294 research outputs found

    The Distribution of Minimum of Ratios of Two Random Variables and Its Application in Analysis of Multi-hop Systems

    Get PDF
    The distributions of random variables are of interest in many areas of science. In this paper, ascertaining on the importance of multi-hop transmission in contemporary wireless communications systems operating over fading channels in the presence of cochannel interference, the probability density functions (PDFs) of minimum of arbitrary number of ratios of Rayleigh, Rician, Nakagami-m, Weibull and α-µ random variables are derived. These expressions can be used to study the outage probability as an important multi-hop system performance measure. Various numerical results complement the proposed mathematical analysis

    Performance Analysis of Selection Combining Over Correlated Nakagami-m Fading Channels with Constant Correlation Model for Desired Signal and Cochannel Interference

    Get PDF
    A very efficient technique that reduces fading and channel interference influence is selection diversity based on the signal to interference ratio (SIR). In this pa¬per, system performances of selection combiner (SC) over correlated Nakagami-m channels with constant correlation model are analyzed. Closed-form expressions are obtained for the output SIR probability density function (PDF) and cumulative distribution function (CDF) which is main contribution of this paper. Outage probability and the average error probability for coherent, noncoherent modulation are derived. Numerical results presented in this paper point out the effects of fading severity and cor¬relation on the system performances. The main contribu¬tion of this analysis for multibranch signal combiner is that it has been done for general case of correlated co-channel interference (CCI)

    On the Sum of Order Statistics and Applications to Wireless Communication Systems Performances

    Full text link
    We consider the problem of evaluating the cumulative distribution function (CDF) of the sum of order statistics, which serves to compute outage probability (OP) values at the output of generalized selection combining receivers. Generally, closed-form expressions of the CDF of the sum of order statistics are unavailable for many practical distributions. Moreover, the naive Monte Carlo (MC) method requires a substantial computational effort when the probability of interest is sufficiently small. In the region of small OP values, we propose instead two effective variance reduction techniques that yield a reliable estimate of the CDF with small computing cost. The first estimator, which can be viewed as an importance sampling estimator, has bounded relative error under a certain assumption that is shown to hold for most of the challenging distributions. An improvement of this estimator is then proposed for the Pareto and the Weibull cases. The second is a conditional MC estimator that achieves the bounded relative error property for the Generalized Gamma case and the logarithmic efficiency in the Log-normal case. Finally, the efficiency of these estimators is compared via various numerical experiments

    Erasure Insertion in RS-Coded SFH MFSK Subjected to Tone Jamming and Rayleigh Fading

    No full text
    The achievable performance of Reed Solomon (RS) coded slow frequency hopping (SFH) assisted M-ary frequency shift keying (MFSK) using various erasure insertion (EI) schemes is investigated, when communicating over uncorrelated Rayleigh fading channels in the presence of multitone jamming. Three different EI schemes are considered, which are based on the output threshold test (OTT), on the ratio threshold test (RTT) and on the joint maximum output-ratio threshold test (MORTT). The relevant statistics of these EI schemes are investigated mathematically and based on these statistics, their performance is evaluated in the context of error-and-erasure RS decoding. It is demonstrated that the system performance can be significantly improved by using error-and-erasure decoding invoking the EI schemes considered. Index Terms—Tone jamming, OTT, RTT, MO-RTT, SFH, error-and-erasure decoding (EED)

    Diversity receiver design and channel statistic estimation in fading channels

    Get PDF
    The main goal of this thesis is to provide an in-depth study of two important techniques that are effective in improving the performance, data rate, or bandwidth-efficiency in wireless communication systems. The two techniques are, first, diversity combining equipped with quadrature amplitude modulation (QAM), and second, the estimation of fading channel statistical properties;To effectively combat the adverse effect of fading and to improve the error rate performance in wireless communications, one of the major approaches is to employ diversity combining techniques. In the first part of this thesis, we focus on the equal gain combining (EGC) and hybrid-selection equal gain combining (HS/EGC) for bandwidth-efficient wireless systems (i.e. QAM systems). For EGC QAM systems, we propose the receiver structure and the corresponding decision variables, and then study the effects of imperfect channel estimation (ICE) and quantify the loss of the signal-to-noise ratio (SNR) gain caused by ICE. For HS/EGC QAM system, we develop a general approach to derive unified error rate and outage probability formulas over various types of fading channels based on the proposed HS/EGC receiver. The main contribution of this work lies in that it provides effective hybrid diversity schemes and new analytical approaches to enable thorough analysis and effective design of bandwidth efficient wireless communication systems which suffer from ICE and operate in realistic multipath channels;Channel statistic information is proven to be critical in determining the systems design, achievable data rate, and achievable performance. In the second part of this thesis, we study the estimation of the fading channel Statistics and Probability; We propose several iterative algorithms to estimate the first- and second-order statistics of general fading or composite fading-shadowing channels and derive the Cramer-Rao bounds (CRBs) for all the cases. We demonstrate that these iterative methods are efficient in the sense that they achieve their corresponding CRBs. The main contribution of this work is that it bridges the gap between the broad utilization of fading channel statistical properties and the lack of systematic study that makes such statistical properties available
    corecore