4 research outputs found

    Building interpretable fuzzy models for high dimensional data analysis in cancer diagnosis

    Get PDF
    Background: Analysing gene expression data from microarray technologies is a very important task in biology and medicine, and particularly in cancer diagnosis. Different from most other popular methods in high dimensional bio-medical data analysis, such as microarray gene expression or proteomics mass spectroscopy data analysis, fuzzy rule-based models can not only provide good classification results, but also easily be explained and interpreted in human understandable terms, by using fuzzy rules. However, the advantages offered by fuzzy-based techniques in microarray data analysis have not yet been fully explored in the literature. Although some recently developed fuzzy-based modeling approaches can provide satisfactory classification results, the rule bases generated by most of the reported fuzzy models for gene expression data are still too large to be easily comprehensible. Results: In this paper, we develop some Multi-Objective Evolutionary Algorithms based Interpretable Fuzzy (MOEAIF) methods for analysing high dimensional bio-medical data sets, such as microarray gene expression data and proteomics mass spectroscopy data. We mainly focus on evaluating our proposed models on microarray gene expression cancer data sets, i.e., the lung cancer data set and the colon cancer data set, but we extend our investigations to other type of cancer data set, such as the ovarian cancer data set. The experimental studies have shown that relatively simple and small fuzzy rule bases, with satisfactory classification performance, can be successfully obtained for challenging microarray gene expression datasets. Conclusions: We believe that fuzzy-based techniques, and in particular the methods proposed in this paper, can be very useful tools in dealing with high dimensional cancer data. We also argue that the potential of applying fuzzy-based techniques to microarray data analysis need to be further explored. </p

    Hierarchical gene selection and genetic fuzzy system for cancer microarray data classification

    Full text link
    This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice

    Pareto optimal-based feature selection framework for biomarker identification

    Get PDF
    Numerous computational techniques have been applied to identify the vital features of gene expression datasets in aiming to increase the efficiency of biomedical applications. The classification of microarray data samples is an important task to correctly recognise diseases by identifying small but clinically meaningful genes. However, identification of disease representative genes or biomarkers in high dimensional microarray gene-expression datasets remains a challenging task. This thesis investigates the viability of Pareto optimisation in identifying relevant subsets of biomarkers in high-dimensional microarray datasets. A robust Pareto Optimal based feature selection framework for biomarker discovery is then proposed. First, a two-stage feature selection approach using ensemble filter methods and Pareto Optimality is proposed. The integration of the multi-objective approach employing Pareto Optimality starts with well-known filter methods applied to various microarray gene-expression datasets. Although filter methods provide ranked lists of features, they do not give information about optimum subsets of features, which are namely genes in this study. To address this limitation, the Pareto Optimality is incorporated along with filter methods. The robustness of the proposed framework is successfully demonstrated on several well-known microarray gene expression datasets and it is shown to achieve comparable or up to 100% predictive accuracy with comparatively fewer features. Better performance results are obtained in comparison with other approaches, which are single-objective approaches. Furthermore, cross-validation and k-fold approaches are integrated into the framework, which can enhance the over-fitting problem and the gene selection process is subsequently more accurate under various conditions. Then the proposed framework is developed in several phases. The Sequential Forward Selection method (SFS) is first used to represent wrapper techniques, and the developed Pareto Optimality based framework is applied multiple times and tested on different data types. Given the nature of most real-life data, imbalanced classes are examined using the proposed framework. The classifier achieves high performance at a similar level of different cases using the proposed Pareto Optimal based feature selection framework, which has a novel structure for imbalanced classes. Comparable or better gene subset sizes are obtained using the proposed framework. Finally, handling missing data within the proposed framework is investigated and it is demonstrated that different data imputation methods can also help in the effective integration of various feature selection methods
    corecore