109 research outputs found

    GeneTrail—advanced gene set enrichment analysis

    Get PDF
    We present a comprehensive and efficient gene set analysis tool, called ‘GeneTrail’ that offers a rich functionality and is easy to use. Our web-based application facilitates the statistical evaluation of high-throughput genomic or proteomic data sets with respect to enrichment of functional categories. GeneTrail covers a wide variety of biological categories and pathways, among others KEGG, TRANSPATH, TRANSFAC, and GO. Our web server provides two common statistical approaches, ‘Over-Representation Analysis’ (ORA) comparing a reference set of genes to a test set, and ‘Gene Set Enrichment Analysis’ (GSEA) scoring sorted lists of genes. Besides other newly developed features, GeneTrail's statistics module includes a novel dynamic-programming algorithm that improves the P-value computation of GSEA methods considerably. GeneTrail is freely accessible at http://genetrail.bioinf.uni-sb.d

    Computation of significance scores of unweighted Gene Set Enrichment Analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene Set Enrichment Analysis (GSEA) is a computational method for the statistical evaluation of sorted lists of genes or proteins. Originally GSEA was developed for interpreting microarray gene expression data, but it can be applied to any sorted list of genes. Given the gene list and an arbitrary biological category, GSEA evaluates whether the genes of the considered category are randomly distributed or accumulated on top or bottom of the list. Usually, significance scores (p-values) of GSEA are computed by nonparametric permutation tests, a time consuming procedure that yields only estimates of the p-values.</p> <p>Results</p> <p>We present a novel dynamic programming algorithm for calculating exact significance values of unweighted Gene Set Enrichment Analyses. Our algorithm avoids typical problems of nonparametric permutation tests, as varying findings in different runs caused by the random sampling procedure. Another advantage of the presented dynamic programming algorithm is its runtime and memory efficiency. To test our algorithm, we applied it not only to simulated data sets, but additionally evaluated expression profiles of squamous cell lung cancer tissue and autologous unaffected tissue.</p

    GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since the inception of the GO annotation project, a variety of tools have been developed that support exploring and searching the GO database. In particular, a variety of tools that perform GO enrichment analysis are currently available. Most of these tools require as input a target set of genes and a background set and seek enrichment in the target set compared to the background set. A few tools also exist that support analyzing ranked lists. The latter typically rely on simulations or on union-bound correction for assigning statistical significance to the results.</p> <p>Results</p> <p><it>GOrilla </it>is a web-based application that identifies enriched GO terms in ranked lists of genes, without requiring the user to provide explicit target and background sets. This is particularly useful in many typical cases where genomic data may be naturally represented as a ranked list of genes (e.g. by level of expression or of differential expression). <it>GOrilla </it>employs a flexible threshold statistical approach to discover GO terms that are significantly enriched at the <it>top </it>of a ranked gene list. Building on a complete theoretical characterization of the underlying distribution, called mHG, <it>GOrilla </it>computes an exact p-value for the observed enrichment, taking threshold multiple testing into account without the need for simulations. This enables rigorous statistical analysis of thousand of genes and thousands of GO terms in order of seconds. The output of the enrichment analysis is visualized as a hierarchical structure, providing a clear view of the relations between enriched GO terms.</p> <p>Conclusion</p> <p><it>GOrilla </it>is an efficient GO analysis tool with unique features that make a useful addition to the existing repertoire of GO enrichment tools. <it>GOrilla</it>'s unique features and advantages over other threshold free enrichment tools include rigorous statistics, fast running time and an effective graphical representation. <it>GOrilla </it>is publicly available at: <url>http://cbl-gorilla.cs.technion.ac.il</url></p

    miRTargetLink—miRNAs, Genes and Interaction Networks

    Get PDF
    Information on miRNA targeting genes is growing rapidly. For high-throughput experiments, but also for targeted analyses of few genes or miRNAs, easy analysis with concise representation of results facilitates the work of life scientists. We developed miRTargetLink, a tool for automating respective analysis procedures that are frequently applied. Input of the web-based solution is either a single gene or single miRNA, but also sets of genes or miRNAs, can be entered. Validated and predicted targets are extracted from databases and an interaction network is presented. Users can select whether predicted targets, experimentally validated targets with strong or weak evidence, or combinations of those are considered. Central genes or miRNAs are highlighted and users can navigate through the network interactively. To discover the most relevant biochemical processes influenced by the target network, gene set analysis and miRNA set analysis are integrated. As a showcase for miRTargetLink, we analyze targets of five cardiac miRNAs. miRTargetLink is freely available without restrictions at www.ccb.uni-saarland.de/mirtargetlink

    BNDB – The Biochemical Network Database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Technological advances in high-throughput techniques and efficient data acquisition methods have resulted in a massive amount of life science data. The data is stored in numerous databases that have been established over the last decades and are essential resources for scientists nowadays. However, the diversity of the databases and the underlying data models make it difficult to combine this information for solving complex problems in systems biology. Currently, researchers typically have to browse several, often highly focused, databases to obtain the required information. Hence, there is a pressing need for more efficient systems for integrating, analyzing, and interpreting these data. The standardization and virtual consolidation of the databases is a major challenge resulting in a unified access to a variety of data sources.</p> <p>Description</p> <p>We present the Biochemical Network Database (BNDB), a powerful relational database platform, allowing a complete semantic integration of an extensive collection of external databases. BNDB is built upon a comprehensive and extensible object model called BioCore, which is powerful enough to model most known biochemical processes and at the same time easily extensible to be adapted to new biological concepts. Besides a web interface for the search and curation of the data, a Java-based viewer (BiNA) provides a powerful platform-independent visualization and navigation of the data. BiNA uses sophisticated graph layout algorithms for an interactive visualization and navigation of BNDB.</p> <p>Conclusion</p> <p>BNDB allows a simple, unified access to a variety of external data sources. Its tight integration with the biochemical network library BN++ offers the possibility for import, integration, analysis, and visualization of the data. BNDB is freely accessible at <url>http://www.bndb.org</url>.</p

    GeneTrail 3: advanced high-throughput enrichment analysis

    Get PDF
    We present GeneTrail 3, a major extension of our web service GeneTrail that offers rich functionality for the identification, analysis, and visualization of deregulated biological processes. Our web service provides a comprehensive collection of biological processes and signaling pathways for 12 model organisms that can be analyzed with a powerful framework for enrichment and network analysis of transcriptomic, miRNomic, proteomic, and genomic data sets. Moreover, GeneTrail offers novel workflows for the analysis of epigenetic marks, time series experiments, and single cell data. We demonstrate the capabilities of our web service in two case-studies, which highlight that GeneTrail is well equipped for uncovering complex molecular mechanisms. GeneTrail is freely accessible at: http://genetrail.bioinf.uni-sb.de

    KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases

    Get PDF
    High-throughput experimental technologies often identify dozens to hundreds of genes related to, or changed in, a biological or pathological process. From these genes one wants to identify biological pathways that may be involved and diseases that may be implicated. Here, we report a web server, KOBAS 2.0, which annotates an input set of genes with putative pathways and disease relationships based on mapping to genes with known annotations. It allows for both ID mapping and cross-species sequence similarity mapping. It then performs statistical tests to identify statistically significantly enriched pathways and diseases. KOBAS 2.0 incorporates knowledge across 1327 species from 5 pathway databases (KEGG PATHWAY, PID, BioCyc, Reactome and Panther) and 5 human disease databases (OMIM, KEGG DISEASE, FunDO, GAD and NHGRI GWAS Catalog). KOBAS 2.0 can be accessed at http://kobas.cbi.pku.edu.cn

    FUNAGE-Pro:comprehensive web server for gene set enrichment analysis of prokaryotes

    Get PDF
    Recent advances in the field of high throughput (meta-)transcriptomics and proteomics call for easy and rapid methods enabling to explore not only single genes or proteins but also extended biological systems. Gene set enrichment analysis is commonly used to find relations in a set of genes and helps to uncover the biological meaning in results derived from high-throughput data. The basis for gene set enrichment analysis is a solid functional classification of genes. Here, we describe a comprehensive database containing multiple functional classifications of genes of all (>55 000) publicly available complete bacterial genomes. In addition to the most common functional classes such as COG and GO, also KEGG, InterPro, PFAM, eggnog and operon classes are supported. As classification data for features is often not available, we offer fast annotation and classification of proteins in any newly sequenced bacterial genome. The web server FUNAGE-Pro enables fast functional analysis on single gene sets, multiple experiments, time series data, clusters, and gene network modules for any prokaryote species or strain. FUNAGE-Pro is freely available at http://funagepro.molgenrug.nl

    Novel autoantigens immunogenic in COPD patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) is a respiratory inflammatory condition with autoimmune features including IgG autoantibodies. In this study we analyze the complexity of the autoantibody response and reveal the nature of the antigens that are recognized by autoantibodies in COPD patients.</p> <p>Methods</p> <p>An array of 1827 gridded immunogenic peptide clones was established and screened with 17 sera of COPD patients and 60 healthy controls. Protein arrays were evaluated both by visual inspection and a recently developed computer aided image analysis technique. By this computer aided image analysis technique we computed the intensity values for each peptide clone and each serum and calculated the area under the receiver operator characteristics curve (AUC) for each clone and the separation COPD sera versus control sera.</p> <p>Results</p> <p>By visual evaluation we detected 381 peptide clones that reacted with autoantibodies of COPD patients including 17 clones that reacted with more than 60% of the COPD sera and seven clones that reacted with more than 90% of the COPD sera. The comparison of COPD sera and controls by the automated image analysis system identified 212 peptide clones with informative AUC values. By <it>in silico </it>sequence analysis we found an enrichment of sequence motives previously associated with immunogenicity.</p> <p>Conclusion</p> <p>The identification of a rather complex humoral immune response in COPD patients supports the idea of COPD as a disease with strong autoimmune features. The identification of novel immunogenic antigens is a first step towards a better understanding of the autoimmune component of COPD.</p
    corecore