
Published online 7 May 2020 Nucleic Acids Research, 2020, Vol. 48, Web Server issue W515–W520
doi: 10.1093/nar/gkaa306

GeneTrail 3: advanced high-throughput enrichment
analysis
Nico Gerstner1,†, Tim Kehl 1,*,†, Kerstin Lenhof1, Anne Müller1, Carolin Mayer1,
Lea Eckhart1, Nadja Liddy Grammes1,3, Caroline Diener 2, Martin Hart2, Oliver Hahn4,5,
Jörn Walter 6, Tony Wyss-Coray4,5, Eckart Meese2, Andreas Keller 1,3,4,5 and
Hans-Peter Lenhof1,*

1Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123 Saarbrücken, Germany,
2Department of Human Genetics, Saarland University, 66421 Homburg, Germany, 3Chair for Clinical Bioinformatics,
Saarland University, 66123 Saarbrücken, Germany, 4School of Medicine Office, Stanford University, Stanford, CA,
USA, 5Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA and
6Department of Genetics, Saarland University, Saarbrücken D-66041, Germany

Received February 11, 2020; Revised March 31, 2020; Editorial Decision April 17, 2020; Accepted April 20, 2020

ABSTRACT

We present GeneTrail 3, a major extension of our web
service GeneTrail that offers rich functionality for the
identification, analysis, and visualization of deregu-
lated biological processes. Our web service provides
a comprehensive collection of biological processes
and signaling pathways for 12 model organisms that
can be analyzed with a powerful framework for en-
richment and network analysis of transcriptomic,
miRNomic, proteomic, and genomic data sets. More-
over, GeneTrail offers novel workflows for the anal-
ysis of epigenetic marks, time series experiments,
and single cell data. We demonstrate the capabilities
of our web service in two case-studies, which high-
light that GeneTrail is well equipped for uncovering
complex molecular mechanisms. GeneTrail is freely
accessible at: http://genetrail.bioinf.uni-sb.de.

INTRODUCTION

Modern high-throughput technologies have revolutionized
biomedical research by enabling comprehensive molecu-
lar profiling of biological systems. Methods like high-
throughput sequencing, microarrays, or mass spectrometry
are now routinely applied to generate huge multi-omics data
sets.

Enrichment and network analysis procedures are an im-
portant class of computational methods designed for the
analysis of these high-dimensional data sets with the ma-
jor goal to gain novel insights into biological processes. In
general, these approaches use statistical tests to determine

if biological categories under investigation are deregulated.
The most widely used methods in this context are Over-
Representation Analysis (ORA) (1) and Gene Set Enrich-
ment Analysis (GSEA) (2).

Over the years, a variety of tools for enrichment analy-
sis have been published. Most of these tools focus on the
analysis of specific omics data types. For example, DAVID
(3), GSEA-P (4), and Webgestalt (5) have been developed
for the analysis of gene expression data. DIANA-miRPath
(6) or miEAA (7) provide workflows for enrichment analysis
of miRNA data sets. GSEA-SNP (8) or i-GSEA4GWAS (9)
can be used to test if SNPs that are associated with a disease
phenotype are enriched in signaling pathways. LOLAweb
(10) allows the user to study significant overlaps between
genomic regions and predefined genomic annotations.

In addition to the approaches for individual omics types,
several tools can analyze and integrate different omics data
types, for example Enrichr (12), iPEAP (11), PaintOmics
3 (13), RAMONA (14), and our web service GeneTrail
(15,16). A more detailed description and comparison of the
different tools can be found in Supplement S1.

Since the rapid advancements of wet lab technologies en-
able the generation of more and more voluminous and com-
plex data sets, computational analysis tools also have ac-
cordingly to be refined in order to deal with this progress.
Amongst others, single-cell data sets with thousands of
noisy and sparse samples pose new challenges concerning
the developments of computational methods. To cope with
the development of high-throughput technologies, we sub-
stantially extended the functionality of GeneTrail.

The third version of our web service provides rich func-
tionality for the integrated analysis and interactive visual-
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ization of transcriptomic, miRNomic, proteomic and ge-
nomic data sets. It offers a powerful framework for enrich-
ment and network analysis and a comprehensive collection
of predefined biological processes and signaling pathways
for 12 model organisms. On top of this, GeneTrail 3 pro-
vides novel workflows for the analysis of epigenetic marks,
time series experiments, and single cell data. For all work-
flows, interactive visualizations assist the user in analyzing
the results and thus help to facilitate their interpretation.

To demonstrate the capabilities of our web server, we
present two case studies. First, we analyze a time-resolved
gene expression data set of CD4+ T cells from human
blood. The isolated T cells were in vitro activated and ex-
pression profiles were created at 2 h intervals from 0 to 24
h. In particular, we explore signaling pathways that exhibit
altered expression patterns after T cell activation. In a sec-
ond case study, we analyze a single cell data set of mouse
microglia cells. In total, the data set contains gene expres-
sion profiles of 8330 individual cells from mice that belong
to three different age groups: 3 month (2219 cells), 18 month
(1998 cells), and 24 month (4113 cells). The major goal here
is to study the hallmarks of aging.

GENERAL FUNCTIONALITY AND NEW WORK-
FLOWS

Since the initial release of GeneTrail in 2007, our web ser-
vice has been continuously maintained, refined, and ex-
tended. It provides a powerful framework for the identifica-
tion of deregulated biological processes. Users can choose
from a large collection of statistical tests to build custom
pipelines. Currently, GeneTrail offers 15 tests to detect dif-
ferentially expressed genes, proteins, or miRNAs, 11 meth-
ods to conduct enrichment analysis with different strategies
to calculate P-values, and 9 methods for multiple testing
correction. Based on this comprehensive analysis function-
ality, our web service can be applied to analyze a huge col-
lection of biological processes and signaling pathways for
12 model organisms. For Homo sapiens alone, GeneTrail 3
provides nearly 65 000 biological categories for the analysis
of genes and proteins and 33 000 for miRNAs (cf. Supple-
ment S2). These include popular databases like GO (17),
KEGG (18), and Reactome (19).

A variety of routines help to reduce the required user in-
teraction by analyzing all uploaded data sets. Amongst oth-
ers, GeneTrail automatically detects identifier types of the
uploaded biological entities. Different properties of the data
are utilized to preselect a suitable combination of statistical
methods with sensible default parameters for all analyses.
In combination with our interactive web interface and thor-
ough documentation, this allows even non-expert users to
carry out complex analyses of multi-omics data sets. For all
workflows, we created interactive visualizations that range
from a general overview of the data to an in-depth represen-
tation of specific results and thus help the users to interpret
the results.

GeneTrail also offers a RESTful API that provides pro-
grammatic access to the entire functionality. This enables
users to integrate our web service into third party work-
flows. It is also seamlessly integrated with its sister projects
that provide additional analysis functionality. For example,

NetworkTrail can be used to identify deregulated subgraphs
in biological networks (20), RegulatorTrail (21) can help to
detect influential transcriptional regulators, and DrugTar-
getInspector (22) or ClinOmicsTrail (23) can assist in the
treatment stratification process of cancer patients.

Different workflows for the integrative analysis of tran-
scriptomic, miRNomic, proteomic, and genomic data
sets have already been described in previous publications
(15,16). Hence, we discuss only the novel workflows for the
analysis of epigenetic marks, time series experiments, and
single cell data.

Epigenomics workflow

The epigenomics workflow can be used to analyze histone
marks, DNA methylation patterns, and open-chromatin re-
gions with the major goal to uncover epigenetic mechanisms
that control the natural and pathogenic processes under in-
vestigation.

Users can upload epigenetic data sets for different sam-
ple groups in form of BED files. For each sample group,
GeneTrail analyzes the corresponding epigenetic marks and
assigns chromatin states (active, poised, repressed, or no
signal) to each individual gene. To this end, we employ a
knowledge-based approach that considers specific combi-
nations of epigenetic marks in the promoter, enhancer, and
gene body regions of each gene. A detailed description can
be found in Supplement S3. For each pair of sample groups,
our web service then determines for each gene if there is
a change of its chromatin state, e.g. if there is a transition
from a poised state in the first group to an active state in the
other group. Genes with the same behaviour are then com-
bined into state transition groups, e.g. (poised → active).
For each of these groups, over-representation analyses are
carried out to identify biological processes, molecular func-
tions, and cellular components that are enriched with the
genes of this transition group.

Finally, GeneTrail summarizes the results in a graph-like
representation, whose vertices represent the different sam-
ple groups and states and whose edges represent the state
transition groups (cf. Figure 1A). Users can select individ-
ual transitions via a mouse click on the corresponding edge,
and GeneTrail then shows the associated enrichment results
(cf. Figure 1B) that can be interactively explored.

Time series workflow

The time series workflow provides functionality for the
analysis of time-resolved expression data sets. Our web
server first identifies clusters of biological entities, e.g. genes,
with very similar expression time curves and then tests for
each cluster which processes and signaling pathways are
regulated by the members of the cluster.

Users can upload a time-resolved gene, protein, or
miRNA expression data set in form of a white-space sepa-
rated matrix. Our web service then carries out the following
preprocessing and analysis steps (cf. Supplement S4). In the
preprocessing step, all genes that show only limited expres-
sion changes over time are filtered out. Then a two-stage
clustering approach is applied to identify groups of genes,
miRNAs, or proteins with similar expression patterns. For
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Figure 1. Example of an epigenomic analysis that is based on the fol-
lowing epigenetic marks of human embryonic stem cells (H1-hESC,
Encode ENCSR938GXK) and neural progenitor cells (NPC, En-
code ENCSR539JGB): H3K4me3, H3K9me3, H3K27ac, H3K27me3,
H3K36me3. (A) Graph representation of chromatin state transitions. Here,
vertices, which represent chromatin states, show the number of genes in a
state and edges the respective transitions. The weight of each edge corre-
sponds to the number of genes in this transition group. (B) Enrichment
results of transition group (poised → active) (marked in red). The results
have been filtered for categories that have the term ‘neuron differentiation’
in their name.

this purpose, users can select a distance measure and a clus-
tering algorithm from a variety of approaches. First, a strict
clustering, which generates small groups with a high simi-
larity between all members, is performed. The second clus-
tering then combines similar clusters generated in the first
step to so-called ’super-clusters’. In a last step, GeneTrail
carries out over-representation analyses for all clusters and
super-clusters in order to identify associated biological pro-
cesses and signaling pathways.

The clustering and enrichment results are then presented
in an interactive visualization that summarizes the differ-
ent levels of information (cf. Figure 2). The small number
of super-clusters shown on the left side represents a coarse
classification of all observed expression curves. In order to
get an overview on the timely orchestration of all involved
biological processes, the super-clusters are roughly sorted
with respect to their most active point in time, i.e. super-
clusters with the highest activity at the start of the consid-
ered biological process should appear at the top of the list.
If the user selects a super-cluster, e.g via a mouse-click on its
curve, the according sub-clusters are shown (cf. Figure 2B).
Users can also select individual clusters (cf. Figure 2B) via a
mouse click or search boxes and then inspect the expression
curves of all cluster members (cf. Figure 2C). The selection

of any (super-)cluster directly highlights its enrichment re-
sults (cf. Figure 2D) that reveal which molecular processes
are affected by the biological entities contained in the se-
lected cluster.

Single cell workflow

The development of modern high-throughput technologies
has opened novel avenues for the genetic and molecular
characterization of large sets of single cells. For example,
single-cell RNA sequencing (scRNA-seq) allows to mea-
sure gene expression profiles for thousands of cells in par-
allel. GeneTrail’s single cell workflow was designed to ex-
plore scRNA-seq data sets in order to (i) identify for each
cell the active biological processes and subsequently, based
on these results, to (ii) characterize functional differences
between cells types, subtypes, cell clusters etc.

Users can upload scRNA-seq data in form of a white-
space separated matrix and, additionally, an annotation file
containing supplemental information, like tissue and cell
type, for each cell. For raw counts, GeneTrail provides sev-
eral processing steps. First a user can select from a variety of
filtering methods to remove artifacts like doublets or empty
droplets/wells. Then a normalization is performed. A de-
scription of all processing steps can be found in Supplement
S5.

For the visualization of the data set, GeneTrail processes
the gene expression matrix and the annotation file to create
several standard 2D representations. In particular, our web
service applies Monocle 3 (24) and Seurat3 (25) to carry out
dimensionality reduction (PCA, t-SNE, or UMAP), clus-
tering, and pseudotime analysis.

In the next step, the data of each cell is processed in-
dividually. For each cell, GeneTrail carries out an over-
representation analysis to identify biological processes that
are (in)active in the cell.

In the last step, the enrichment results of all cells are inte-
grated with the uploaded annotations and calculated clus-
ters to characterize the different cell groups of interest. For
each group and each pathway, GeneTrail tests if this path-
way is predominantly (in)active in the cells of this group
compared to all others groups. To this end, we are using a
� 2-Test, i.e. a 2 × 2 contingency table filled with the num-
bers of cells in the considered group and the other groups
that are (not) enriched with respect to the pathway under
investigation (cf. Supplement S5).

All results are then presented in an interactive visualiza-
tion that enables the user to study and compare expres-
sion patterns and enriched biological processes of individ-
ual cells, specific cell clusters, or predefined annotations.
A screenshot of this visualization is shown in Figure 3.
At the bottom, the enrichment results for the different cell
groups or clusters are shown. Here, users can select interest-
ing pathways or genes. These are then highlighted in the 2D
representations at the top (cf. Figures 3A and C). The plot
on the left side shows the activity of a selected pathway for
each individual cell, the plot on the right side the expression
of a selected gene. The plot in the middle shows the corre-
sponding groups of cells that represent either the selected
user annotation or the calculated clusters.
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Figure 2. Screenshot of the time-series analysis results for CD4+ (GSE136625). (A) Overview of calculated super-clusters. Only mean expression curves of
the super-clusters SC1 and SC16 are shown. (B) Mean time courses of all sub-clusters of SC1. (C) Member genes of cluster C1. (D) Filtered enrichment
results (KEGG Pathways) of SC1.

TIME-SERIES ANALYSIS OF ACTIVATED T-CELLS

T cells are lymphocytes that are involved in the adaptive im-
mune response. CD4+ cells are T cells that recruit and reg-
ulate the activity of other immune cells. Here, we consider
time-resolved gene expression data of human CD4+ T cells
(GSE136625) that were in vitro activated by a T cell activa-
tion kit. The data set comprises 13 expression profiles that
were measured after initial T cell activation at 2 h intervals
over a 24-hour period. A summary of the preprocessing and
normalization of the data as well as the complete set of used
parameters can be found in Supplement S6.

The major goal of our study is to deepen our knowledge
of the chronological regulation of the pathways and pro-
cesses induced by the T cell activation, their orchestration,
and the involved regulators. Due to space constraints, we
will discuss only some well-known facts that are central to
T cell activation. The complete results of this analysis will
be summarized in another paper. After the upload of the
corresponding normalized gene expression matrix, we se-
lected hierarchical clustering with complete linkage and Eu-
clidean distance (of the gradients between all time points)
and started the GeneTrail analysis (cf. Supplement S4). Af-
ter the calculation of all gene clusters, super-clusters, and
the corresponding enrichments, GeneTrail presents a sum-
mary of the results starting with the obtained 21 super-
clusters. These are roughly sorted with respect to the time
points of maximal activity. Hence, the first clusters should
represent the processes that were immediately induced af-
ter the T cell activation. For the sake of brevity, we discuss
only two of the 21 resulting super-clusters (cf. Figure 2A).
The first super-cluster (SC1) contains genes with a rapid in-
crease in expression immediately (2 hours) after T cell ac-

tivation. The majority of genes (IFNG, TNF, CSF2, IL2)
in SC1 belong to the products of the KEGG ‘T cell recep-
tor signaling pathway’ (cf. KEGG - hsa04660 (18)). In fact,
most of the associated biological processes are related to an
early immune response. We detected an enrichment of cate-
gories related to T cell costimulation, T cell differentiation,
T cell activation, and different T cell activation hallmarks
(26): proliferation, cytokine signaling, and metabolic pro-
cesses.

Based on these results, we can now start studying the
regulation and the chronological order of downstream pro-
cesses. For example, the increased expression of IFNG, in-
duced by the TCR signaling, activates in turn the type-II
interferon and the Jak-STAT signaling pathways that cause
an increased production of type-I interferons. Many of these
genes (23 type I and 8 type II) can be found in super-cluster
SC16, whose average expression curve shows a delayed in-
crease in expression starting after around 4 h, with a peak
after 12 h. The comparison of the expression curves of the
central regulators (IRF9, STAT1, STAT2) of type-I/type-II
interferons with the profile of SC16 confirms this chrono-
logical sequence. Expectedly, the enriched biological cate-
gories of SC16 involve type-I/type-II interferon signaling
pathways and related immune pathways, including response
to external stimuli (dsRNA, virus, organic compounds etc.),
natural killer cell activation, RIG-I-like receptor signaling,
Toll-like receptor signaling etc.

The above discussion indicates how GeneTrail can be
used to identify gene clusters, their functionality, and the
chronological orchestration of the involved biological pro-
cesses. Additionally, for the identification of the key regula-
tors of each cluster, users can apply RegulatorTrail (21) that
offers a variety of approaches for this task.
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Figure 3. Screenshot of UMAP visualizations for single cell results of microglia cells. The different plots provide information on (A) the activity (P-values)
of the biological category ‘response to interferon-beta’ in each cell, (B) cell clusters generated with Seurat3, (C) expression values of the selected gene
IFIT3 and (D) the enrichment results (� 2-test) for the considered Seurat3 clustering.

SINGLE CELL ANALYSIS OF MICROGLIA CELLS

Microglia cells are a type of myeloid cells, related to
macrophages, that are involved in the innate and adaptive
immune defense of the central nervous system. Amongst
others, they play a key role in the control of infections and
the removal of necrotic neurons. An increased activation of
microglia activity has also been found in several neurode-
generative disorders (27).

Here, we investigate a single cell data set of mouse mi-
croglia cells from different brain tissues (cerebellum, cortex,
hippocampus and striatum). This data set is part of a com-
prehensive single cell transcriptome atlas that was designed
to study aging processes in a large variety of mouse tissues
and organs (Tabula Muris Senis Project, GSE132042, https:
//doi.org/10.1101/661728). The major goal of this project is
to identify hallmarks of aging by comparing cells from dif-
ferent mouse organs, tissues, and three different age groups
(3, 18 and 24 months) and by searching for features com-
mon to old cells and tissues (process and gene activities)
that distinguish them from younger ones. Due to space con-
straints, we consider only the microglia cell data that con-
tains 8330 gene expression profiles. Amongst others, we ap-
plied GeneTrail to study molecular processes that are char-
acteristic for the older microglia cells (24 months). Addi-
tionally, we also examined specific cell clusters calculated
using Seurat3 (cf. Figure 3B).

Older microglia cells show, amongst others, an enrich-
ment of categories that are related to RNA processing, pep-
tide biosynthesis, translation, and ATP synthesis. More-
over, we observe a depletion of many biological processes

that belong to autophagy and regulation of autophagy. Ad-
ditionally, we see a reduced expression of many heat shock
proteins leading to a depletion of categories associated with
response to heat, protein folding, and a reduced activity
of the ‘transforming growth factor beta receptor signaling
pathway’.

We have also analyzed the calculated Seurat3 clusters and
discuss here only the results for cluster C1 (colored in black)
and C4 (colored in lavender). For cluster C1, an enrichment
of biological categories involved in development, differen-
tiation, and morphogenesis can be observed. This indicates
that these cells might be in an earlier developmental state. In
fact, the uploaded age annotation confirms that the cells of
this cluster predominantly belong to the 3 month cell group.
The enrichment analysis for cluster C4 reveals an increased
activity of processes related to a defense response against
a viral infection including interferon signaling and T cell
as well as natural killer cell mediated cytotoxicity (cf. Fig-
ure 3). The immune response in these cells could either be
caused by a viral infection, damaged neurons, or even neu-
rodegeneration.

The above results demonstrate how GeneTrail can be ap-
plied to study biological processes that are characteristic for
specific cells or clusters. With this functionality, it provides
a valuable tool for the elucidation of deregulated molecular
mechanisms or even the classification of specific cells.

DISCUSSION

Since the initial release of GeneTrail, high-throughput tech-
nologies have made a tremendous progress. They are now
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routinely applied in many research projects and even in clin-
ical applications, and they usually generate noisy and ex-
tremely voluminous data sets. In order to cope with this
progress, we created GeneTrail 3, a major extension of our
web service.

With the new version, we provide a powerful toolbox for
the elucidation of molecular mechanisms and, especially,
for the identification of deregulated biological processes. It
offers a large set of enrichment and network analysis algo-
rithms that can be used to explore a comprehensive collec-
tion of biological categories for the most popular model or-
ganisms. Moreover, we have developed new powerful work-
flows for the analysis of epigenetic marks, time series exper-
iments, and single cell data. For all workflows, interactive
visualizations that assist users in the analysis and interpre-
tation of the results have been created.

Due to space constraints, the presented use cases display
only a small portion of the overall functionality of the new
workflows and of the whole capabilities of our web service.

In summary, GeneTrail 3 offers a substantial upgrade
compared to its previous versions, with several new and
unique features that are of broad interest to the scientific
community.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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