recovery algorithm. An election algorithm 

may be employed to regenerate the token. 

( 2) Once the token is regen era ted, all other sites have to 

be notified of the site which has the token (this is necessary if the 

token-recovery algorithm does not do so). The site which regenerates 

the token assigns "self" to its holder_as_l_see_it variable and all other 

sites set their holder_as_l_see_it variable to contain the name of the 

token regenerating site. The variable who_to_pass_token 1s set to 

"none" at all the sites. 

(3) A site (except the failed site) can make a request to 

access the critical section only after it has performed the first two 

steps completely. 

(4) lo'hen the failed site _recovers, it follows the Recovery 

Procedure 3 given earlier. 

Case Two - If the failure of site j is detected before the token is 

passed to it, then the token is not transmitted to j. Then a recovery 

procedure containing steps 2, 3, and 4 of Recovery Procedure 3 is 

employed. This may cause some sites to make a request again to enter 
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the critical section. However, if the token is already on its way to 

j, it will be lost when it reaches the failed site j. It is then 

handled in a similar manner to the first case. 

Case Three - When a request message is sent to the failed site, it is 

considered lost. Also, the sites, whose holder_as_l_see_it variables are 

equal to the failed site's identifier, cannot make a request. This 

problem appears in the second case also. It may be handled by waiting 

till the failed site recovers (at the cost of wasting parallelism). 

But these (dependent) sites can be allowed to reorganize themselves 

1 n the dynamic graph formed by the algorithm. The details are given 

1n Recovery Procedure 5. 

Recovery Procedure 5 -

There are two parts of this recovery procedure -

(1) Reorganization of the sites dependent on the failed site, and 

(2) Recovery of the failed site (same as Recovery Procedure 3). 

The sites whose holder_as_l_see_it variable contains the name of 

the failed site send a "help me" message to all other sites. On 

receiving this "help me" message, the site holding the token and 

having who_to_pass_token ="none" sends an "inform" message containing 

its name to the site which sent the "help me" message. Other sites 

ignore the "help me" message. On receiving this "inform" message, a 

site sets its variable holder_as_l_see_it to contain the name of the site 

which sent the "inform" message. Thus, these sites are connected back 

in the dynamic graph of the algorithm and they can now make a request 

to enter the critical section. 
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Case Four - When a site fails during its recovery from previous 

failure, it starts the recovery procedure again from the beginning. 

There is however one problem - an old "inform" message may reach this 

site during its current recovery procedure. This can be handled by 

using timestamps. 

The recovery procedures given above demonstrate that the 

proposed algorithm allows dynamic reconfiguration of the network. A 

new node can be added to the system by following the Recovery 

Procedure 3. In fact, the dynamic nature of the algorithm makes it 

easier to handle these cases. 

5.2.2 Mutual Exclusion in case of M instances of the Resource 

In practical systems, it happens quite often that there exists 

more than one resource of the same kind and each resource can be used 

by at most one process at any given time. A process does not care 

which resource it uses as long as it gets to use a resource. Example 

2, given at the beginning of this chapter, fits this description very 

well. 

The solution of this problem is built upon the mutual exclusion 

algorithm for one shared resource. Extensions are proposed to the 

Ricart-Agrawala algorithm, the Suzuki-Kasami algorithm, and the 

algorithm from the previous section to solve this problem. 

In the following discussions, N IS the number of sites and M 1s 

the number of resources available. 
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5.2.2.1 Extension to the Ricart-Agrawala Algorithm -

The following changes to the Ricart-Agrawala algorithm are 

proposed to solve this problem -

(1) Instead of waiting for (N-1) "replies" in the entry code 

for access to the critical section, wait for (N-M) "replies" only. 

(2) Since nothing is assumed about the time taken for a 

message to reach its destination node, it is now possible ( because of 

step 1 above) that a site receives a "reply" ( from a site) to an old 

request while this site has made another request to access the 

critical section. This can be handled by having a site timestamp its 

"replies" like it timestamps its "requests". Then, on receipt of a 

reply, it can be decided, whether or not that "reply" pertains to the 

current request, by comparing the timestamp of the "request" made 

with that of the "reply" received. 

5.2.2.2 Extension to the Suzuki-Kasami Algorithm -

In the Suzuki-Kasami algorithm, the token determines which site 

enters its critical section. Since there is only one token In the 

system, only one site can access the shared resource at a time. Two 

extensions are proposed to the Suzuki-Kasami algorithm to achieve 

mutual exclusion In case of M copies of the shared resource. The 

basic idea in both of these extensions can be applied to any token­

based algorithm and is given below 

(1) the token carries the number of available shared 

resources, which is represented here by M. In the Suzuki-Kasami 



algorithm, M can be considered to carry the value 1, or 

(2) there are M tokens in the system. 
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In the first extension, a site decrements M on getting the 

token and may retransmit it to another requesting site if M > 0. After 

a site finishes execution of its critical section, it broadcasts a 

"release" message, if it does not have the token; otherwise, it 

increments the value of M on the token. Special care has to be taken 

so as not to update M at different sites for the same "release" 

message, and also in the situation when the token is in transit at 

the time of broadcast of the "release" message. This can be handled 

by having each site maintain sequence number of the "release" message 

received from all the sites, like it does for the "request" message. 

In the Suzuki-Kasami algorithm, the token carries the sequence number 

of the last request satisfied for each site. So by comparing the 

sequence number of the last request satisfied and the sequence number 

of the "release" message, it can be found whether or not M has to be 

updated. 

In the second extension, there are M tokens in the system, one 

for each instance of the resource. Assume these M tokens to be 

distributed among the nodes. Sine� in the Suzuki-Kasami algorithm, a 

request message is sent to all the nodes, it is possible that a site 

receives more than 1 token in response to its one request. This site 

must immediately pass the extra tokens to the other requesting sites 

so as not to waste parallelism. It is also possible for a site to 

receive a token when it is finished executing its critical section 
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and has not made a request to enter the critical section again. Since 

a site sends a request message to all the sites, this does not pose 

any problems except for some extra message transmissions and loss of 

parallelism. This M tokens approach is more useful than the former 

scheme (where there 1s one token and it carries the value M) if the 

system involves processes like 1n the readers-writers problem. In that 

case, a writer (site) waits until it has obtained all tokens, where 

as a reader (site) can read with just one token. 

5.2.2.3 Extension of the Proposed Algorithm -

The algorithm proposed 1n §5. 2. 1. 2 is also token-based. 

Therefore, the same two extensions are possible - one involving only 

one token which carries the value M and the other involving M tokens. 

In the first extension, assume that initially the token with 

value M is at site 1. In the algorithm 1n Figure 5.1, the token is 

not transmitted by a site if it is 1n its critical section. Since 

more than one site can be in its critical section, the token is 

allowed to be transmitted by a site even if it is executing the 

critical section, but with the condition that M>O. 

On receiving the token, a site decrements the value of M by 1. 

The token stays at that site if M=O, otherwise it is transmitted to 

a requesting site. When a site finishes execution of its critical 

section, M needs to be incremented by 1. If the site has the token, 

the task of incrementing is no problem. If the site does not possess 

the token, it needs to be handled with care. Two methods are given 
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here for handling this -

(1) Broadcast a "release" message to all the sites. The site 

with the token increments M by 1 after receiving a "release" message. 

Broadcast of "release" message introduces the need for each site to 

maintain sequence numbers like in the Suzuki-Kasami algorithm. 

(2) Transmit the "release" message to the site given by its 

holder_as_I_see_it variable. On receiving a "release" message, the site 

holding the token increments M by 1; a site not possessing the token 

forwards it to its holder_as_I_see_it site. This method reduces the 

number of messages but there is a risk involved the "release" 

message may end up chasing the token. This is not very likely to 

occur unless the critical section is very short or there is a heavy 

demand to use the shared resources. Parallelism could be lost ( by 

saving on the number of messages ) as the "release" message may visit 

many nodes before reaching the node with the token. 

In the second extension, there are M tokens in the system. 

Assume the tokens are initially distributed among all the sites. Also 

assume that each site has a set which contains the names of the sites 

which it thinks have the token. Initially, each such set 1s 

initialized to contain the names of the token holding sites. A reader 

site picks a site from its set of sites ( can be random ) as the one 

which it thinks has the token and then follows the protocol as given 

in Figure 5.1. A writer site follows a "greedy" approach by sending a 

request message to all the sites in its set. A site may update its 

set according to the following rules -
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(i) When a site, say i, sends a request for itself to 

another site (one from its set), say j, it removes j from the set and 

adds its own name i to the set. 

( i i) When a site, say k, sends a request on behalf of i to 

another site (one from its set), say j, it removes j from the set and 

adds i to the set. 

(iii) The site, which transmits the token, removes its own 

name from its set and adds the name of the site to which it sends the 

token. 

This extension has a serious problem - what if two writers try 

to capture (all M) tokens at the same time? This can be solved by 

using timestamps with the request messages. Then the writer with the 

lower timestamp has precedence over the other writer and thus, 

deadlock is avoided. 

5.3 Summary : 

In this chapter, a new distributed mutual exclusion algorithm 

which requires between 0 and N message exchanges is proposed. Ideas 

are presented for extending one resource mutual exclusion algorithms 

to solve the mutual exclusion problem in the case where there is more 

than one copy of the resource. 



CHAPTER VI 

CONCLUSIONS 

The goal of this work was to consider various methods of 

implementing mutual exclusion in both centralized and distributed 

systems. 

Most of the currently available computer systems provide at 

least one of the mechanisms of Chapter II at the hardware level. So 

the mutual exclusion problem, local to a computer system, can be 

solved efficiently using the hardware mechanism available on that 

system. Algorithms In Chapter III implement the required 

synchronization within a system using the standard operators of a 

high-level programming language. These solutions are important not 

only from a historical point of VIew but also because they illustrate 

how concurrent programs behave. 

Since the solutions of Chapters II and III are dependent on the 

existence of a shared memory, they cannot be used In distributed 

systems. Chapter IV discusses mutual exclusion solutions based on 

message-passing. The main characteristic of these solutions is the 

multiplicity of decision-making centers. And the major source of 

problems is the unpredictability of transmission delays along 

communication channels. 

It is shown in Chapter V that new solutions to the problem of 

mutual exclusion can be formed by using heuristics. These heuristics 

are developed by considering real-world situations which require 
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mutual exclusion. An algorithm, which is shown to be more economical 

than most of the other existing algorithms, is proposed. It requires 

between 0 and N message exchanges per critical section execution. The 

token size in this algorithm is smaller In comparison to that in 

other token-based algorithms. The effects of both site and link 

failures on the algorithm are considered in detail and procedures for 

recovery from these failures are also given. 

In the proposed algorithm, requests are ordered based on their 

time of arrival at a site. Since all requests cannot be serviced at 

the same time, there does exist an order among the requests and this 

is made use of. Raymond uses a similar ordering scheme in his mutual 

exclusion algorithm [ Raymond 1989]. The algorithm in Chapter V does 

not grant access to the critical section in a first-come-first-served 

order like [ Lamport 1978] and [ Ricart 1981]. But those two algorithms 

do so at the cost of more message exchanges. 

The algorithm assumes that each site is equally likely to 

access the critical section and each access to the critical section 

is equally important. These assumptions may be relaxed a little bit. 

An example of why this would be desirable is given In terms of 

Example 1 from the beginning of C�apter V - "What if one person has 

an exam and the others don't? So that person needs the book more than 

anybody else". 

This situation can be handled by introducing an "urgent" 

message and making all sites respect this "urgent" message. Of 

course, it is assumed that there are no false "urgent" messages. This 
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gives rise to new problems. What if two sites 1ssue an "urgent" 

message? Timestamps may be used by a site to determine the "more 

urgent" message of the two. 

It was also assumed in the algorithm that a site serializes its 

multiple requests. This may be relaxed when a site possesses the 

token. If an internal request 1s generated to access the critical 

section and there is a request from another site pending to be 

serviced, the internal request may be satisfied first to save on the 

number of message exchanges. Theoretically speaking, this can cause 

starvation. But in practice, it is unlikely. ( Based on this 

assumption, Lamport gave a "fast" mutual exclusion algorithm for 

shared memory systems [ Lamport 1987].) 

The distributed mutual exclusion solutions for one shared 

resource are extended in Chapter V to solve the problem of mutual 

exclusion 1n the case where there is more than one instance of the 

shared resource. It is assumed in these extensions that availability 

of any shared resource ( from that pool of shared resources ) satisfies 

a request. These extensions can be modified to include specific 

resource demands, if any. 

The solutions to the problerrr of mutual exclusion in this work 

assume presence of only one critical section. The problem when 

processes have more than one critical section, which overlap with 

each other, needs to be considered in future. 

Due to time constraints, we could not do a performance 

evaluation of the proposed algorithm. Gravey and Dupis proposed a 
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modeling method for performance evaluation of distributed mutual 

exclusion protocols. They analyzed the performance of two such 

algorithms implemented in a distributed system consisting of two 

nodes only as the cardinality of the state space of the Markov Chain 

used grows rapidly with the number of nodes in the system [ Gravey 

1987]. A complete analytic study of the proposed algorithm is a topic 

of research in itself. 

To sum up, the problem of mutual exclusion is something which 

cannot be overlooked by a system designer. A variety of solutions to 

this problem are available. Each solution has its own advantages and 

disadvantages - one has to choose a suitable solution for the problem 

depending on what factors ( availability of shared memory, centralized 

or distributed control, cost, network topology, reliability, etc. ) 

need to be emphasized. 
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