24,097 research outputs found

    The Biosemiotic Approach in Biology : Theoretical Bases and Applied Models

    Get PDF
    Biosemiotics is a growing fi eld that investigates semiotic processes in the living realm in an attempt to combine the fi ndings of the biological sciences and semiotics. Semiotic processes are more or less what biologists have typically referred to as “ signals, ” “ codes, ”and “ information processing ”in biosystems, but these processes are here understood under the more general notion of semiosis, that is, the production, action, and interpretation of signs. Thus, biosemiotics can be seen as biology interpreted as a study of living sign systems — which also means that semiosis or sign process can be seen as the very nature of life itself. In other words, biosemiotics is a field of research investigating semiotic processes (meaning, signification, communication, and habit formation in living systems) and the physicochemical preconditions for sign action and interpretation. (...

    Visual analytics in FCA-based clustering

    Full text link
    Visual analytics is a subdomain of data analysis which combines both human and machine analytical abilities and is applied mostly in decision-making and data mining tasks. Triclustering, based on Formal Concept Analysis (FCA), was developed to detect groups of objects with similar properties under similar conditions. It is used in Social Network Analysis (SNA) and is a basis for certain types of recommender systems. The problem of triclustering algorithms is that they do not always produce meaningful clusters. This article describes a specific triclustering algorithm and a prototype of a visual analytics platform for working with obtained clusters. This tool is designed as a testing frameworkis and is intended to help an analyst to grasp the results of triclustering and recommender algorithms, and to make decisions on meaningfulness of certain triclusters and recommendations.Comment: 11 pages, 3 figures, 2 algorithms, 3rd International Conference on Analysis of Images, Social Networks and Texts (AIST'2014). in Supplementary Proceedings of the 3rd International Conference on Analysis of Images, Social Networks and Texts (AIST 2014), Vol. 1197, CEUR-WS.org, 201

    Mining Biclusters of Similar Values with Triadic Concept Analysis

    Get PDF
    Biclustering numerical data became a popular data-mining task in the beginning of 2000's, especially for analysing gene expression data. A bicluster reflects a strong association between a subset of objects and a subset of attributes in a numerical object/attribute data-table. So called biclusters of similar values can be thought as maximal sub-tables with close values. Only few methods address a complete, correct and non redundant enumeration of such patterns, which is a well-known intractable problem, while no formal framework exists. In this paper, we introduce important links between biclustering and formal concept analysis. More specifically, we originally show that Triadic Concept Analysis (TCA), provides a nice mathematical framework for biclustering. Interestingly, existing algorithms of TCA, that usually apply on binary data, can be used (directly or with slight modifications) after a preprocessing step for extracting maximal biclusters of similar values.Comment: Concept Lattices and their Applications (CLA) (2011

    A semiotic analysis of the genetic information

    Get PDF
    Terms loaded with informational connotations are often employed to refer to genes and their dynamics. Indeed, genes are usually perceived by biologists as basically ‘the carriers of hereditary information.’ Nevertheless, a number of researchers consider such talk as inadequate and ‘just metaphorical,’ thus expressing a skepticism about the use of the term ‘information’ and its derivatives in biology as a natural science. First, because the meaning of that term in biology is not as precise as it is, for instance, in the mathematical theory of communication. Second, because it seems to refer to a purported semantic property of genes without theoretically clarifying if any genuinely intrinsic semantics is involved. Biosemiotics, a field that attempts to analyze biological systems as semiotic systems, makes it possible to advance in the understanding of the concept of information in biology. From the perspective of Peircean biosemiotics, we develop here an account of genes as signs, including a detailed analysis of two fundamental processes in the genetic information system (transcription and protein synthesis) that have not been made so far in this field of research. Furthermore, we propose here an account of information based on Peircean semiotics and apply it to our analysis of transcription and protein synthesis

    Restoring the structural status of keys through DFT phase space

    Full text link
    One of the reasons for the widely felt influence of Schenker’s theory is his idea of long-range voice-leading structure. However, an implicit premise, that voice leading is necessarily a relationship between chords, leads Schenker to a reductive method that undermines the structural status of keys. This leads to analytical mistakes as demonstrated by Schenker’s analysis of Brahms’s Second Cello Sonata. Using a spatial concept of harmony based on DFT phase space, this paper shows that Schenker’s implicit premise is in fact incorrect: it is possible to model long-range voice-leading relationships between objects other than chords. The concept of voice leading derived from DFT phases is explained by means of triadic orbits. Triadic orbits are then applied in an analysis of Beethoven’s Heiliger Dankgesang, giving a way to understand the ostensibly “Lydian” tonality and the tonal relationship between the chorale sections and “Neue Kraft” sections

    Semiosis and pragmatism: toward a dynamic concept of meaning

    Get PDF
    Philosophers and social scientists of diverse orientations have suggested that the pragmatics of semiosis is germane to a dynamic account of meaning as process. Semiosis, the central focus of C. S. Peirce's pragmatic philosophy, may hold a key to perennial problems regarding meaning. Indeed, Peirce's thought should be deemed seminal when placed within the cognitive sciences, especially with respect to his concept of the sign. According to Peirce's pragmatic model, semiosis is a triadic, time-bound, context-sensitive, interpreter-dependent, materially extended dynamic process. Semiosis involves inter-relatedness and inter-action between signs, their objects, acts and events in the world, and the semiotic agents who are in the process of making and taking them

    A scalable mining of frequent quadratic concepts in d-folksonomies

    Full text link
    Folksonomy mining is grasping the interest of web 2.0 community since it represents the core data of social resource sharing systems. However, a scrutiny of the related works interested in mining folksonomies unveils that the time stamp dimension has not been considered. For example, the wealthy number of works dedicated to mining tri-concepts from folksonomies did not take into account time dimension. In this paper, we will consider a folksonomy commonly composed of triples and we shall consider the time as a new dimension. We motivate our approach by highlighting the battery of potential applications. Then, we present the foundations for mining quadri-concepts, provide a formal definition of the problem and introduce a new efficient algorithm, called QUADRICONS for its solution to allow for mining folksonomies in time, i.e., d-folksonomies. We also introduce a new closure operator that splits the induced search space into equivalence classes whose smallest elements are the quadri-minimal generators. Carried out experiments on large-scale real-world datasets highlight good performances of our algorithm
    • 

    corecore