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Abstract 

Numerous computational techniques have been applied to identify the vital features of 

gene expression datasets in aiming to increase the efficiency of biomedical 

applications. The classification of microarray data samples is an important task to 

correctly recognise diseases by identifying small but clinically meaningful genes. 

However, identification of disease representative genes or biomarkers in high 

dimensional microarray gene-expression datasets remains a challenging task. This 

thesis investigates the viability of Pareto optimisation in identifying relevant subsets of 

biomarkers in high-dimensional microarray datasets. A robust Pareto Optimal based 

feature selection framework for biomarker discovery is then proposed.  

First, a two-stage feature selection approach using ensemble filter methods and Pareto 

Optimality is proposed. The integration of the multi-objective approach employing 

Pareto Optimality starts with well-known filter methods applied to various microarray 

gene-expression datasets. Although filter methods provide ranked lists of features, they 

do not give information about optimum subsets of features, which are namely genes in 

this study. To address this limitation, the Pareto Optimality is incorporated along with 

filter methods. The robustness of the proposed framework is successfully demonstrated 

on several well-known microarray gene expression datasets and it is shown to achieve 

comparable or up to 100% predictive accuracy with comparatively fewer features. 

Better performance results are obtained in comparison with other approaches, which 

are single-objective approaches. Furthermore, cross-validation and k-fold approaches 

are integrated into the framework, which can enhance the over-fitting problem and the 

gene selection process is subsequently more accurate under various conditions. 

Then the proposed framework is developed in several phases. The Sequential Forward 

Selection method (SFS) is first used to represent wrapper techniques, and the developed 

Pareto Optimality based framework is applied multiple times and tested on different 

data types. Given the nature of most real-life data, imbalanced classes are examined 

using the proposed framework. The classifier achieves high performance at a similar 

level of different cases using the proposed Pareto Optimal based feature selection 

framework, which has a novel structure for imbalanced classes. Comparable or better 

gene subset sizes are obtained using the proposed framework. Finally, handling missing 

data within the proposed framework is investigated and it is demonstrated that different 

data imputation methods can also help in the effective integration of various feature 

selection methods. 
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1 INTRODUCTION 

1.1 Research Motivation  

Microarray datasets have been increasingly used during the last two decades, 

and this creates an intriguing challenge for machine learning and 

bioinformatics. Microarray data is comprised of gene expression information 

gained from tissue or cell samples. It uses gene expression values for disease 

diagnosis or the classification of specific types of tumour (Bolón-canedo et al., 

2014). Mostly, while there is a minimal number of samples (usually less than 

100) for training and testing, the number of features generally found in original 

data ranges between 6000 and 60,000, and hence a gene expression dataset is 

considered as a type of a big data (Bolón-Canedo, Sánchez-Maroño and Alonso-

Betanzos, 2015). Microarray technology provides biologists with a valuable 

tool for measuring thousands of gene expression levels in a single experiment 

(Saeys et al., 2007). The sheer amount of gene expressions obtained in various 

microarray data analyses can be used in classification tasks (Jirapech-Umpai 

and Aitken, 2005). 

It is difficult for machine learning methods to deal with high numbers of input 

features (Bolón-Canedo et al., 2013) and high dimensional big data often 

creates a problem for researchers when working with them (Khoshgoftaar et al., 

2013). Therefore, feature selection algorithms have become indispensable 

components of the learning process and face to many input features during the 

descriptive analysis of the research. However, the performance of feature 

selection methods can be adversely affected from high numbers of input features 

(e.g., Information Gain and ReliefF). In addition, the classification process can 

be conducted without feature selection and training and validation performances 

in terms of accuracy can be reasonably good. However, testing the performance 

of the classification model often far from meeting expectations, and many 

studies have shown that feature selection has a significant effect on efficiency 

of machine learning methods (Jirapech-Umpai and Aitken, 2005). It is 

reasonable to expect that having so many features with limited samples create a 

high likelihood of finding “false positives” in discovering relevant genes and in 

building reliable predictive models. While more features might be expected, at 

least theoretically, to provide more discriminatory ability, they, in reality, 
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contribute to a significant slow-down of the classifier training process and also 

result in overfitting the training data due to the presence of redundant features 

which impacts negatively on the learning process (Yu and Liu, 2004). Several 

studies have shown that microarray data often contain redundant genes that are 

irrelevant to accurately classify different classes of the microarray dataset 

(Bolón-canedo et al., 2014). 

Machine learning methods have been utilised to discover hidden structures in 

biological data and biomarkers. For this purpose, reducing dimensionality for 

the analysis of the data, selecting a subset of the features, classifying the data, 

clustering, and estimating new situations are the primary applications (Saeys et 

al., 2007). Most machine learning algorithms for feature selection demand a 

high number of samples to effectively produce less but relevant descriptors 

(Mandoiu and Zelikovsky, 2008; Wu et al., 2008; Bolón-Canedo and Alonso-

Betanzos, 2019). Therefore, feature selection methods as a common and 

efficient strategy, aim to decrease the number of dimensions of the dataset. In 

gene expression studies, gene selection is a de-facto method to identify the most 

relevant genes by deleting irrelevant and redundant genes (V. Bolon-Canedo et 

al., 2015). Feature selection refers mainly to gene selection, in such studies.  

Feature selection has been broadly studied in the literature, particularly for 

classification (Saeys et al., 2007; Sun et al., 2015; Bolón-Canedo and Alonso-

Betanzos, 2019). Recently, with the proliferation of high dimensional datasets, 

big data analysis has become a widely studied research area in engineering as 

well as other fields including the physical, biological and biomedical sciences 

(Bolón-Canedo, Sánchez-Maroño and Alonso-Betanzos, 2014). For instance, 

the analysis of microarray gene expressions is an important process in the 

biological sciences where thousands of genes simultaneously are expressed in 

relation to diseases. The information or knowledge obtained from microarray 

data is valuable and could be big and further analysis is required to be performed 

for subsequent prospective actions (Bolón-canedo et al., 2014; Veronica Bolon-

Canedo et al., 2015). One such action is the gene selection before the 

classification takes place. The robustness of feature selection is a crucial issue 

in classification and mostly obtained by the validation methods (Khoshgoftaar 

et al., 2013; Gerlein et al., 2016). Recent studies have shown that the efficiency 
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of the classification is highly affected by the feature selection methods that were 

used (Yang and Mao, 2011; Seijo-Pardo et al., 2015).  

In well-known low dimensional problems, the number of observations is much 

higher than the number of genes. This means that the dataset contains sufficient 

information for the training process in order to learn the distribution of patterns 

(Yang and Mao, 2011). Many existing pattern recognition algorithms can 

provide satisfactory results with this kind of low dimensional data. However, 

gene-expression datasets have high dimensionality and a small structure 

(HDSS) that has attracted considerable attention from the machine learning 

perspective (Yang et al., 2015). Higher numbers of features and low number of 

samples creates a considerable challenge for pattern recognition algorithms. 

This situation is called the “curse of dimensionality”  (Bellman, 1961) where 

the search space for a subset increases exponentially (Malley, Dasgupta and 

Moore, 2013). Thousands of features make it impossible to form the candidate 

solutions using an exhaustive search. Another problem is the small numbers of 

samples for the algorithms. These make the search even more challenging in 

establishing a subset of relevant features (Winkler, Affenzeller and Wagner, 

2007). 

In the analysis of biological data, selecting the subset of the identified problem-

related features (e.g. genes in microarrays) can be used for cancer treatment 

studies, biomarker discovery, drug discovery and similar research, so it is an 

essential and critical process. Nowadays, microarray datasets have become the 

most common source for the analysis of gene expression (Veronica Bolon-

Canedo et al., 2015). Microarray datasets have existed for two decades (Taub, 

Deleo and Thompson, 1983), and they contain huge amounts of biomarker 

information (Makałowski, Jakalski and Makałowska, 2014). Biomarker 

detection is a difficult problem, especially when the number of genes is 

significant, and thus the search space grows exponentially (Ahmed, Zhang and 

Peng, 2015). Biomarker selection is a challenging process due to the high 

dimensional nature of post-genomic data such as microarray gene expression 

(Uslan, 2015; Peng, Li and Liu, 2017). Subsequently, biological datasets 

contain many features, only a small group of them is associated with the 

problem (Saeys et al., 2007). Gene information is collected from many patients 
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especially cancer patients. Researchers collect it to compare with the data of 

healthy people whether to predict, diagnose, or monitor disease. Machine 

learning techniques became indispensable tools, and researchers are highly 

benefiting from many machine-learning methods to identify useful information 

from the massive amount of raw data they have.  Biomarkers are beneficial for 

each stage of patient care. (Michiels, Koscielny and Hill, 2005; Yang and Mao, 

2011; Bolon-Canedo et al., 2017). 

Therefore, it is of great importance to select a subset of representative 

biomarkers. The aims of the biomarker selection can be summarised as follows: 

(i) to reveal features associated with a problem identified in biological data such 

as genetic networks, structures and mechanisms, which are involved in the onset 

and progression of the disease, and (ii) to improve the accuracy and 

interpretability of the predictive model used to extract the features. 

However, small sample sizes and high numbers of features in biological data 

are the main difficulties encountered in these studies. Thus, many feature 

selection algorithms have been proposed to overcome these problems. The 

disadvantage of having many solution methods is that, when different selection 

methods are applied to the same dataset, different biomarkers (genes) or subsets 

of biomarkers may be selected. At the same time, the selection process must be 

independent of sample variation in the dataset (Alpaydin, 2010). The same 

feature selection algorithm can result in the selection of different features even 

when applied to two sets of data that are very similar to each other. In many 

related studies, it has been shown that feature selection and ranking are related 

to dataset variation and selection methods (Michiels, Koscielny and Hill, 2005; 

Yang and Mao, 2011). These studies show that it is unreliable to use only one 

learning set per feature or only one method for feature selection. 

Despite the expectation that a feature selection method would eliminate 

irrelevant variables resulting in good classification performance, classifiers 

often tackle the contradiction between bias and variance in datasets. The bias-

variance trade-off is an important concept to be considered during the design of 

the model. The bias indicates a degree of adaptation of the model to the training 

set, but this is not a measure of generalisation. However, variance represents the 
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variability in the model performance that occurs during the class prediction of 

data samples (Alpaydin, 2010). 

Feature selection, also called biomarker or gene selection in gene expression 

studies, can be utilised by applying the filter, wrapper or embedded approaches 

(Saeys et al., 2007). In filter methods, information-based evolution relies on the 

overall features of the training data and the gene selection is regarded as a pre-

processing stage which can be considered independently from the induction 

algorithm (Bolón-canedo et al., 2014). 

Existing studies show that it is unreliable to use only one learning set per feature, 

only one method for feature selection, and ranking for disease-associated genes. 

The current trend is based on ensemble methodologies to gain better results 

(Bolón-Canedo and Alonso-Betanzos, 2019). 

This continuing research trend tackles many challenges in microarray data. It 

shows the generic characteristic of big data even with the small sample sizes 

that present fundamental difficulties. Class imbalance, missing data, 

overlapping between classes, non-linearity, and such as genes extracted under 

different distributions (Bolón-Canedo, Sánchez-Maroño and Alonso-Betanzos, 

2015). Typically, microarray datasets have fewer than 100 samples, and 

thousands of features make the training process of a prediction model more 

laborious. Less information and more criteria for decisions aggravate the 

problem. In the literature, several studies show that most gene-expression values 

in a DNA(deoxyribonucleic acid) microarray experiment are not related to 

objective class so there is no benefit to classification accuracy (Hira and Gillies, 

2015). This type of information may cause a reduction in the performance of 

classifiers such as the C4.5 decision tree classifier as the decision tree method 

is faced with numerous redundant features that are completely unrelated with 

the response classes of the study. (Bolón-Canedo, Sánchez-Maroño and Alonso-

Betanzos, 2015). Likewise, instance-based learners such as the 𝑘-nearest 

neighbour (𝑘-NN) are strongly affected by redundant features. Higher numbers 

of irrelevant features exponentially increases  the demand for training instances 

to produce a predetermined level of accuracy performance (Alpaydin, 2010). 

The irrelevant features slow down the learning process of these methods and 
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decrease their performance (KaltenbachHans-Michael, 2013). Adding 

redundant features, even those related to the concept under research, rapidly 

decrease prediction performance. These circumstances create the necessity for 

minimising the negative effects by establishing a robust framework for the 

analysis. The robustness of the established framework often obtained using the 

validation approaches (e.g., cross-validation). Thus, the established framework 

avoids negative effects, such as the problem of overfitting. Furthermore, the 

models used must deal with classes that are imbalanced, and with samples 

extracted under different conditions in both training and test datasets, thus 

stimulating research into utilising the analysis of microarray data (Veronica 

Bolon-Canedo et al., 2015).  

This study aims to create a new framework combining a selection method, 

which is not influenced by sample variation in the dataset with the multi-

purpose optimisation Pareto Optimal (PO) approach. 

1.2 Rationale of the study 

Most of the existing related studies rely on an individual feature selection 

technique with single feature ranking. The singular evaluation provides a set of 

redundant attributes which often slow down the learning process and degrade 

the classification accuracy (Bolón-Canedo and Alonso-Betanzos, 2019). 

Important aspects to consider are class imbalanced datasets (Fernandez, Garcia 

and Herrera, 2011) and missing datasets. In imbalanced datasets, a majority 

class generally has a greater effect while selecting features. This challenge 

remains an open research issue in handling high dimensional datasets with 

noticeably imbalanced class distributions (Maldonado, Weber and Famili, 

2014). However, most of the techniques applied certain limitations and yield 

different subsets of attributes. Therefore, it is considered that there is still room 

for improvement in the feature selection process, especially in the big data era. 

Several types of feature selection methods perform a random selection process, 

where different feature subsets are selected in every run from the same dataset 

and all subsets are used in classification such as SVM (Maldonado, Weber and 

Famili, 2014) or K-means (Wu et al., 2008). In these cases, the results of 
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classification can be unstable, and considerable computational resources could 

be needed during the classification process. 

One of the challenging aspects of big data is missing data, where microarray 

datasets contain missing information about genes (Troyanskaya et al., 2001). 

The major research challenge here is how to fit the most suitable model 

induction algorithm for missing data. Current methods and approaches can only 

recover data according to other successful samples (Souto, Jaskowiak and 

Costa, 2015). Identifying the most valuable features is necessary for research in 

this area (Muresan et al., 2015). 

This research study, therefore, aims to address the aforementioned problems 

when handling big microarray data with the use of computational methods. The 

specific objectives of this research are discussed in the following section. 

1.3 Research Aim and Objectives 

This research aims to investigate the viability of Pareto optimisation in 

identifying relevant subsets of biomarkers in high-dimensional microarray 

datasets. The primary objectives are as follows: 

• To propose and develop a PO based predictive gene selection framework 

for biomarker discovery 

• Integrate different feature selection and cross-validation approaches 

• To handle the problem of imbalanced data distribution for gene selection 

within the proposed framework 

• To evaluate the contribution of different data imputation methods on the 

proposed framework performance when there are missing values in the 

data 

• To evaluate the classification and generalisation performance of the 

proposed framework on well-known microarray gene expression datasets    

1.4 Research Methodology 

Different microarray datasets are applied to test the unique subsets and 

robustness of the proposed framework. The framework contains multiple stages 

for multi-criteria decision cases. Its adjustable structure is analysed with 

different parameters and altered structures. 
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Given the nature of non-streaming data, the cross-validation method may be the 

solution to validate the dataset. Variations in the dataset are applied to prove the 

robustness of the model. When variables change, the PO-based framework is 

consistent in achieving a high level of accuracy. This consistency makes the 

framework more reliable, especially for further biological studies. The role of 

PO is to eliminate irrelevant and redundant features and to generate a common 

gene subset for each dataset. The gene selection performance is evaluated by 

classification. Relevant information about performance results is shown in 

tables. 

1.5 Research Scope 

This research focuses primarily on gene selection problems and is limited to 

microarray data case studies. Microarray datasets are suitable for the analysis of 

big data applications. The aim is to not only use common gene expression 

datasets but also to determine the applicability of PO on imbalanced and missing 

datasets. Besides, these datasets contain valuable information about various 

cancer diseases, which are used as case studies. 

Most of the imbalanced datasets have binary values, so the present research is 

limited to imbalanced binary classification problems. Two of comparison 

datasets contains multi-class samples. We applied one vs all classification to 

match up binary datasets classes as healthy vs all other disease classes.  

1.6 Contribution 

In this thesis, a generalised computational framework is proposed that could 

employ any feature selection method and classifier model to identify 

representative subsets of genes in high-dimensional gene expression datasets. 

The main contributions of this thesis are summarised as follows:   

1. A computational framework is developed based on Pareto Optimization 

for the purpose of identifying subsets of disease representative genes. 

PO based framework is designed to be independent of any feature 

selection methods and classifier models. The stability and robustness of 

the proposed system are validated using different feature selection 

methods. Due to its properties, such a framework can be easily adapted 
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with any feature selection method that may suffer from randomisation 

problems. 

2. The proposed PO based framework is applied to imbalanced datasets. 

The gene expression datasets due to its nature are very high dimensional 

datasets. The proposed framework has not only addressed the high 

dimensionality with the use of feature selection methods, but the issues 

related to the imbalanced datasets are also addressed with the utilization 

of multi-criteria approach that considers the imbalanced dataset as a 

number of balanced sub-datasets.   

3. The proposed PO based framework is applied to datasets having missing 

values. Real-world datasets commonly contain missing values and 

elimination of those values from datasets cause loss of information 

(Troyanskaya et al., 2001). Missing values is a common problem in gene 

expression datasets (Souto, Jaskowiak and Costa, 2015). Simply 

discarding samples having missing values might result in valuable 

information being lost (Silva and Perera, 2017). This study has also 

investigated how the proposed PO-based framework selects 

features/genes when missing values are replaced using well-known 

statistical imputation methods. The classification performance of the 

proposed method is assessed for each imputation method. Moreover, 

these imputation methods are compared to each other in order to identify 

which ones offer better results. 

1.7 Thesis Organisation 

Chapter 1, Introduction: This chapter introduces the problems of dealing with 

high dimensional data, shows the significance of feature selection, and outlines 

the research motivation, aim and contribution. An outline of the thesis structure 

is presented.  

Chapter 2, Literature Review: This chapter presents background information 

about feature selection with big data, followed by a review of studies of gene 

selection in microarray datasets. It then describes relevant studies, and the 

progress made on gene-expression data classification approaches used in 

bioinformatics and gene selection methods used to decrease dimensionality to 
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give for improvements in classification. It also discusses the main challenges 

involved such as the curse of dimensionality and overfitting. Finally, the PO 

method is discussed and the research methodology and the research hypothesis 

for the present investigation are derived from the findings of the literature 

review. 

Chapter 3, Materials and Methods: This chapter explains the methods applied 

and microarray datasets used. 

Chapter 4 An Aggregated Framework for Biomarker Discovery of Disease-

Related Genes: The improvements found in comparison with the literature for 

all datasets are presented. How the framework was implemented to overcome 

the challenges of dealing with high dimensional data is discussed. The 

evaluation metrics used to analyse and compare the effectiveness of supervised 

feature selection methods previously applied are considered. The Cancer 

datasets exploited in this research to evaluate the performance of proposed 

frameworks are also described. 

Chapter 5 Pareto-Optimal Feature Selection Framework for Imbalanced Data: 

This chapter discusses the challenges posed by imbalanced datasets and the 

shortcomings of existing imbalanced data approaches. The proposed PO-based 

framework for imbalanced datasets is introduced, which is constructed from the 

proposed first framework. Finally, the results of the application of the proposed 

framework compared to previous gene selection methods used in imbalanced 

data studies of the Central Nervous System (CNS), ovarian, and lymphoma are 

presented. 

Chapter 6 PO Feature Selection Framework Application for Imputation 

Methods Comparison: Identifies research gaps in the area of the gene selection 

and imputation methods for missing values data. Imputation methods are 

compared to explore their effects on feature selection in missing values. Finally, 

experimental results are presented to show the effectiveness of imputation 

methods with feature selection for the five cancer datasets utilised to investigate 

performance. 

Chapter 7 Conclusion and Future Work: This chapter presents a discussion of 

the application and evaluation of the proposed framework for the different data 
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set types. The potential contribution of the framework to feature selection with 

different data types is discussed in greater detail. This chapter also concludes 

the thesis and outlines future research directions. 
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2 LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews previous studies of gene selection. The significance of the 

field is discussed first, followed by a review of dimensionality reduction. Then, 

a review of gene selection and PO is presented followed by a discussion of 

existing feature selection methods for gene subset selection and classification 

problems. As Pareto Optimisation forms an important element of the proposed 

a gene selection framework, a detailed section on Pareto optimality is presented. 

2.2 Biological Datasets 

Biological datasets can be grouped into sequencing and microarrays data. 

Strings are pure textual data. Microarrays are numerical expressions that show 

the expression level of genes (Wang, Miller and Clarke, 2008). 

2.2.1 Sequencing Data 

DNA (Deoxyribonucleic acid) is a nucleic acid that contains the genetic 

information necessary for the biological functions of living creatures (Figure 

2-1). DNA particles (genes) are responsible for making proteins that are the 

basic building blocks for the living cell (Chuang et al., 2011). Genes that act as 

templates for protein production turn into RNA (Ribonucleic acid) sequences 

with properties similar to DNA. RNA sequences allow the formation of protein 

sequences (Schnattinger et al., 2013). 

DNA is the most basic text-based biological sequence that carries genetic 

information and has an alphabet with 4 letters (A, C, G, T). Words of the desired 

length can be produced with these letters, which are called Adenine, Cytosine, 

Guanine and Thymine (Veronica Bolon-Canedo et al., 2015). Researchers can 

encode enough words with this 4-letter DNA alphabet, just like the words 

created with two letters (dot and dash) in the same Morse alphabet and 2 letters 

in the computer language (0 and 1).  
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Figure 2-1 Illustration of the DNA structure (genome.gov, 2020) 

 

2.2.2 Microarrays 

Genes, which are a sequence of DNA, transform first into RNA and then into 

protein and take part in all biological functions in the living cell. Each gene has 

different roles in biological life functions. If a researcher wants to find out which 

genes are involved in the biological events of a cell, they can make a decision 

by looking at the amount of proteins that are products of that gene in the cell. 

This process can be defined as gene expression which is the exact indicator of 

protein level of the cell. The frequency with which a gene is transformed into 

DNA→RNA→Protein is referred to as the expression level of that gene. The 

increase (up) of the expression level is interpreted as the activation of a gene, 

and the decrease (down) as the suppression of that gene (Bolón-Canedo, 

Sánchez-Maroño and Alonso-Betanzos, 2016). 

The expression level of genes can vary from cell to cell. Even for a particular 

cell type, the expression of a gene can vary depending on internal and external 

factors. For example, a gene that is highly expressed in a muscle cell may not 

be expressed at all in a liver cell. On the other hand, it happens that genes can 

be differentially expressed in the same cell when the internal and external 

factors are changed  (Ochs, Casagrande and Davuluri, 2010). For example, a 

normally under-expressed gene may be more expressed during cell division. 

The level of gene expression may vary according to environmental factors other 

than the internal factors of an organism. For example, a gene that is expressed 
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at the usual level in a plant can be expressed more or less based on the adaptation 

of the plant to the environment in times of drought. 

Microarray technology is used to determine the expression level of genes. With 

the application of the microarray technique, changes in the expression levels of 

thousands of genes can be detected simultaneously. The opportunity to compare 

many genes at the same time has enabled this technique to be used widely for 

different purposes (V. Bolon-Canedo et al., 2015). 

Generating gene expression data with microarray technology consists of many 

processes. The process of data creation is beyond the scope of this thesis. 

Therefore, the data used in this study are microarray data ready for analysis past 

all wet laboratory, image processing and quality evaluation processes. The data 

used is in a matrix format, where each row represents a gene, each column a 

sample. 

2.3 Bioinformatics 

The proliferation of data produced by systems biology has required extensive 

attention to sophisticated machine-learning tools and techniques, and this field 

is often described as bioinformatics  (Cesario and Marcus, 2011). Nowadays,  

numerous biological datasets are publicly available (Williams et al., 2010). 

Over the previous decade, databases have doubled in size every 15 month 

(Bolón-canedo et al., 2014). The doubling period has now dramatically 

decreased and enormous amounts of data are being created. 

Because of this growth in data, computational approaches to process and 

analyse large datasets have become essential for biological studies (Bolón-

Canedo et al., 2013). Recent advancements of computational power allow the 

efficient analysis of large quantities of data and the discovery of thoroughly 

complex structures in nature. “Bioinformatics, is often defined as the 

application of computational techniques to understand and organise the 

information associated with biological macromolecules” (Luscombe, 

Greenbaum and Gerstein, 2001). Bioinformatics has three main purposes. 

Firstly, it allows enormous volumes of data to be organised so that new entries 

can be added systematically. Secondly, tools and resources can be developed 

which support the analysis of data. Thirdly, to apply these tools on the 
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aforementioned data and discover biologically meaningful information  

(Luscombe, Greenbaum and Gerstein, 2001). 

Bioinformatics is a vital area of application in understanding biomarker 

detection; for example, in determining disease-associated genes (Mount, 2004). 

A systematic approach should be used to improve the effectiveness of 

biomarkers in medical usage  in the diagnostic and therapeutic environment 

(Eisenhaber, 2008).  

Bioinformatics tools are necessary for drug development and have become more 

productive owing to their systematic approach for the elucidation of disease-

associated genes and cancer drugs as well as the investigation of defective 

proteins as targets for drug discovery (Alpaydin, 2010). 

One of the sources of bioinformatics is gene expression datasets. Generally, 

they contain a large number of features, i.e. high dimensionality, a low amount 

of samples, i.e. a small dataset size. In medical studies, researchers extensively 

study gene expression datasets for analysing cancer-related cell lines and 

observing differentiation in them. (Luscombe, Greenbaum and Gerstein, 2001). 

Research in cancer biology has been significantly progressed due to the use of 

experimental methodologies and the revolution in genomics and bioinformatics 

that has produced enormous amounts of biological data (Niu et al., 2017) . One 

problem encountered is the conceptual frameworks used to organise high-

dimensional microarray datasets in such a way that more progress can be made 

in the understanding of diseases (Ochs, Casagrande and Davuluri, 2010). It is 

clear that research studies in bioinformatics can incorporate experimental 

results in wet laboratories through computational analysis and modelling. These 

studies can provide valuable insights into understanding the cause of diseases 

and help design novel and innovative therapeutic procedures. 

2.4 Feature Selection  

In recent years, owing to the internet and increased digital data storage 

capacities, many of high dimensional datasets have become publicly available. 

In this situation, it is a challenging for machine learning methods to be able to 

deal with high dimensional datasets (Mahajan, Abhishek and Singh, 2016). At 

present, the dimensionality of any archive datasets is significantly increased, 
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and different repositories store this data. The methods used for reducing the 

number of dimensions are essential in improving the efficiency of the 

computational models in order to tackle the issue of the high numbers of input 

features. (Bolón-Canedo, Sánchez-Maroño and Alonso-Betanzos, 2016).  

The task of dimensionality reduction is to identify a function 𝐹: ℝ𝑑 → ℝ𝑘 , to 

reduce the number of features in the dataset from 𝑑 to 𝑘, which suffer minimal 

accuracy loss when machine-learning models are applied.   Dimensionality 

reduction methods usually exploit the two concepts of feature selection and 

feature extraction, each of which has its own merits (Zhao and Liu, 2011). 

Feature extraction methods accomplish a reduction in dimensions of data from 

the initial set of features. Feature extraction combines the primary variables in 

order to generate less number of variables. Then, a new set of features that are 

representative of the dataset yielding more learning performance are created. 

Various real world applications such as  signal processing (Silvério Lopes and 

Magalh, 2011), image analysis (Samiappan, Prasad and Bruce, 2013) and 

information retrieval (Li, Li and Liu, 2017) mostly prefer this type of 

dimensionality reduction approach. In these cases, the interpretation is not as 

essential as the accurateness of the computational model. Widely used 

approaches for reducing the dimensionality are principal components analysis 

(PCA) (Moreau and Tranchevent, 2012) and linear discriminant analysis (Saeys 

et al., 2007). 

On the other hand, feature selection involves a process of finding a subset 

containing k features with the most information relevant to the problem defined 

in 𝑑 dimensional data. In this way, irrelevant and redundant features are 

removed from the subset   (Kira and Rendell, 1992; Guyon et al., 2006). This 

strategy widely is used in data mining applications, such as genetics analysis 

(Mooney and Wilmot, 2015), sensor data processing(García-Laencina, Sancho-

Gómez and Figueiras-Vidal, 2010) and text mining (Steenhoff et al., 2012). 

Consequently, feature selection retains the existing attributes that are essential 

for predictive models and extract useful knowledge (Bolón-Canedo, Sánchez-

Maroño and Alonso-Betanzos, 2015). 
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There are many problems encountered with very high dimensional data such as  

biological data sets where machine-learning methods are used for analysing 

these datasets and discovering hidden patterns of identifying useful correlations 

(Nilsson, 2007). However, applying machine learning on these large and high-

dimensional datasets is computationally prohibitive and requires powerful and 

expensive computing facilities. Also, ill-defined features can affect the 

performance of the employed machine learning methods (Hira and Gillies, 

2015). Therefore, the process of selecting smaller feature subsets is one of the 

most critical steps. Data can only be analysed after noise is removed. 

The most important aspects of dimensionality reduction are summarised below 

as a process before the analysis of the data (Alpaydin, 2010): 

a. Most learning algorithms depend on feature size (k) and the number of 

samples (N). Therefore, to improve efficiency, it is necessary to reduce 

the number of feature number. This will reduce the complexity of the 

inference algorithm. It also may help to reduce costs while limiting 

memory requirements. 

b. When irrelevant data is discarded, it will reduce the amount of time 

required for processing it. 

c. Learning algorithms used with small datasets are less influenced by 

specific factors such as noise and contraindication.  In this case, simpler 

models are more reliable. 

d. If the dataset is explained with fewer variables, it will be easier to extract 

the information because the production process is better understood. 

e. When data is visualised in several dimensions without losing 

information, a visual analysis of the structure of and outliers in the data 

will be possible. 

The process of feature selection mainly involves the identification of the most  

relevant features and the removal of redundant and irrelevant features to create 

a subset (Maldonado, Weber and Famili, 2014). The first benefit of feature 

selection is that it characterises the given problem more accurately and hence 

minimises the error rate. Without feature selection, ill-defined features can 

negatively affect the accuracy of classification of big datasets (Abdi, Hosseini 
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and Rezghi, 2012). (Yu and Liu, 2004) advised that additional effort is required 

to investigate the methods used on genomic microarray data in order to identify 

more informative genes and how few variables affect the performance in gene 

selection. Gene selection remains an open research area and every year the 

number of publications in those area increases (Bolón-Canedo and Alonso-

Betanzos, 2019). If optimal feature are chosen, a better understanding of the 

underlying problem and more accurate representations of aggregated data can 

be achieved (Chuang et al., 2011).  In bioinformatics, which is the area of focus 

of this research, feature selection is referred to as gene selection. The central 

argument for gene selection is that a limited subset of disease-associated genes 

are required in order to identify reliable biomarkers. The following objectives 

are pursued when looking for a proper subset of representative genes: 

2.4.1 Overfitting 

When the dataset is small and has a large number of features, such as the 

microarray gene expression datasets, the analysis of the dataset can be highly 

dependent on samples of the training dataset (Wang, Miller and Clarke, 2008). 

In such a case, the features are not properly selected, classifier learns many 

irrelevant patterns than the relevant ones, and in turn, classifiers might lack a 

generalization capability and provide very poor testing performances. Many 

efforts have been made on analysing the problem of overfitting (Hawkins, 2004) 

and mitigating its effect on the prediction performance of a classifier 

(Subramanian and Simon, 2013). 

2.4.2 Curse of dimensionality 

The concept of curse of dimensionality states to a number of issues that might 

arise during the organization and analysis of the high-dimensional data 

(Bellman, 1961). One such issue is that the available number of features far 

exceed the number of samples. The processing of the data usually relies on 

identifying parts of data where samples form groups with similar attributes. 

However, as the number of samples are often sparse and dissimilar from each 

other in high-dimensional data, data analysis approaches become inefficient and 

suffers from establishing the required computational model. A symbolic rule is 

that there should be at least five samples having meaningful values for each of 

the variables (Dash and Misra, 2017). Classifier performance often increase 



32 

 

when sufficient number of samples are available which are related to a good 

representative number of features. 

However, microarray experiments often lack the availability of sufficient 

amount of samples while the number of genes is naturally very large. It is often 

the case in microarray experiments that the number of probes representing the 

number of genes examined far exceeds the sample size. 

 

 

 

 

 

Figure 2-2  shows that there is an optimal number of genes maximising the 

predictive accuracy. 

 

 

 

 

 

 

Figure 2-2 Curse of dimensionality (Haury, 2013) 

Prediction models are frequently used for gene expression datasets to develop 

rules that can be applied to accurately classify the results for patients based on 

their characteristics. Creating microarray datasets are, however, costly to 

process (Haury, 2013). Such models represent an appropriate tool in the 

diagnostic process as they provide clinicians with estimates of possibility that 

people have or will develop a disease or have similar research objectives. 

P
re

d
ic

ti
v
e 

A
cc

u
ra

cy
 

Number of features 

𝑘∗ 



33 

 

2.4.3 Class Imbalance 

The nature of most biomedical datasets is to be imbalanced. For example, there 

may be more cancer cases than control samples (Shipp et al., 2002). Therefore, 

applying feature selection to imbalanced datasets needs further study since the 

features selected may be more representative for the majority class (Fernandez, 

Garcia and Herrera, 2011). The multi-criteria approach will explore tackling this 

issue of feature selection from imbalanced datasets. Feature selection from 

high-dimensional imbalanced datasets will be transformed into feature selection 

from different relatively small classification sample balanced datasets. 

Besides, this skewed class distribution has been found to cause training 

problems. Imbalanced sample proportion makes it harder to classify rare or 

minority classes because of training chance is much lower than majority cases. 

These minority or rare cases are with usually be cancer samples, so that it is 

crucial to classify them correctly. Commonly held is learning tendency of 

prediction models is upon majority class. From many data-level several 

approaches, most of the studies frequently used such as under-sampling, over-

sampling. These type of methods causes the loss of valuable data or over-rated 

results because of virtually created samples. Instead of missing the originality 

of the data, this study proposes an approach that can equalise the level of class 

learning and preserve existing data.  

2.4.4 Increase interpretability  

An interpretable computational model is much easier to understand for humans 

as compared to ones, which are uninterpretable. Gene selection undoubtedly 

prevents the complexity of the computational model and ease the difficulty in 

interpretation. Furthermore, the subset of selected genes can be different from 

one model to another. Prediction performance of case studies such as the cancer 

related microarray datasets are often accurate and efficient when appropriate 

subset of genes was extracted. The subset of selected genes can further be 

verified in lab environment in order to consider their relation and link with the 

cancer. 
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Accepting infinite computational power, in theory no doubt that the optimal set 

of genes could be selected (Hastie, Tibshirani and Friedman, 2009; Hira and 

Gillies, 2015; Bolón-Canedo, Sánchez-Maroño and Alonso-Betanzos, 2016),  

However, testing each possible subset among all numerous gene subset options 

is not possible in practice. In such a case, processing necessity of the selection 

of genes procedure can only happen in nondeterministic polynomial time. Thus, 

finding a solution for feature selection on microarray datasets become 

unattainable(Morán-Fernández, Bolón-Canedo and Alonso-Betanzos, 2017). 

Simplification techniques are inevitably required for establishing good 

interpretable computational models. Various feature selection methods are 

investigated in terms of how they rank genes efficiently and accurately. Each 

gene is assigned with a score showing its significance. Then these genes are 

ordered based on their significance scores. The ranking order for gene 

significance scores is set from highest to lowest. Then the list of scores can be 

limited according to threshold values to create a suitable subset of genes. There 

are three types of feature selection methods familiar in the literature are filter, 

wrapper and embedded methods(Saeys et al., 2007). Related algorithms utilised 

for gene selection are listed below for these groups. Finally, the PO method is 

introduced which is used intensively in of the core of this dissertation. 

2.4.5 Ensemble Feature Selection 

Ensemble feature selection combines various techniques by creating an 

ensemble learning from values of, for example, average, median, minimum, and 

maximum  (Deb and Raji Reddy, 2003; Niijima and Kuhara, 2006; Uncu et al., 

2007; Handl, Kell and Knowles, 2007; Dinu and Popescu, 2008; Soto et al., 

2009; Yang and Mao, 2010; Lee, Jung and Shatkay, 2010; Ting, Lin and Huang, 

2010; Chuang et al., 2011; Luo et al., 2011; Sabzevari and Abdullah, 2011). 

Furthermore, more complex models include ‘rank distance categorization’ 

(Dinu and Popescu, 2008), and ‘resampling and permutation feature 

importance’ (Yang and Mao, 2010) that downgrade the problem into a single-

objective optimisation problem. 

The performance of selected features can be calculated according to single or 

multiple objectives. In recent years, multi-purpose optimisation methods have 
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also been used for selection in bioinformatics studies (Moosa et al., 2016). 

Often, two-objectives functions have been used in evaluating the performance 

of feature subclasses (Zitzler and Thiele, 1999). The first goal is the success in 

classification. If a subset correctly classifies the classes of the targeted classes 

such as patient, then this is a representative subset, and the features selected by 

the method can be said to be related to the disease. The second objective is to 

optimise the size or model cost of the subset of features. In many studies, one 

of the aims of researchers has been to minimise error or maximise accuracy. 

Other goals are to reduce the number of features and the cost of the model 

simultaneously (Deb and Raji Reddy, 2003; Sabzevari and Abdullah, 2011). As 

an alternative to reduce single objective only, this study proposes a technique 

widespread in operations research, which is the PO approach, in a framework, 

applied to the selection of the subsets of features. 

2.4.6 Feature Selection Methods 

Despite advances in the field of gene selection, immense challenges remain for 

gene-expression analysis where data comprise information about tens of 

thousands of genes(Li, Li and Yin, 2016). As described in Section 2.4.2, this is 

often referred to as the ‘curse of dimensionality’. Moreover, high-dimensional 

data frequently includes numerous redundant and irrelevant genes. A relevant 

gene may be strongly correlated to another gene so in the presence of correlated 

gene it became redundant. Both experimental evidence and theoretical analysis 

show that data on redundant and irrelevant genes clearly affect the accuracy and 

speed of learning algorithms and thus it is advised that this data should be 

removed (Saeys et al., 2007; Anaissi and Kennedy, 2011; Bolón-Canedo, 

Sánchez-Maroño and Alonso-Betanzos, 2012; Hasnat, 2016). Feature selection 

techniques can be categorised as either individual evaluation methods or subset 

evaluation methods (Yu and Liu, 2004). The evaluation considers distinct 

features by assigning to them weights according to their degree of relevance. 

This is also known as feature ranking. Techniques of subset evaluation look for 

the smallest subset of genes that fulfil some measure of importance and are able 

to eliminate redundant genes as well as irrelevant ones. However, many of the 

current heuristic search approaches used for the subset evaluation. One 

particular method for these approaches for feature selection is the SFS. SFS 
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enables a significant amount of decrease in the search space. However, the 

search space is still hard to be processed in a reasonable time especially for 

microarray experiments where the number of genes is huge in amount. Thus, 

there is a need to consider a different framework for gene selection which 

prevents the gene redundancy and evaluates genes that are highly relevant (Yu 

and Liu, 2004).  

The three main approaches to feature selection are filter, wrapper, and 

embedded feature selection methods (Saeys et al., 2007). These methods are 

discussed in the following sections. 

2.4.6.1 Filter Methods 

Filter approaches are based on the general characteristics of training data and 

are used as a pre-processing step with the independence of the induction 

algorithm. The first merit of these methods is their low computational cost and 

good generalisation ability (Bolón-Canedo, Sánchez-Maroño and Alonso-

Betanzos, 2016). Also, their execution is faster than wrapper and embedded 

methods. However, they are prone to select large subsets (Saeys et al., 2007). 

Filter methods include the t-test (Chen et al., 2007), entropy (Nguyen et al., 

2015), Bhattacharyya (Haury, 2013), ROC (Nguyen et al., 2015), and Wilcoxon 

(Haury, 2013; Nguyen et al., 2015) tests. Fisher's ratio and Relief (Yang and 

Mao, 2010), and correlation-based feature selection (CFS) (Chuang et al., 2011) 

are used in the post-genome domain due to their simplicity and speed. 

These methods aim to achieve a possible subset that gives the highest score 

according to in limits of the technique itself. In these approaches, genes are often 

ranked in such a way that is appropriate for the research purpose, such as 

predictive success, correlation with class label, and so on. However, filter 

methods are independent of the estimation model selected and are not 

susceptible to any estimation model at this time. Filter methods are often 

counted as univariate methods and do not account for associations between 

features (Saeys et al., 2007).  

In the filter approach rather than the processing the search space, variables are 

selected based on the statics happen to be in the data. Filter methods are initially 
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preferred for microarray datasets as the feature selection method owing to the 

fact that they are highly efficient (Moosa et al., 2016). 

2.4.6.2 Wrapper Methods 

This type of methods processes the whole search space. The criteria function 

decides the variables to be kept or eliminated during the process in order to 

maximize relevancy of features. In a wrapper technique, one may use a loss 

function 𝑗 and any type of predictor 𝑔. The first proposed version of a wrapper 

method was sequential forward selection, which works by adding features to the 

subset one by one. The next version is called sequential backward elimination 

starts with the whole set of features and removes features successively. 

Several selection criteria can be used in these algorithms. The final subset size 

can also be selected by estimating prediction success with cross-validation. 

Wrappers can be considered to be feature-ranking techniques, which return 

nested subsets of variables of pre-defined sizes.  

Wrappers consist of a learning algorithm and run a prediction algorithm to 

identify the relative usefulness of subsets of variables. This communication with 

the classifier tends to yield higher accuracy than filters. 

Wrapper methods such as SNR, SVM-RFE (Niijima and Kuhara, 2006; Luo et 

al., 2011), simulated annealing (Lee, Jung and Shatkay, 2010) and genetic 

algorithms (Chuang et al., 2011) are methods that depend on the classifier 

selected. These methods use the success of the chosen classifier as an evaluation 

constraint in determining the most essential features. Wrapper methods can 

conduct forward or backward selection. In forward selection, each element is 

tested individually while the subset is empty to start with. In a forward selection 

method, new features are added to the subset according to the objective at each 

step, and the number of elements in the cluster thus increases. 

On the other hand, in a sequential backward selection method, a feature is 

removed in each step and the number of elements is thus reduced. In both cases, 

the stopping criterion may be an initial k-feature, or selection may continue until 

there is no additional reduction in error (Alpaydin, 2010). A significant 

disadvantage of such methods is the high computational cost incurred due to the 

need for classifier training and evaluation for each feature subset. When a high-
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dimensional space data analysis is required, the filter approach appears to be the 

best alternative in terms of reducing computational cost (Uncu et al., 2007). 

Embedded approaches are the third type of technique used for in feature 

selection, where filter and wrapper methods are combined. Correlation-based 

feature selection and Taguchi-genetic algorithm methods (Chuang et al., 2011) 

or correlation coefficients and K-nearest neighbours (kNN) (Uncu et al., 2007) 

are examples. 

A good example that can be suggested to be used as a wrapper method is the 

sequential forward selection method. Sequential forward selection (SFS) starts 

from an empty subset and adds features sequentially without any backward step 

until no more improvement can be achieved (Whitney, 1971) or when a stopping 

criterion is reached  (Pohjalainen, Räsänen and Kadioglu, 2015). This approach 

is well known and widely used in practice. Many similar methods have been 

proposed. For instance, sequential floating forward selection (SFFS) is 

performed in backward steps while the objective function increases (Pudil, 

Novovicova and Kittler, 1994) , random subset feature selection (RSFS) 

randomly adds features from subgroups to a chosen subset (Ho, 1998). SFFS 

provides a greedier and more flexible search of the dataset, and so checks more 

subsets. However, Reunanen (Reunanen, 2003) reported that the SFFS 

algorithm is computationally intensive and more prone to overfitting than SFS. 

It has been found in a recent comparative study that SFFS results in sizeable 

search space but fails to determine to a robust feature subset, performing worse 

than SFS (Pohjalainen, Räsänen and Kadioglu, 2015). RSFS can reduce the 

local optima problem and provide more diversity. Though, it relies on random 

values so it may over-fit to noisy data and may give different subsets every time. 

Furthermore, Saeys et al. (Saeys et al., 2007) cite the use of simulated annealing, 

probabilistic hill-climbing and genetic algorithms to overcome the local optima 

issue based on randomised search. These optimisation techniques make the 

algorithms less prone to local optima and take into account feature 

dependencies. On the other hand, randomised wrapper solutions contain similar 

disadvantages, being more computationally intensive and suffering from a 

higher risk of overfitting than deterministic algorithms. SFS is selected as the 

representative wrapper method due to its wide usage and simplicity. 
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Sequential forward selection is straightforward, and it stops searching when the 

highest value of an objective function is reached. However, this could be due to 

local optima in the dataset, but the SFS cannot continue to explore further (Uncu 

et al., 2007).  

For SFS, the objective function 𝐻(𝑆, 𝐷, 𝐶) = 𝑐 is used to find the best possible 

subset 𝑆 of features from the whole dataset, where 𝐷 denotes the dataset used, 

𝐶 denotes the classification model, c is the criterion function indicating the 

overall classification performance. SFS starts from an empty dataset, which is 

sequentially updated by including in each iteration the feature 𝑔, which results 

in the maximal score 𝐻(𝑆, 𝐷, 𝐶). Therefore, the feature set of size = 𝑓 is given 

by (Pohjalainen, Räsänen and Kadioglu, 2015) 

𝑆 = 𝑆𝑓−1 ∪ 𝑎𝑟𝑔𝑚𝑎𝑥 𝐻(𝑆𝑓−1 ∪ 𝑔, 𝐷, 𝐶)   Equation 2-1 

where g is the feature in the feature set, f. 

2.4.6.3 Embedded Methods 

This kind of method performs feature selection during the training stage and the 

method chosen is usually specific to a defined learning machine (Bonilla-Huerta 

et al., 2016). Consequently, the search for an feature subset is integrated into 

classifier structure(Li, Meng and Ni, 2008). These methods can identify 

dependencies at lower computational cost than wrappers. However, they are not 

suitable for generalisation (Haury, Gestraud and Vert, 2011)s, and commonly 

they are not preferred in the bioinformatics domain, and therefore are not used 

in the proposed framework. 

2.5 Pareto Optimal (PO) 

Given comparable empirical error, it can be said simpler models are more likely 

to generalise as compared to models that are relatively complex. Inspired from 

the principle of Ockham's razor, models would be better when designed more 

straightforward with less number of features (Alpaydin, 2010). 

In the real world, problems can involve various conflicting objectives. Thus, the 

search for solutions to real-life issues can yield multiple options. These options 

emerge when various criteria are considered at once. Common gene selection 

objectives are listed as follows (Sabzevari and Abdullah, 2011): 
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• enhancing the prediction performance of classification models; 

• organising less complicated models in terms of the computational 

resources required and, as a result, providing quicker and more 

cost-effective modelling; and where 

• the purpose is a better understanding of underlying gene-

expression data gained by eliminating irrelevant genes and 

building a more comprehensive dataset. 

PO has been applied to various problems such as public transportation (Prakash 

et al., 2008), sorting/scheduling (Kacem, Hammadi and Borne, 2002; 

Tavakkoli-Moghaddam, Azarkish and Sadeghnejad-Barkousaraie, 2011) and 

vehicle routing (Jie and Gao, 2010). In recent decades, the PO approach has 

been applied to biological features such as genes, biomarkers, and subset 

selection, and has been successful in selecting the best subclasses from 

evaluations of the classification performance of many gene subclasses (Fleury 

et al., 2002; Deb and Raji Reddy, 2003; Chen et al., 2007; Soto et al., 2009; 

Ting, Lin and Huang, 2010; Sabzevari and Abdullah, 2011). One of the earlier 

studies used three objective functions of mean slope, slope deviation and valid 

trajectories to filter genes (Fleury et al., 2002). In another study, two- and three-

objective feature selection was performed, taking into account univariate 

grading constraints such as fold-change, p-value, and selection frequency (Chen 

et al., 2007). However, the characteristic feature of these studies is that the genes 

selected were not ranked according to their importance. The Ranking is one of 

the critical outputs of biomarker selection. 

Local learners that use different subsets of data have been created for feature 

selection to avoid dependency on the diversity of dataset. PO approach is a 

multi-criteria decision-making method that can conduct feature selection by 

taking into account the rating values produced by local learners.  The vectors 

created using multiple training sets are used as objective values in the present 

study. 

Feature selection depends on the diversity of the data set, and the difference of 

the data set variations affects the sorting of the features. Because ranking 

methods sort them before selecting features, they choose a subset according to 
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their scores. Besides, ranking methods as local learners, use altered samples of 

subgroups, they create a different order of importance for features. 

Multi-criteria decision methods choose the best solution or most dominant 

solution sets between the conflicting objectives of real-life problems (Zitzler 

and Thiele, 1999). Three main multi-objective decision procedures can be found 

in the literature (Sabzevari and Abdullah, 2011) : aggregation-based strategy, 

PO-based and non PO-based strategies such as lexicographical methods, and 

PO-based approaches. Aggregation-based strategy is the widely used approach 

from three of them for multi-criteria oriented models. This consists of 

transforming multiple objectives into a single purpose by converting them into 

a complex scalar function. Thus, the multi-criteria characteristics of the target 

are abolished. The approach is straightforward and remarkably easy to use. 

However, it has quite prominent weaknesses, such as predetermining the trade-

off between objectives without relying on data content. This independence of 

target and trade-off leads to the need for intervention according to the intuition 

of the user, the combining of different units of measurements in one equation 

and, more importantly, the mixing of incommensurable criteria (Sabzevari and 

Abdullah, 2011). These drawbacks do not exist when Pareto-based approaches 

are used. 

However, the lexicographical approach can be used to classify different non-

comparable objectives utilising ad-hoc parameters determined by an 

aggregation-based method, it is less desirable as it providing only a single 

solution to the decision-maker (Sabzevari and Abdullah, 2011)  

On the other hand, each objective vector has a set of all elements, and accepts 

as equivalent value before comparison. The user exerts no influence in 

predetermining any trade-off or assigning priority to objectives in the PO. The 

decision-maker receives information on all statistically essential features when 

a Pareto optimal solution is chosen. The PO gives a meaningful set of possible 

features which can be analysed further by experts (Zitzler and Thiele, 1999; 

Sabzevari and Abdullah, 2011). 

Sabzevari and Abdullah (2011) narrowed down multi-objective feature 

selection methods to those that are proposed for gene expression datasets. There 
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are three different approaches (Aggregation, Lexicographical and Pareto) that 

can meet multi-objective perspective. Of these, only PO retains solutions as 

multi-objective outcomes. 

In bioinformatics, the expected benefit of discovering disease-related genes is 

to provide an advantage to molecular biologists in prioritising small numbers of 

meaningful genes from the thousands of genes in datasets. PO retains all 

objective-associated features and eliminates all redundant and irrelevant genes 

without user interaction. This is came from main idea from PO, which is “when 

no one can be made better off without making someone else worse off” 

(Pardalos and Du, 2008). Gene-expression data contains vital information, 

which can be gained by various methods, and there may be differences in each 

sample. Therefore, a molecular biologist should take the final decision 

concerning each potential disease-related gene. Ultimately, PO retains all 

potential disease-related genes, which is a more suitable objective than only 

providing a minimum subset. If PO discovers even one gene in one of the local 

training sets, it may help in further studies related to the diagnosis of diseases. 

2.6 Conclusion 

The computational models constructed on gene expression datasets often have 

a large number of genes and a smaller number of samples. As the models 

encounter difficulties in processing high dimensionality of the microarray data, 

feature selection methods were widely used to overcome such difficulties. 

However, selected genes may differ from one feature selection method to 

another even though the gene expression dataset remains the same. Therefore, 

depending on one feature selection method solely for a computational model 

may miss a feature having a more discrimination affect. Moreover, as each 

feature selection method may have some pros and cons in their own merit, it 

may also be hard to choose the appropriate feature selection approach for the 

computation model. Thus, it is considered that one possible approach that could 

be used to overcome such limitations is the use of ensemble methods. As 

compared to use of one method only, ensemble approach might provide more 

opportunities for finding better set of variables. The multi-objective decision-

making method, Pareto Optimality, is adopted as the basis of the proposed gene 

selection framework PO and is extensively analysed for this purpose. Besides, 
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classifier performance in real-world gene expression datasets often suffers from 

issues such as the class imbalance between disease and control samples and also 

missing gene expression values. However, the literature appears to suggest there 

is a lack of studies addressing these aspects for gene-expression classifier 

models. Therefore, class imbalance and missing value problems in microarray 

experiments are also investigated in this research.  
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3 MATERIALS AND METHODS 

3.1 Introduction 

In this chapter, the first type of datasets applied is discussed. Including a 

description of how it was produced and how it can be useful for this research. 

Then, ranking methods are discussed followed by a brief description of different 

imbalanced datasets and imputation methods used for handling missing values. 

The datasets applied are explained and the main method of Pareto Optimality 

method is examined in detail. 

3.2 Microarray Data Analysis 

Microarrays can be grouped as array data in biological datasets. The sequences 

comprise numeric values. Numerical expressions of micro sequences are 

express the activation level of genes. 

Microarray datasets have existed for two decades and they became challenging 

for machine-learning methods. It shows the generic characteristic of big data 

even with small sample sizes that present significant complexity (e.g., class 

overlaps, imbalanced classes, dataset shift). Establishing a predictive model 

with usually fewer than 100 samples and thousands of features makes the 

learning process more laborious. In the literature, several studies show us the 

most gene-expression values in a DNA microarray experiment are irrelevant in 

the classification of samples and only a fraction of them are necessary. When a 

classifier faces numerous number of irrelevant features, its accuracy 

performance inevitably decreases (Veronica Bolon-Canedo et al., 2015). 

Likewise, instance-based learners such as 𝐾-NN with Euclidean distance 

metrics are strongly affected by redundant features. A higher number of 

irrelevant features exponentially increases the demand for training instances to 

produce a predetermined level of accuracy (Haixiang et al., 2016). Furthermore, 

the models used have to deal with imbalanced classes, samples extracted under 

different conditions in both training and test datasets, dataset shift or the 

presence of outliers (Veronica Bolon-Canedo et al., 2015). 

3.2.1 Gene-Expression Data 

Genes are sequences of DNA. They create RNA then creates protein and are 

active in all biological functions in the living cells. Each gene has different roles 
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in the functions of biological vitality. If a gene is particular of interest from a 

research point of view, such decisions can be made by looking at the number of 

proteins that are produced by that gene. This is the definition of gene expression. 

The frequency of conversion of DNA→RNA→Protein of a gene is called the 

expression level of that gene. An increase in the level of expression is 

interpreted as the activation of a gene, and a decrease as the suppression of that 

gene. 

The expression level of genes can vary from cell to cell, as well as from case to 

case. For instance, a gene expressed in one tissue of our body may differ from 

another tissue or may not be expressed at all. On the other hand, the same cell 

can be found different expression level in particular situations. For example, a 

gene that is usually under-expressed may be more highly expressed during cell 

division. The level of gene expression may vary according to environmental 

factors outside the body. For example, a gene expressed at an ordinary level in 

a plant may be expressed of less or more during the adaptation of the plant to 

the environment. 

Microarray technology is used to determine the level of expression of genes. 

Changes in the expression levels of thousands of genes at the same time can be 

detected with the application of microarray techniques. The ability to compare 

several genes at the same time has enabled this technique to be widely used for 

different purposes. 

Microarray experiments can be arranged for various purposes. For example, the 

levels of expression of genes belonging to organisms in two different groups, 

such as patient and control groups are compared. The biomarkers of a disease 

can be identified by looking at whether or not the genes that are being compared 

are related to the disease according to their success in distinguishing between 

patients and healthy people. This technique can also be used to identify altered 

genes in cancerous as opposed to healthy cells. The presence of genes involved 

in cancer formation can be identified by investigating the factors that regulate 

their expression. In a different use of gene expression, levels are taken at 

different times in the same cell to find genes that vary in appearance according 

to the interaction of the organism to the environmental environment. 
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Regardless of the purpose for which the research is conducted, only a small 

portion of the thousands of genes evaluated maybe related to the situation under 

investigation. Therefore, selecting the genes associated with the research 

problem is of great importance in terms of solving that problem. Also, if the 

microarray data are analysed using machine learning methods, the presence of 

irrelevant data will both complicate the analysis and decrease the success of the 

technique. This study aims to develop multi-purpose approaches to improve the 

feature selection process for machine learning methods, where datasets have a 

high number of features. Microarray datasets mostly have small sample sizes 

because of limited diseased and healthy people data. The methods proposed in 

the study were tested on microarray data, which inherently possesses a large 

number of features. 

Microarray technology and the generation of gene expression data involve many 

processes. The process of the formation of data is not considered in this thesis. 

The data used in this study is existing microstructure data ready for analysis. 

Each row of data used is in a matrix format, which represents a sample of each 

gene. 

The methods proposed in this project to be used on gene expression datasets 

aims for the correctly classify samples with a smaller number of features. We 

mostly study with the two-class datasets (e.g., normal and disease) as compared 

to multi-class datasets. 

3.2.2 Imbalanced Data 

In real life, imbalanced data exists more frequently than balanced data (Lee and 

Zhu, 2011), as found in many research domains and also in bioinformatics 

(Japkowicz and Stephen, 2002). Most observed datasets have two general 

characteristics; the first is that they have two classes, and the other one is that 

class distribution is skewed. These problems are called binary and imbalanced 

classification problems, respectively. Commonly, the minority class is more 

interesting to research. However, common classification techniques biased 

towards the majority class on imbalanced datasets. As a consequence, the 

accuracy performance of the classifier can be very poor. Just because the 

classification methods are utilised to maximise the performance accuracy across 
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the entire dataset without considering contribution of minority and majority 

classes to training  (Kim, Chung and Lee, 2017). As minority class has a low 

impact on outcome, balancing its impact on the outcome should be addressed 

properly in order to get a better classifier performance. Balancing the dataset 

classes require analysing the characteristics related to samples and features 

concerning majority and minority of the cases. Moreover, the imbalance ratio 

(IR) should also be adequately examined. 

Resampling approach (Yang and Mao, 2010) is one of the main strategies 

suggested in the literature for analysing the imbalanced datasets. Additionally, 

a numerical arrangement in minority and majority class samples were 

performed to make the dataset balanced. Feature selection methods can also 

mitigate the circumstances related to class imbalance problem. The properly 

selection of subset of variables from a whole set of variables impacts the 

efficiency of the classifier performance. 

3.2.3 Imputation Methods for Data with Missing Values  

Numerous studies have been carried out on datasets with missing values 

concerning to apply imputations on them. In recent years, research studies have 

crafted improvements on imputation methods.  

As in many other types of experimental data, microarray experiments to create 

gene expression data often include missing values (MVs) (Troyanskaya et al., 

2001; Oba et al., 2003; Celton et al., 2012; Chai et al., 2014). Among the 

reasons why experiments produce such MVs include faults that happen during 

fabrication or experiments, or microarray image related problems (e.g., image 

corruption, insufficient resolution). 

A basic strategy for approaching the problem of missing values is that simply 

eliminating samples having them. However, this strategy does not work for 

microarray data (Souto, Jaskowiak and Costa, 2015). When the samples 

containing MVs are eliminated from the gene expression dataset, the results of 

the classification can be biased to one of the classes. This approach can only 

work for gene expression profiles that contain very few MVs (< 5%). 

Nonetheless, when a high percentage (>95%) (Haixiang et al., 2017) of the 
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values of one feature are missing then that variable can considered to be 

removed.  

Generally, statistical metrics were effectively used in algorithms to impute 

missing values. A widely used statistics approach in this matter is simply 

imputing the missing values with zeros or feature mean (Alizadeh et al., 2000). 

One problem with the statistics approaches is that they do not consider 

correlation between variables (Troyanskaya et al., 2001). However, 

interestingly, imputation with statistical methods such as getting feature mean 

or feature median simply reported to be almost equally well in the classifier 

performance as compared to complicated imputation methods presented in the 

literature (Souto, Jaskowiak and Costa, 2015). 

3.3 Experimental Datasets 

3.3.1 Colon Cancer 

Colon cancer is a disease when diagnosed in early-stage survival rate is very 

high. The colon cancer dataset consists of 62 samples and 6500 genes for each 

sample (Alon, 1999). The dataset consists of colon tissue samples marked as 

positive (disease) and negative (healthy) groups. One class is the positively 

marked group, 40 tumour tissues, and the remaining class is the negatively 

marked group, 22 normal tissues. 

3.3.2 DLBCL (Lymphoma) 

This dataset consists of 5469 sets of gene expression values for 77 patients 

(Shipp et al., 2002). These patients are distinguished from each other based on 

their pre-treatment biopsies. One malignancy group include 58 samples for B-

cell lymphoma (DLBCLs), and the remaining malignancy group include 19 

samples (control group) for follicular lymphoma (FLs). 

3.3.3 DUKE Breast Cancer 

This dataset contains 7129 genes for 44 samples. They are classified according 

to oestrogen receptor ER+ (23) and ER-(21) (West et al., 2001). 

3.3.4 CNS (Central Nervous System) Embryonal Tumour 

Central Nervous System (CNS) Embryonal Tumour is a disease with a high 

mortality rate. CNS Embryonal Tumour dataset that we study consists of sixty 
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patients, and 7129 genes for each sample (Pomeroy et al., 2002).  The dataset 

separated into two main groups, alive and not alive. One class is the survivors, 

twenty-one patients, whom were alive at the end of the treatment. The remaining 

class, thirty-nine patients, are those that were died during the treatment. 

3.3.5 Ovarian Cancer 

Ovarian cancer is a woman disease where early diagnosis increases the survival 

rate. The ovarian cancer dataset consists of 253 samples, 6000 genes per sample 

(Petricoin et al., 2002).  The dataset separated into two main groups, cancer and 

not cancer. One class is the normal group, 91 participants, whom were the 

control samples. The remaining class, 162 participants, are those that were 

diagnosed with the ovarian cancer disease. 

3.3.6 DLBCL (Blood) Cancer 

Diffuse Large C B-cell Lymphoma (DLBCL) is a blood cancer disease caused 

from abnormal B-cell growth with a modest survival rate. The DLBCL dataset 

consists of 47 samples and 4026 genes (Alizadeh et al., 2000) The dataset 

separated into two different DLBCL types, "germinal centre B-like" and 

"activated B-like". One class presents the gene expression characteristics of the 

germinal centre B-like DLBCL group, 24 patients, and the remaining class 

presents the gene expression characteristics of activated B-like DLBCL group, 

23 patients. 

3.3.7 Brain Cancer Data 

The brain cancer dataset consists of 50 samples, 6706 genes per sample (Bredel 

et al., 2005). The dataset classified into three glioma subtypes. First glioma 

subtype is the pure glioblastomas, thirty-one samples. Second glioma subtype 

is the oligodendroglial morphology, fourteen samples. The remaining glioma 

subtype is the grade 1-3 astrocytomas, five samples. 

3.3.8 Lung Cancer Data 

Lung cancer is a disease with a very low survival rate. The lung cancer dataset 

consists of sixty-six samples, filtered 3312 (12600 original genes number) genes 

per sample (Garber et al., 2001). The dataset morphologically classified into 

four groups. First group is the squamous cell carcinomas, seventeen samples. 

Second group is the large cell lung cancers, five samples. Third group is the 
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small cell lung cancers, four samples. The remaining group is the 

adenocarcinoma, forty samples. 

3.3.9 Prostate Cancer Data 

 Prostate cancer is a disease with high survival rates. The prostate cancer dataset 

consists of 112 samples and ~26,000 genes (Lapointe et al., 2004). The dataset 

has three classes. First class contains the control group, forty-one healthy 

samples. Second class is the disease group, sixty-two prostate cancer samples. 

The remaining class is another disease group, nine lymph node metastases 

samples. 

3.3.10 Endometrium 

Endometrial cancer is a women disease with high survival rates. The 

endometrium cancer dataset consists of forty-two samples and X genes per 

sample (Risinger et al., 2003). The dataset classified into four groups. First 

group is serous papillary, thirteen samples. Second group is the clear cell, three 

samples. Third group is endometrioid cancers, nineteen samples. The remaining 

group is the seven age-matched normal endometria. 

3.4 Data Validation 

The datasets are first separated into training and test parts in order to avoid 

mixing samples. This separation is justified in the literature (Bolón-canedo et 

al., 2014). Data split ratios selected from the literature are the widely used 80% 

training and 20% test (Ding and Wilkins, 2006), and to compare learning levels 

60% training and 40% test (Luo et al., 2011).  This process is repeated 25 times, 

so that 25 dataset variations are gained. Then, 𝐾-fold cross-validation is utilised 

for training which could be 5-fold, 10-fold and Leave-one-out (LOO).  This high 

amount of variety and three cross-validations creates multiple altered conditions 

employed in the proposed multi-criteria decision framework to scrutinise 

stability given such conditions. 

3.5 𝑲-Fold Cross-Validation 

𝐾-fold Cross validation is a method that splits the dataset into 𝑘 different 

subdivisions where one subdivision used as the testing set whereas the 

remaining 𝐾 − 1  subdivisions used for training the computational model. 

Blagus (2015) emphasised that it is essential to apply the correct cross-
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validation (CV) in feature selection and classification. If the data is not split into 

training and test proportions to validate feature selection, CV can often be used 

as a measure of performance (Webb et al., 2010)., training should be adequately 

separated from the test on the feature selection process.  CV should be used on 

the training data. Then, the test data should only be used for classification 

purposes.  

This research study used the cross validation as to resample the datasets to 

evaluate the classifier as well as the feature selection performance. The 5-fold, 

10-fold and leave-one-out cross-validation methods are applied to test how 

filtering methods and a wrapper method perform in different training folding 

circumstances.  

3.6 Classification 

The 𝑘-nearest neighbour (𝑘-NN) is one of the most widely used non-parametric 

classifiers (Chuang et al., 2011). It is not only conceptually straightforward and 

easy to implement but also computationally efficient. Noise in data volumes 

does not seriously affect its performance (Cover and Hart, 1967). It was deemed 

a suitable classifier for use in this study. 

3.6.1 The 𝒌-nearest neighbour (𝒌-NN)  

𝑘-NN is a distance-based classifier in which Euclidean distance is commonly 

used as the distance metric, and there is a potential risk of tied results when even 

numbers are used. If this happens, tied results are solved using a random 

procedure. Thus, the use of even number was avoided. Odd numbers of 

neighbourhoods were applied to avoid any tied results from the classifier and 

the 𝐾 values are selected ranged from 1 to 11. Applied distance metric is 

Euclidian metrics. 

3.6.2 Support Vector Machine (SVM) 

Support Vector Machines is a learning machines-based classifier, emerged from 

statistical learning theory (Vapnik, 1999). SVM, basically separates samples 

into two groups aiming to maximize the margin between them (Figure 3-1). 

Margin based classification for finding the optimal separation hyperplane 

(OSH) is defined as follows. 
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Minimise:  

1

2
∥ 𝑤 ∥ +𝐶 ∑ 𝜉𝑖

𝑛

𝑖

 

Subject to:  

(𝑤𝑡𝑥𝑖 + 𝑏)𝑦𝑖 ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑛 

 

minimize:  1

2
∥ 𝑤 ∥ +𝐶 ∑ 𝜉𝑖

𝑛

𝑖

 
(1) 

subject to:  (𝑤𝑡𝑥𝑖 + 𝑏)𝑦𝑖 ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑛 (2) 

where: x is the set of features,  

 n is the length of samples,  

 y is the class,  

 w is the weights of the hyperplane,  

 b is the bias of the hyperplane,  

 C is for the regularization,  

 𝜉𝑖 is the slack variable which is a value indicating   

deviation of samples from the hyperplane.  

 

 

Figure 3-1 Illustrative example of SVM classification (Liang et al., 2016).  
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3.7 Ranking Methods 

𝑡-test, Entropy, Bhattacharya, ROC, Wilcoxon tests will be used as the ranking 

methods for producing feature subsets. The definitions of these methods are 

summarised below. 

3.7.1 Two sample 𝑻-test 

The 𝑡-test is clearly the most popular test, and it is a parametric test. It is applied 

to determine if the average difference between data for two independent 

variables is significant(Fox and Dimmic, 2006). 

The 𝑡-test is expressed by; 

𝑡 =  (𝜇1 − 𝜇2)/√
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2
    Equation 3-1 

Using a 𝑡-statistic can be challenging because genes having a very low variance 

can skew variance estimates (Tusher, Tibshirani and Chu, 2001). Another 

disadvantage is its applications on a small number of samples such as the 

microarray datasets. In such datasets it is reported that t-test may fail to select 

optimal set of genes (Murie et al., 2009). Therefore, the power of a 𝑡-test has 

been questioned along with the importance of variance modelling (Mary-Huard, 

Picard and Robin, 2006). A variable in the dataset might have identical means 

but may differ in variance among classes. In such a case, t-test can miss that 

variable even though the variance might be significant for the analysis of the 

dataset (Baldi and Brunak, 2001).  These issues have led to the proposal of 

various alternatives with the aim of better accuracy in variance estimation.  

3.7.2 Entropy 

In its non-parametric form, relative entropy, also known as Kullback-Liebler 

distance is defined as follows: 

𝑒 =
1

2
[(

𝜎1
2

𝜎2
2 +

𝜎2
2

𝜎1
2 − 2) + (

1

𝜎1
2 +

1

𝜎2
2) (𝜇1 − 𝜇2)2]  Equation 3-2 

After the statistical calculation is completed for every gene, genes with the 

highest to lowest entropy values are listed to serve as inputs to PO. 
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3.7.3 Bhattacharyya 

This is similar to Kullback-Leibler distance but considers a different distance 

metric between two distributions.  

The Bhattacharyya coefficient (Guorong, Peiqi and Minhui, 1996) is calculated 

as: 

𝑟𝑘 = −𝑙𝑛 (∫ √𝑁(𝑊𝑘
+)𝑁(𝑊𝑘

−)𝑑𝑥)   Equation 3-3 

Under the Gaussian assumption, this reduces to: 

𝑟𝑘 =
1

8

(𝑛𝑘
+ − 𝑛𝑘

−)2

𝜎̂𝑘
2 +

1

2
ln (

𝜎̂𝑘
2

√𝜎̂𝑘
+𝜎̂𝑘

−
) 

where 𝜎̂𝑘
2 =

(𝜎̂𝑘
+)

2
+(𝜎̂𝑘

−)2

2
  

The output ranking list becomes the input for Pareto optimality. 

3.7.4 Receiver Operating Characteristic (ROC) Analysis 

The receiver operating characteristic (ROC) curve helps to interpret binary 

classification tasks with the proportion of true positives to false positives, while 

the difference in the threshold value varies (Metz, 1978; Fawcett, 2006). The 

true positive (sensitivity) and the false positive (1-specificity) rates are located 

on the ROC curve as points for different threshold values on the vertical axis 

and the horizontal axis, respectively (Bradley, 1997).  

Table 3.1 Confusion Matrix 

  Predicted 

  Negative Positive 

Actual 
Negative True Negative False Positive 

Positive False Negative True Positive 

 

At the end of a binary classification task, four possible outcomes are occurred 

using a confusion matrix: true positive (TP), false positive (FP), true negative 

(TN), false negative (FN). Their formulas are as follows. 

TP = Correctly classified positive samples 

TN = Correctly classified negative samples 
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FP = Incorrectly classified positive samples 

FN = Incorrectly classified negative samples 

The outcomes are required information to calculate true positive rate (TPR) and 

false positive rate (FPR). Their formulas are as follows (Fawcett, 2006). 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    Equation 3-4 

and 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
    Equation 3-5 

Then TPR and FPR are used to plot the ROC curve and calculate the AUC. The 

ROC curve can be used to rank feature subsets for the Pareto optimal models. 

The models are tested based on the area under the curve (AUC) aiming to find 

the gene subsets having the highest AUCs. The figure illustrates how the ROC 

curve is plotted. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2 An illustrative example of Area Under Curve  
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3.7.5 Wilcoxon 

Mann-Whitney U-Test (or Wilcoxon Rank-Sum Test) differs from the statistical 

tests being non-parametrically testing equality of two similarly distributed 

populations. Without fulfilling the parametric test assumptions, the duration of 

the significance test of the difference between the two means can lead to 

reaching the conclusion (Nguyen et al., 2015). The Wilcoxon rank-sum test is 

used as alternative statistical filter test. This test differs from the above-mention 

methods being a non-parametric and hence no assumption is made about the 

distribution of the date. 

Using two formulas, two U-statistics candidates are calculated. From these, 𝑈1 

The number of observations and total sequence number for Sampling 1; If 𝑈2 

uses the number of observations and the total number of sequence numbers for 

Sampling 2. The formulas are: 

𝑈1 = 𝑅1 −
𝑛1(𝑛1+1)

2
  Equation 3-6 

𝑈2 = 𝑅2 −
𝑛2(𝑛2+1)

2
  Equation 3-7 

Where 𝑛1 is the sample size for Sampling 1; 𝑅1 Sum of sequence numbers for 

Sampling 1; 𝑛2 Sample size for sampling 2; 𝑅2 is the sum of the sequence 

numbers for Sampling 2. For the control, the sum is taken for 𝑈1and 𝑈2. This 

value should be equal to the product of the two sample volume numbers; so 

𝑈1 + 𝑈2 = 𝑛1. 𝑛2  Equation 3-8 

The U-statistic, which is less than the 𝑈1 and 𝑈2 values found, is used in the 

significance table. If the sample volumes are large, the following standard 

normal distribution approach is used to find the level of significance: 

𝑧 = (𝑈 − 𝑚𝑈)/𝜎𝑈  Equation 3-9 

Where 𝑧 is the 𝑧-score used in standard normal distribution tables; If 𝑚𝑈 and 

𝜎𝑈  𝑈 if the null hypothesis is true, then the mean and standard deviation for U 

is They are found by the following formulas: 

𝑚𝑈 = 𝑛1. 𝑛2/2    Equation 3-10 

𝜎𝑈=√
𝑛1.𝑛2(𝑛1+𝑛2+1)

12
  Equation 3-11 
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3.8 Pareto Optimality (PO) Method 

Multi-objective optimisation can involve the maximisation or minimisation of 

a vector function 𝑔. The target vector function contains a group of 𝑚 parameters 

(decision variable) and a group of 𝑛 objectives. PO transforms a scalar objective 

into a vector and can be expressed as follows: 

minimise or maximise the function: 

 𝑧 = (𝑔1(𝑡), 𝑔2(𝑡), . . . , 𝑔𝑛(𝑡))   Equation 3-12 

subject to: 

𝑡=(𝑡1,𝑡2 ,...,𝑡𝑚,)∈𝑇

𝑧=(𝑧1,𝑧2,...,𝑧𝑛,)∈𝑍
      Equation 3-13 

where 𝑚 and 𝑛 are the numbers of genes(parameters) and responses(objectives) 

respectively, and 𝑡 = (𝑡1, … , 𝑡𝑚) and 𝑧 = 𝑔(𝑡) are determined as the decision 

and objective vectors, where 𝑇 and 𝑍 represent the parameter and the objective 

spaces (Zitzler and Thiele, 1999). The solution set includes all decision vectors, 

which have a minimum of one optimum objective value. The collective set of 

non-dominated solutions are known as PO solutions. A non-dominated solution 

is where the values of target vector functions came to their limits and no more 

optimization could be possible based on the given parameters.  

If the target vector function is to maximise the objective under (3), 𝛽 dominates 

𝛾, or in other words 𝛾 is dominated by 𝛽: 

∀𝑖  ∈ {1, 2, . . . , 𝑥} 𝑔𝑖(𝛽) ≥ 𝑔𝑖(𝛾)  ∧  ∃𝑘∈ {1, 2, … , 𝑥}  𝑔𝑘(𝛽) > 𝑔𝑘(𝛾).    

Equation 3-14 

Figure 3-3 shows an illustration of PO solutions where there are two cases. If a 

solution has maximum values for all objectives, it is the optimum and ideal 

solution. As seen in Figure 3-3.(a), the optimal solution covers all other 

solutions for all objectives. However, if a solution has a maximum value for at 

least one objective and up to the most n-1 objectives, it is one alternative 

solution. Likewise, a multi-criteria selection case with two objectives that are 

maximised and five solutions is represented in Figure 3-3(b). Four solutions (A, 

B, C, and E) are not dominated by any other solution, so the non-dominated 

solutions are Pareto-optimal solutions. However, solution D is dominated by 
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solution E in both objectives, and so it is not a Pareto-optimal solution. It can 

be expressed in two ways, E dominates D, or D is dominated by E. If solution 

E does not exist, then solution D is a Pareto-optimal solution.   

 

Figure 3-3. Demonstration of a maximisation case with two objectives. 

If multiple methods are performed and all of them are combined, this creates a 

hypersphere of features for PO. If one method is performed and combined with 

different samples of a same dataset, it creates a hyperplane of features for PO. 

Multiple methods are creating as possible as major class divided into the equal 

size with minor class, trade-off/ boundary sensitivity will become healthier. 

 

Four objectives example for PO 

To simplify the PO, there is an example with 4 objectives and 6 samples.  For 

the PO example specifically, features in a dataset are arranged in an optimal 

form, without affected from further parameter changes. 

There two aims we want to from an optimal outcome: 

1. One outcome maximises total surplus 

2. One outcome is preferred by a feature over all other sets of feasible 

subsets 

Pareto optimal response is achieved when there is no room providing a better 

feature set that is adding or removing a feature will produce negative outcomes 

from the reached point. 
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Table 3.2 Simplified 4 Objectives and 6 Samples Dataset Example for PO 

Features 𝑃1 𝑃2 𝑃3 𝑃4  Total 

Surplus 

  

Feature A 30 55 30 50 → 165 →  Not 𝑃𝑂 

Feature B 25 30 65 60 → 180 → 𝑃𝑂 

Feature C 30 55 55 90 → 230 → 𝑃𝑂 

Feature D 15 20 75 90 → 200 → 𝑃𝑂 

Feature E 10 15 65 55 → 145 →  Not 𝑃𝑂 

Feature F 10 35 35 95 → 185 → 𝑃𝑂 

 

𝑃𝑛 named our samples as Person (Sample) and each row represents of 

comparison vector. As seen on Table 3.2 presents for each sample between 

𝑃1to𝑃4 for each of available features A, B, C, D, E and F.  

Basically, if these 4 individuals’ feature expression values compare, they can be 

identified as healthy or disease sample according to expression values. Our 

objective is here according to higher activation number find out Pareto Optimal 

solution. 

Pareto optimal feature subset is achieved after a variety of candidate feature 

subsets are tested and when no further improvement can be possible. 

Explanations written in two ways because of multi dimension makes harder to 

understand PO process, first according to mathematical calculations and 

secondly distinguishing value and meaning according to PO. 

Mathematically; 

First, Feature A→B (A to B), A→C, A→D, A→E, A→F expression values 

compares one by one. Feature B could not dominated A but Feature C dominates 

feature A in all dimensions so A is dominated and eliminated. Also, D,E,F stays 

and continue to compare feature vectors. 

Continue with B,C,D,E,F. 
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Second, Feature B→C, B→D, B→E, B→F expression values compares one by 

one. B dominates feature E in all values so it is eliminated. Rest of the features 

could not dominated B so B stays in PO subset. 

Continue with B,C,D,F 

Third, C→D, C→F expression values compares one by one. They could not 

dominate each other. Thus, there is no elimination.  

Lastly, D→F compared. They could not dominate each other. Thus, there is no 

elimination. 

Final PO subset is feature B, C, D, F. 

 

In other words, PO feature selection steps explained with numeric and logical 

information as below. 

• Feature B is in PO subset; B→C (B to C), For the  𝑃3 sample goes from 

65→55 (B dominated C for Sample 𝑃3). 

• C is in PO subset 30 and 55 are max features for sample 𝑃1 and 𝑃2 

respectively (C is dominated (distinguishing) feature to identify 𝑃1 and 

𝑃2). 

• D is in PO subset from D→C, Sample  𝑃3 goes from 75→55 (D is 

dominated C for sample 𝑃3 it is useful to distinguish the sample). 

• From feature A→C expression values for all samples equivalent or 

higher so A is not in the PO subset 

• From feature E→D, all expression values higher so E is not a PO 

solution. D dominated E in all expression values. Thus, E is not useful 

to distinguish any sample. 

•  Until this step feature B, C, D become dominant genes. Until this step, 

there is no distinguishing feature for 𝑃4 yet. 

• From feature F→B or F→C or F→D, Feature F dominates rest of the 

subset 95 but not for other samples. Thus, F added to PO subset, but no 

other features removed from final subset. 

• Final PO subset is feature B, C, D, F. 
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3.9 Performance Evaluation 

To evaluate the classification performance of the proposed framework, the 

following formula will be used. 

Accuracy =
TP + TN

TP + TN + FP + FN
 

Sensitivity =
TP

TP + FN
 

Specifity =
TN

TN + FP
 

where TP is the correctly classified positive samples, TN is the correctly 

classified negative samples, FP is the incorrectly classified positive samples, 

and FN is the incorrectly classified negative samples.  

3.10 Conclusion 

This chapter presented an overview of the Pareto Optimal methodology that is 

utilised throughout this research. In this chapter also described the datasets, the 

ranking methods, and statistical validation and performance evaluation 

techniques that are employed in this research to evaluate the proposed 

framework performance. The effectiveness of the proposed framework tested 

on ten datasets and three data types. The next chapter investigates areas for 

improvement in current gene selection practices in the bioinformatics. 
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4 A PARETO OPTIMAL MULTI-OBJECTIVE 

FRAMEWORK FOR AGGREGATED 

DISCOVERY OF DISEASE-RELATED GENES  

4.1 Introduction 

One of the most significant challenges in bioinformatics is to identify the 

correlation between genes and diseases. Microarray data is particularly valuable 

as it contains a large amount of information about of genes. However, in 

general, only a small number of genes have a significant relation with certain 

diseases. During the last decade, a large amount of research has been performed 

in this area (Nguyen et al., 2015). The objective of microarray data classification 

is to create an efficient and practical framework that can differentiate between 

gene expression in samples so that they can be determined as healthy or 

diseased. (Chuang et al., 2011).  

4.2 The Problem of Gene Selection 

Various gene selection studies try to explain the occurrence of cancer in terms 

of a few genes present in microarray datasets, and their common objective is 

simply to maximize  accuracy (Saeys et al., 2007). However, efficiency should 

not be the only objective; the complexity of the method should also be taken 

into account. Furthermore, objectives should also include robustness against 

data variation in different datasets of new samples (Bolón-Canedo, Sánchez-

Maroño and Alonso-Betanzos, 2016) as well as achieving the most 

comprehensive biologically meaningful subsets (Sarac et al., 2015). 

Feature selection methods are the most common techniques used to identify 

essential genes from a large set of genes (Bolón-canedo et al., 2014). Filter and 

wrapper methods are the application models generally used for gene selection 

(Bolón-Canedo, Sánchez-Maroño and Alonso-Betanzos, 2016). Such feature 

selection methods have both strengths and weaknesses (Saeys et al., 2007), and  

no  technique is considered universally useful in all situations (Ang et al., 2016; 

Bolón-Canedo, Sánchez-Maroño and Alonso-Betanzos, 2016). 

Filter methods are considered to be one of the best options to reduce feature 

dimensionality and thereby alleviate the need for the computational resources 
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required (Bolón-Canedo, Sánchez-Maroño and Alonso-Betanzos, 2012). 

However, they have lower accuracy as compared to wrapper methods because 

they provide only general subsets (Saeys et al., 2007; Wang et al., 2013; Bolón-

canedo et al., 2014). Moreover, utilising these techniques can lead to the 

significant problem of over-fitting, as the genes identified during training may 

not necessarily fit well with the test data (Yang et al., 2015). 

Additionally, one of the most challenging topics when applying these methods 

is their robustness. Most recent filter techniques focus on information theory. 

An alternative approach is to use wrapper techniques, but due to their high 

computational cost and the risk of over-fitting, these are generally avoided 

(Bolón-canedo et al., 2014). Nonetheless, wrapper techniques provide the best 

possible subset for a particular type of model and allow the relationships 

between features to be evaluated. However, they are considered to introduce 

bias based on the selection of subsets and are computationally intensive with a 

high risk of overfitting (Jovic, Brkic and Bogunovic, 2015). Therefore, recent 

reviews have mentioned that there is a potential to improve accuracy and 

robustness through the use of ensemble technique which combine different 

methods (Saeys et al., 2007; Bolón-Canedo, Sánchez-Maroño and Alonso-

Betanzos, 2012, 2014). 

4.3 Ensemble Feature Selection Methods 

Ensemble feature selection methods use either different samples reflecting 

variations of the dataset, or various methods with the same dataset (functional 

diversity), or have a mixture of both (Bolón-Canedo, Sánchez-Maroño and 

Alonso-Betanzos, 2016). Data diversity may cause a shift in the dataset (Bolón-

canedo et al., 2014), which appears when the input and output pairs differ 

between training and test datasets. That means during the split of the data into 

training and test datasets, critical samples are that grouped in one-fold could 

characterize one class among the remaining classes. Thus, results from 

individual folds of the training set may not represent the data accurately enough 

for successful feature selection. Functional diversity provides many sets of 

results, and hence the aggregation of such multiple results does not preserve 

valuable information. As a result, there is a need to utilize both data diversity 
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and functional diversity so that more comprehensive and representative subsets 

can be identified.  

Ensemble methods are widely proposed for classification (Bolón-Canedo, 

Sánchez-Maroño and Alonso-Betanzos, 2014), and they tend to provide more 

robust results than  single versions of any one method (Seijo-Pardo et al., 2015). 

An advantage of the ensemble approach as compared to the feature selection is 

to eliminate the need for computational models to seek for a feature selection 

method fitting to their datasets. (Bolón-Canedo, Sánchez-Maroño and Alonso-

Betanzos, 2012). As a result, ensemble approaches have become widespread 

and are now commonly found in bioinformatics applications. 

Various aggregation techniques are described in the literature, such as majority 

voting, stacking and cascading, bagging and boosting (Alpaydin, 2010) to name 

only a few. The aggregation technique in an ensemble method is an essential 

part of the disease-related gene selection process. However, the literature 

appears to suggest that there is a lack of robust multi-criteria aggregation 

methods for gene selection (Bolón-Canedo and Alonso-Betanzos, 2019). 

Existing ensemble methods have a limited ability to make decisions during the 

selection of genes because they mostly rely on voting when aggregating the 

results of the method used. Voting aggregation may eliminate essential disease-

related genes and is limited in the ability to identify biologically valuable genes 

(Montague and Aslam, 2004; Wu et al., 2009). 

A small variation in the training data set can significantly alter gene selection 

and thus can significantly affect the stability of the system (Nguyen et al., 2015). 

For example, genes identified using feature selection from 10-fold cross-

validation of training data can significantly differ from those when using the 5-

fold cross-validation of the same training data. Luo et al. (2011) mentioned that 

previous studies revealed that the feature selection approaches chosen are more 

crucial than the classification methods used. This study focused on optimising 

the results of multiple methods applied to different size of training sets. 

Partitions are prepared similar to the study of Lue et al. We proposed the 

partitions as 40% / 60% and, 20% / 80% for test and training sets, respectively. 
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In this chapter, firstly a novel framework called Model-1 is proposed using PO 

for gene selection in order to solve the overfitting of the classifier and stability 

problems in feature selection. Then the proposed framework is used in two 

different set of partitions as mentioned above providing better results in each 

step. PO, which was originally used in engineering and economics, provides 

one of the best trade-off according to the objective function involved (Shoval et 

al., 2012). The aim of this study is, therefore, to investigate PO as part of an 

ensemble feature selection framework combined with filter techniques and 𝐾-

fold cross-validation for the selection of genes from gene-expression microarray 

datasets. Then, the feature subsets extracted are combined as a consensus gene 

subset. The results of the proposed PO-based framework are shown to yield 

better stability than that of common single filter methods. Secondly, this work 

focuses on the development of a multi-objective aggregation framework for 

gene selection. The framework involves aggregating the different results 

obtained from a wrapper method in a novel way using Pareto optimisation. PO 

is utilised for aggregating and evaluating the result of the wrapper method. It 

selects disease-related genes according to their scores without any user 

intervention. PO collects information of all genes throughout different data 

variations and eliminates genes having insufficient discrimination ability while 

retaining genes efficient discrimination ability. Wrapper methods may provide 

different results for each variation of training data and may over-fit to it’s test 

data. Meanwhile PO collects individual results and combines them in a common 

subset with only non-dominant genes. Genes in the common subset cover all 

training variations and are more robust to alterations. In this way, the overfitting 

problem is mitigated. 

The aim of the present study is to construct a novel cross-validated framework 

that provides stable and robust generalised aggregated decision-making ability 

owing to the use of PO. PO combines random inputs and creates a single output. 

Furthermore, the results of PO are applicable to the aforementioned random 

feature subsets (Li, Wu and Hu, 2008). By using PO, an efficient and feature 

selection process selects genes straightforwardly. It will also be utilised to apply 

the classification process to just an ensemble subset of training datasets of 

microarray gene expression data (Yang and Mao, 2011). The goal is to provide 
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a consensus result, which will be independent of any classifier (such as K-

nearest Neighbours, or a Support Vector Machine). 

4.4 PO-based Multi-Criteria Framework  

The proposed framework is designed to include several different feature 

selection methods combined with Pareto optimality. Two distinct frameworks 

where PO is used to combine the results of the selected features are developed 

and compared with traditional feature selection methods, the details of which 

are discussed below. 

Filter and wrapper methods are common feature selection techniques. Filter 

techniques rank features based on their relationship with a univariate scoring 

metric with a class label (Hong and Cho, 2009). In this study, several well-

known methods are combined with PO; namely, the t-test, Entropy, 

Bhattacharya, ROC, and Wilcoxon test. For the sake of comparison, they are 

used one by one in the proposed framework to create rankings of genes related 

to each dataset. The standalone results of these filter methods without PO are 

also recorded to compare with those from the proposed framework. 

The classes in each dataset are divided into five subsets of samples. This process 

is repeated 5 times. Thus, the different variants of the test and training parts 

contain independent samples. Each variant is repeated ten times to discover the 

performance of the tests in a more sensitive way. 

The first study used a ratio of 20% test and 80% training set sizes.  As in the 

study by (Luo et al., 2011), the second study used 40% test and 60% training 

sets. These two experiments were carried out to observe the effect of different 

partition sizes for models with and without PO. 

The preparation of datasets for the wrapper method included the following 

steps. 25 different data splits were created from the original datasets, and each 

training-test split contained independent samples. 80% training and 20% test 

sizes were utilised for the first study. Moreover, to compare the effect of 

training–test ratio, a 60% training and 40% test ratio was used as in previous 

research (Luo et al., 2011). Resampling performed with cross-validation is 

repeated ten times and then performance of the proposed framework was 

evaluated. When high-dimensionality becomes an issue in the use of ensemble 
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methods, filter methods are selected as a preliminary solution to decrease the 

number of features (Bolón-Canedo, Sánchez-Maroño and Alonso-Betanzos, 

2012, 2014; Ogutcen et al., 2016). Features were ranked using ensemble filter 

methods to gain a relatively small but comprehensive feature pool for SFS 

(Ogutcen et al., 2016). Their rankings were used by PO to create the common 

feature pool. Filter methods are useful due to their rapid computation and 

scalability, but unlike wrapper methods they do not take into account feature 

dependencies (Saeys et al., 2007). 

4.5 Integration of the Wrapper Method with the Proposed 

Framework 

Second stage with the proposed framework introduces a novel aggregation 

approach for wrapper-based ensemble methods. Sequential forward selection 

SFS is utilised for feature selection, and Pareto optimality is used to aggregate 

the selected features. The critical element of aggregation by PO is to consider 

all of the data together and to collect all of the results into one common solution 

set. Moreover, in this framework, PO is not dependent on the feature selection 

method used. Any other feature selection method or indeed different feature 

selection methods can be used in this framework. 

SFS is a common and straightforward wrapper technique, and so it is employed 

here to demonstrate how PO improves the efficiency of feature selection 

methods. Unlike voting methods, PO does not rely on a majority decision. It 

considers all expert decisions as a vector and evaluates all possible solutions in 

multi-dimensional space. In this decision space, if a solution is not dominated 

by other features throughout all training set variations, that gene is selected in 

the common subset. This common subset is called the PO solution.  

For comparison, many results come from either different local data variations 

or different decisions from experts utilised (individual methods) with the same 

data. In other methods, when an expert has been added to an ensemble model, 

each feature is selected according to the voting method. If a possible disease-

related gene is ignored by the majority of experts, this useful gene cannot be 

chosen. Hence, it cannot contribute to the classification results. However, one 
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expert or a minority of experts may have discovered that gene, but the ensemble 

structure may not use all expert decisions. 

On the other hand, when a feature is selected by one of the experts in at least 

one training variation, and if it is statistically crucial at any level and not 

dominated by other selected features, PO considers that feature in the common 

subset. PO does not eliminate possible features as in voting methods. Thus, the 

PO-based multi-criteria framework keeps all non-dominant genes containing all 

statistically meaningful information. This makes PO a better and more effective 

aggregation method, which can produce a more comprehensive subset. To show 

the advantages of PO in the proposed framework, SFS is employed individually, 

and the SFS results are presented for comparison. For classification, the K-

nearest neighbours (kNN) is used which is one of the most commonly used and 

straightforward classifiers (Chuang et al., 2011). 

4.5.1 Cross-Validated Aggregated Gene Selection using Filter Methods 

The proposed framework uses several different feature selection methods 

together as well as PO in Model-1 as illustrated in Figure 4-1. Model-2 as 

illustrated in Figure 4-2 is an unassembled version of Model-1, which is created 

to show how the ensemble filter methods perform using a single feature 

selection method. Meanwhile Model-3 as illustrated in Figure 4-3 focuses only 

on the performance of the filter tests. The same assessment as in Model-1 is 

conducted for this model without Pareto Optimality. There is no evidence that 

it was compared with traditional single feature selection methods or, most 

importantly, that cross-validation was carried out to assess the generalisation 

ability of the model independently. After the resampling of the data is 

completed, %20 of the data were randomly selected, and average classification 

accuracy values for both training and test datasets were evaluated. Details of all 

the models are given as follows.  
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Figure 4-1. Flowchart of the proposed framework using Pareto Optimality on 

paired-up features of Filter Methods (Model-1) 

Model 1: 

a) The dataset is divided into training and test cases and different dataset 

(20% test and 80% training or 40% test and 60% training). 

b) 𝐾-fold (5, 10 and LOO) cross-validation is applied to the training data 

sets (80% and 60%). 

c) The filter methods t-test, entropy, Bhattacharya, ROC, and Wilcoxon are 

used to rank the features. Each filter method is applied to each fold and 

ranked features are obtained. For the applied filter method, the ranked 

features of n-folds paired up. 

d) The paired-up features from each filter test are further combined using 

PO (Figure 4-1). This will result in one subset of features. 

e) The final gene set is formed at the end of PO process. The duplicated 

genes that reside in the final gene set will then be removed. This will 

yield unique subset of a consensus gene subset.  
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f) The genes that derived from the training data (consensus gene subset) 

using the PO analysis is validated using the test data. The test datasets 

(20% and 40%) are formed in two separate cases and organised using 

the consensus gene subset to validate our framework (aggregated gene 

selection using filter methods).  

g) The kNN is applied as the classification technique to evaluate our 

framework. 
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Figure 4-2 Flowchart of the proposed framework using Pareto Optimality on 

paired-up features of the applied Filter Method (Model-2) 

Model 2: 

a) The dataset is divided into training and test cases and different dataset 

(20% test and 80% training or 40% test and 60% training). 

b) 𝐾-fold (5, 10 and LOO) cross-validation is applied to the training data 

sets (80% and 60%). 

c) Different than the Model-1, the filter methods t-test, entropy, 

Bhattacharya, ROC, and Wilcoxon are solely used to rank the features. 
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Each filter method is applied to each fold and ranked features are 

obtained. For the applied filter method, the ranked features of n-folds 

paired up. The paired-up features of the applied filter test are combined 

using PO (Figure 4-2). This will result in one subset of features. 

d) The final gene set is formed at the end of PO process.  

e) The genes that derived from the training data using the PO analysis is 

validated using the test data. The test datasets (20% and 40%) are formed 

in two separate cases and organised using the consensus gene subset to 

validate our framework (aggregated gene selection using filter 

methods).  

f) The kNN is applied as the classification technique to evaluate our 

framework. 
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Figure 4-3 Flowchart of the proposed framework without Pareto Optimality 

on paired-up features of the applied Filter Method (Model-3) 
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Model 3: 

a) The dataset is divided into training and test cases and different dataset 

(20% test and 80% training or 40% test and 60% training). 

b) 𝐾-fold (5, 10 and LOO) cross-validation is applied to the training data 

sets (80% and 60%). 

c) The filter methods T-test, Entropy, Bhattacharya, ROC, Wilcoxon (Fox 

and Dimmic, 2006; Nguyen et al., 2015) tests are respectively used 

alone without PO (Figure 4-3), and subset sizes that yield the highest 

accuracy from Model-1 are chosen as in the same K-level.  

d) For the applied filter method, the ranked features of n-folds paired up.  

e) The kNN is applied as the classification technique to evaluate our 

framework. 

4.5.2 Cross-Validated Aggregated Gene Selection using Filter-Wrapper 

Combination 

This section describes the proposed novel multi-objective framework for gene 

selection. The SFS method was utilised to identify the most strongly disease-

related genes, as seen on Figure 4-4. Due to the heavy computational burden of 

wrapper methods, before applying the wrapper technique, the number of 

features are decreased through the use of multiple filtering methods; namely, 

the Bhattacharya, Entropy, ROC, t-test, and Wilcoxon tests. This makes feature 

selection using the wrapper methods faster and more effective. The multi-

criteria framework is illustrated in Figure 4-4, and its steps are as follows. 

a) The dataset is split into test and training sets (20% test and 80% training 

or 40% test and 60% training) and numbers of feature dimensions are 

decreased in the selected feature pool. 

b) Cross-Validation: 𝐾 -fold (LOO, 10, 5) CV is applied to the training part 

of the datasets. 𝐾-fold preparation: Conducted to apply the SFS to the 

folds. SFS operates with an internal kNN classifier to select the relevant 

genes. 
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c) SFS selects genes from each fold, and each fold forms a vector of fixed 

size features for PO. After many experimental trials, we set the size of 

feature vectors to 10. 

d) Common subset: Duplicated genes are removed from the resulting gene 

set, and a common subset is established using this unique gene content. 

e) The PO solution set is ready for classification. 

f) For the classification task, the kNN classifier (1, 3, 5, 7, 9 NN) 

respectively is applied to test sets (20% or 40%). 

TRAINING DATA (e.g. 80%)

1.Fold 2.Fold n.Fold

SFS SFS SFS

Extract selected 
features

SFS

. . . . .
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(c)
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(e)

(f)

TEST (e.g. 20%)

Filtered 
Features 

Pool

ORIGINAL DATA

 

Figure 4-4 Flowchart of the proposed framework using Pareto Optimality on 

paired-up features of the filter-wrapper combination  
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Figure 4-5 Flowchart of the proposed framework without Pareto Optimality 

on Paired-up features of the applied filter-wrapper combination 

a) The dataset is split into test and training sets (80% training and 20% test) 

and numbers of feature dimensions are decreased in the selected feature 

pool. 

b) Cross-Validation: 𝐾 -fold (LOO, 10, 5) CV is applied to the training part 

of the datasets. 𝐾-fold preparation: Conducted to apply the SFS to the 

folds. SFS operates with an internal kNN classifier to select the relevant 

genes. 

c) SFS selects genes from each fold. After many experimental trials, we set 

the size of feature vectors to 10. 

d) For the classification task, the kNN classifier (1, 3, 5, 7, 9 NN) 

respectively is applied to test sets 20%. Classification process utilise for 

data variation because there is no PO method to combine results. 

e) Each classification provides an accuracy result. 

f) Calculated average accuracy to understand SFS methods performance 

on this framework. 
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4.6 Results and Discussion 
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Table 4.1 and 4.2 summarize the classification results of the three different 

datasets for the feature selection problem. Each resampling of the data is 

implemented ten times, and the mean accuracy and standard deviation along 

with corresponding feature subset sizes were obtained. In addition to the 

percentages, the different sizes of test datasets are shown in the tables. The 

methods used were evaluated for multiple Ks, but due to lack of space and for 

clarity only the results from K that yield the highest performance are presented 

here. 

Table 4.3 presents the results of the comparison of the proposed PO-based 

framework with those from previous work (Ogutcen et al., 2016). It is observed 

that the baseline methods require high numbers of features to reach maximum 

accuracy (Table 4.3) whereas the proposed approach yielded similar or higher 

accuracy rates using the same number of or fewer genes (Bolón-canedo et al., 

2014). Model-1 using all of the tests with PO shows a significant improvement 

in accuracy with the Colon dataset. This analysis gave an increase of 5% in 

predictive accuracy with around only 12 genes, which is almost 10 times lower 

than that of the previous study (Luo et al., 2011). A smaller number of genes is 

also observed for the other two datasets. The results demonstrate the robustness 

of the proposed framework, which consistently yields smaller subsets of 

features. 

Consequently, the results appear to suggest that the stability of feature selection 

in Model-1 is significantly better than that of Models 2 and 3. The stability 

seems to be similar for all the assessments and data sets. In Model-3, the 

standard deviation of different Ks in kNN is observed to be more than that of 

Model-2. Therefore, although they have similar accuracy, this model may not 

be as reliable as the Model-1. 
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Table 4.1: Performance of Model-1 

 

Model-1 

COLON (K=11) 

20% 

COLON (K=11) 

40%  

DLBCL (K=11) 

20% 

DLBCL (K=11) 

 40% 

DUKE (K=1) 

20% 

DUKE (K=1) 

  40% 

 
Total  

acc. % 

Subset 

Size 

Total  

acc. % 

Subset 

Size 

Total  

acc. % 

Subset 

Size 

Total  

acc. % 

Subset 

Size 

Total  

acc. % 

Subset 

Size 

Total  

acc.% 

Subset 

Size 

5 Fold 
97.33 

±2.31 

12.98 

±4.01 

91.42  

±2.85 

16.18  

±2.49 

99.75   

±0.56 

14.40 

±5.01 

91.94   

±2.62 

21.30  

±5.84 

95.11 

±6.22 

28.32 

±4.65 

83.41 

±6.63 

27.02 

±7.76 

10 Fold 
97.50 

±2.76 

11.56 

±5.28 

91.58 

±2.59 

14.52 

±3.98 

100.00 

±0.0 

12.82  

±4.64 

91.55  

±3.50 

17.54 

±6.80 

94.67 

±5.41 

27.26  

±5.85 

80.59   

±8.88 

24.70 

±9.95 

LOO 
96.67  

±4.56 

10.20     

±6.02 

91.67    

±2.95 

13.20 

±4.97 

100.00   

±0.0 

11.60  

±4.16 

92.26  

±3.68 

15.40 

±7.06 

93.33 

±6.09 

24.00  

±7.58 

77.65  

±7.67 

23.00       

±11.29 

Sensitivity 99.50±1.12 96.25±5.59 100.00±0.0 91.30±3.07 91.20±11.19 80.67±8.59 

Specificity 93.50±8.59 82.50±16.77 100.00±0.0 95.00±11.18 100.00±0.0 86.50±15.27 

 

 

 

Table 4.2: Performance of Model-2 (with PO) and Model-3 (without PO) 

 

  
COLON 

(K=11) 20% 

COLON (K=11) 

40%  

DLBCL (K=11) 

20% 

DLBCL (K=11) 

 40% 

DUKE (K=1) 

20% 

DUKE (K=1) 

  40% 

  
Total  

acc. % 

Subset 

Size 

Total  

acc. % 

Subset 

Size 

Total  

acc. % 

Subset 

Size 

Total  

acc. % 

Subset 

Size 

Total  

acc. % 

Subset 

Size 

Total  

acc. % 

Subset 

Size 

PO + t-test 
87.92   

±9.92 3.45 

±2.16 

81.88   

±7.56 4.75 

±2.83 

87.26  

±3.70 1.20 

±0.52 

87.26  

±3.70 2.05 

±0.89 

80     

±14.69 7.55 

±4.96 

73.24  

±9.25 4.00 

±1.78 
t-test 

85        

±8.58 

81.04     

±8.17 

86.88   

±5.90 

87.26  

±3.88 

79.44  

±15.43 

70     

±10.34 

PO + Entropy 
82.92 

±15.17 5.95 

±4.48 

81.25   

±6.83 7.50 

±4.05 

77.81  

±9.40 4.70 

±2.81 

73.55  

±6.91 4.60 

±3.56 

76.11 

±14.98 11.20 

±5.44 

76.18 

±13.01 9.85 

±8.05 
Entropy 

81.67  

±15.50 

82.08    

±6.73 

76.56   

±9.86 

73.71  

±5.70 

78.33  

±11.37 

74.41  

±14.68 

PO + 

Bhattacharyya 

83.75   

±9.16 3.00 

±1.69 

81.88 

±9.00 3.60 

±1.85 

85.94 

±12.96 1.50 

±0.51 

86.29  

±5.22 1.90 

±0.72 

82.22 

±10.45 10.60 

±4.17 

77.65   

±9.07 7.40 

±7.37 
Bhattacharyya 

82.92   

±8.11 

83.13    

±9.27 

84.69   

±11.94 

86.61  

±5.33 

82.22   

±9.56 

76.76  

±10.44 

PO + ROC 
84.58 

±11.24 3.30 

±2.00 

82.50   

±7.72 4.90 

±2.22 

90       

±8.46 1.55 

±0.83 

89.03   

±6.31 3.75 

±2.84 

78.89 

±16.08 5.35 

±3.15 

73.53   

±6.75 4.65 

±2.92 
ROC 

84.58  

±10.95 

81.88   

±7.37 

90.31  

±7.77 

88.87  

±6.41 

78.89  

±12.12 

74.71  

±9.50 

PO +  

Wilcoxon 

83.75 

±10.64 3.35 

±2.08 

82.29     

±7.63 4.75 

±2.31 

85      

±7.96 5.05 

±2.06 

79.35 

±10.90 3.95 

±2.46 

82.22 

±14.15 5.55 

±2.39 

68.82 

±13.24 4.70 

±3.26 
Wilcoxon 

84.17  

±10.51 

82.71    

±7.49 

85.31   

±7.72 

79.03  

±10.38 

79.44  

±12.80 

69.12  

±13.14 
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Table 4.3: Performance comparison of Model-1 using LOO Cross-validation  

with state-of-the-art techniques using the sample subsets 

 DLBCL Colon Duke 

  
Accuracy 

% 

Number of 

Genes 
Accuracy % 

Number of 

Genes 
Accuracy % 

Number of 

Genes 

SNR (Luo et al., 2011)     84.34 10 78.20 10 81.00 20 

FFS-ACSA1 (Luo et al., 2011) 77.72 10 80.00 10 71.00 20 

FFS-ACSA2 (Luo et al., 2011) 85.09 10 78.36 10 82.83 20 

SVM-RFE   (Luo et al., 2011) 91.87 10 76.76 10 82.33 20 

Model-1 100.0±0.0 
11.60    

±4.16 
97.50      ±2.76 

11.56   

±5.28 

83.76 

±5.68 

24.70       

±9.95 

Sensitivity 100.0±0.0  99.50±1.12  80.67±8.59  

Specificity 100.0±0.0  93.50±8.59  86.50±15.27  

 

The selection of valid features is important in order to reduce the number of 

features in the dataset. At the same time, the models are computationally 

intensive, and so less training data provides a shorter time for feature selection. 

If training datasets of smaller sample size can provide equivalent or stronger 

results, this would improve computational efficiency. Therefore in Table 4.3, 

the performance levels of 20% test and 80% training (Luo et al., 2011) versus 

40% test and 60% training (Proposed Method Model-1) sets were compared. In 

every situation with all the models, the larger training set (80%) provided higher 

accuracy. Using a 40% test size as in (Luo et al., 2011) for low sample size 

datasets has a negative effect on overall results. When we look at the 𝐾-fold 

difference, in Models 1 and 2, LOOCV-based assessment yielded more stable 

and higher classification accuracies. In any case, the proposed framework seems 

durable and robust. 

In the second stage of the study, an experimental analysis of the proposed 

framework was carried out on both SFS+PO (Figure 4-4) and individual SFS 

(Figure 4-5) models, and the classification results for the selection problem for 

each dataset are summarised in Table 4.4-4.6. 

 Folds of the dataset is resampled and repeated for ten times, and the average 

and standard deviation of the accuracy along with the selected gene sets were 

obtained. Additionally, the performance of different test data sizes (20% and 

40%) are shown in tables 4-6. Classification performance was evaluated using 
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different values of 𝐾 but, due to limited space and for clarity, only values of 𝐾 

that yielded the best results are presented. 

As seen in Table 4.4, classification accuracy consistently reached 100% 

accuracy using SFS-PO, and the corresponding subset size depends on the 

cross-validation fold size. Furthermore, individual SFS method reached its 

maximum performance using a few numbers of genes, however its accuracy has 

remained lower than the accuracy of the proposed PO based ensemble 

framework. Moreover, SFS was not able to identify disease-related genes as 

compared to disease related-genes identified with PO based ensemble 

framework. When fold number and test set sizes were increased, the results 

included higher numbers of genes due to over-learning from the folds and 

smaller sample sizes in training. The datasets utilised included different 

versions such as with different fold sizes and varying K values. In these different 

conditions, accuracy remained robust and high. 

Table 4.4: Classification results of Colon breast cancer with the proposed 

Filter-Wrapper combined framework 

COLON Cancer  20% Test 40% Test 

  Total  acc. % Subset Size Total  acc. % Subset Size 

5-FOLD 

SFS-PO 100 ±0.0      (K=7) 15.32±2.04 94.42 ±1.58 (K=7) 10.68±1.52 

SFS         94.57 ±2.32 8 84.5 ±3.49 3 

10-FOLD 

SFS-PO 100 ±0.0    (K=7) 12.96±1.85 94.83 ±0.66 (K=7) 36.58±3.45 

SFS 88.78 ±2.71 2 90.46 ±1.62 13 

LOO 

SFS-PO 100 ±0.0     (K=5) 28.96±5.10 95.42 ±0.97 (K=7) 89.82±7.94 

SFS 91.71 ±2.42 3 91.72 ±1.10 18 

Sensitivity 100.00 ±0.0 97.63 ±0.40 

Specificity 100.00 ±0.0 91.00 ±2.87 
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Table 4.5: Classification results of DLBCL breast cancer with the proposed 

Filter-Wrapper combined framework 

DLBCL  20% Test 40% Test 

  Total  acc. % Subset Size Total  acc. % Subset Size 

5-FOLD SFS-PO 99.38 ±1.45 (K=7) 10.94±1.64 92.06 ±4.80   (K=3) 11.40±1.54 

 SFS         92.03  ±2.89 3 86.14 ±1.91 3 

10-FOLD SFS-PO 100 ±0         (K=7) 13.44±1.66 95.16 ±4.69     (K=5) 13.16±2.02 

 SFS 90.66 ±2.20 2 86.35 ±2.16 2 

LOO SFS-PO 100 ±0       (K=9) 18.30±4.48 96.97 ±2.61  (K=5) 45.86±6.55 

 SFS 92.29 ±2.47 2 89.88 ±2.15 6 

Sensitivity 100.00 ±0.0 96.78±3.06 

Specificity 100.00 ±0.0 97.50±3.86 

 

For the DLBCL data, a relatively low number of genes is required to reach the 

highest accuracy using SFS, as seen in   
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Table 4.5. However, the best result required around 13 genes using the SFS-PO 

framework. The SFS-PO combination focuses on the overall data rather than 

just training data, and so it can achieve better accuracy in terms of disease-

related genes. PO considers each gene selected from all samples and so each 

sample has an effect on the features selected. PO evaluates each selected gene, 

and none are eliminated as in the voting methods. Therefore, PO offers a 

suitable approach for analysing cancer-related genes in microarray datasets. 

The classification performance of Duke Breast cancer data for 20% test and 

80% training versus 40% test and 60% training sets are shown in Table 4.6. 

There are very limited studies with this dataset for comparison, and it is the most 

challenging dataset of the three to maximise accuracy. The performance of the 

PO based framework was experimented with different cross-validation 

methods. Leave-one out cross validation obtained the highest accuracy for the 

Duke Breast cancer dataset as compared to 5-Fold and 10-Fold cross 

validations. However, selected subset of genes for the LOO is obtained higher 

than 5 and 10-Fold. This result may seem to contradict a common objective in 

the literature, which is to achieve maximum accuracy with a minimum subset 

size. However, PO shows its potential by including all essential genes, and this 

information can support biological studies of cancer. 

Table 4.6: Classification results of DUKE breast cancer with the proposed 

Filter-Wrapper combined framework 

DUKE Breast Cancer 20% Test 40% Test 

 Total  acc. % Subset Size Total  acc. % Subset Size 

5-FOLD SFS-PO 93.11 ±7.79    (K=7) 11.30±1.67 82.35 ±9.72      (K=3) 12.0±1.98 

 SFS         82.71 ±5.65 4 81.93 ±2.95 18 

10-FOLD SFS-PO 97.33 ±3.85   (K=7) 30.04±4.00 85.76 ±8.35    (K=5) 29.48±5.07 

 SFS 87.33 ±2.58 10 81.34 ±2.48 19 

LOO SFS-PO 98.44 ±3.88     (K=3) 90.08±10.30 88.47 ±4.65     (K=5) 67.20±9.16 

 SFS 91.39 ±1.87 19 82.23 ±1.55 20 

Sensitivity 91.20±11.19 80.67±8.59 

Specificity 100.00±0.0 86.50±15.27 
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Table 4.7: Performance comparison of ensemble methods applied to Colon 

Dataset 

 COLON Accuracy Sensitivity Specificity 

  
Total  

acc. % 

Std. 

Dev. 

% 

Subset 

Size 
Acc%±Std. Acc%±Std. 

SFS-PO, 10-Fold, 7NN 100 ±0.0 12.96 

±1.85 

100.00 

±0.0 

100.00 

±0.0 

SFS, 10-Fold,  7NN 88.78 ±2.71 2 92.70 

±3.10 

80.95 

±5.97 

Model-1, (Ogutcen et al., 2016) 97.5 ±2.76 11.56 

±5.28 

99.50±1.12 93.50±8.59 

GBC +SVM (Alshamlan, Badr and Alohali, 2015) 98.38 - 10 - - 

MOGA (Hasnat, 2016) 82.3 ±7.2 9.03±1.6 
  

TOPSIS + SVM (Fattah et al., 2013) 88.7 - 10 - - 

 

Pareto DE (Dash and Misra, 2017) 81 - - 0.67 0.79 

Table 4.7, Table 4.9 show the results of the comparison with state-of-the-art 

ensemble methods applied to the same datasets. The first observation to note is 

the lack of information about their performance for comparison. Many of the 

comparison studies provided results only for accuracy. SFS-PO accuracy is 

better than the SFS only accuracy. This result reflects how PO integrated 

framework changes the classification accuracy using same set of methods. Only 

some of them additionally reported standard deviation without which we cannot 

get a full understanding of the classification performance. 
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Table 4.8: Performance comparison of ensemble methods applied to DLBCL 

Dataset 

 DLBCL Accuracy Sensitivity Specificity 

  Total acc. % Std. Dev. % Subset Size Acc%±Std. Acc%±Std. 

SFS-PO, 10-FOLD, 7NN 100 ±0.0 13.44 ±1.60 100.00 ±0.0 100.00±0.0 

SFS, LOO,  3NN 90.66 ±2.20 2 92.60±2.25 84.85±4.88 

Ensemble Filters-PO (Ogutcen 

et al., 2016) 

100 ±0.0 11.60 ±4.16 100.00±0.0 100.00±0.0 

EPSO (Mohamad et al., 2013) 100 ±0.0 4.7±0.82 - - 

FSAM-AHP (Nguyen et al., 

2015) 

98.70  - - - 

QMI-SVM (Mortazavi and 

Moattar, 2016) 

96.07  - - - 

 

A few of the studies provided accuracy rates for a fixed size of subset. Accuracy 

with a fixed number of genes shows how efficiently classification can be 

performed at that point. On the other hand, the proposed aggregated multi-

objective framework focuses on discovering feature dependencies in the dataset 

as a whole. 

The comparison of accuracy levels for the DLBCL data shows that EPSO is a 

competitive method (Table 8). However, EPSO is based on iteration, and so it 

continues to remove genes until maximum accuracy is reached. If the dataset 

were artificial, removing features after reaching the maximum accuracy would 

be the correct action. However, cancer datasets are not created synthetically. 

They represent the gene expression levels of real humans, and information about 

one of which may be necessary for the cancer treatment process. Thus, if any 

gene is non-dominant it should be kept in the subset for further study by 

molecular biologists. Relationships among genes are vitally important.  

Similarly, learning algorithms should not only focus on the minimum possible 

number of features. All disease-related genes should be considered when 

investigating treatment. If a gene, which is removed, has a relationship to the 

disease, this situation postpones the discovery of that gene.  Thus, the 
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methodology applied should aim to discover all disease-related genes and all 

potentially relevant genes should be considered. PO achieved better results than 

previous studies and yields different subset sizes for each cancer dataset. 

Table 4.9: Comparison of ensemble methods applied to Duke Dataset 

 DUKE Accuracy Sensitivity Specificity 

    

  
Total  

acc. % 

Std. 

Dev. % 
Subset Size Acc%±Std. Acc%±Std. 

SFS-PO, LOO, 3NN 98.44 ±3.88 90.08±10.30 91.20±11.19 100.00±0.0 

SFS, LOO, 3NN 91.39 ±1.87 19 89.04±3.01 94.33±2.38 

Ensemble Filters-

PO(Ogutcen et al., 2016) 

83.76 ±5.68 24.70 ±9.95 80.67±8.59 86.50±15.27 

RandEns.ReliefF (Zhou 

et al., 2014) 

91.5 - 40 - - 

LFS (Armanfard, Reilly 

and Komeili, 2016) 

89.17 ±7.90 - - - 

FFS-ACSA2 (Luo et al., 

2011) 

82.83 - 20 - - 

 

The Duke Dataset has the smallest sample number of the three datasets 

considered and this makes it much harder to gain better accuracy than in the 

studies compared in Table 7. Subset sizes start from 11 genes when 5-fold CV 

is applied and reach 90 genes when LOOCV is used. In terms of accuracy, 

differences in fold size increase accuracy levels from 93.11% to 98.44%. This 

5% increase in accuracy requires a set with an additional 81 genes. 90 genes are 

significantly more than the other two cancer dataset subset sizes. Breast cancer 

may be associated with many genes and LOO may be more suitable when a 

dataset has a small number of samples. As mentioned above, the proposed 

framework focuses on all disease-related genes in order to create meaningful 

subsets for biologists rather than just a minimum number of genes. 

Each sample influences the results.  Each fold works with one of the training set 

variations, and each training set variation contains a different group of samples. 

Dependencies among different training set samples may not be captured when 
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using voting methods. Unlike previous aggregation methods, feature 

dependencies between different folds are taken into account here in the final 

subset. This means that the results from different training set variations (which 

contain different sample sets) are considered by PO. Combining the results for 

the different cross-validation folds creates a common subset, and this provides 

a more successful classification than those in other studies (see Tables 7-9). 

Like most machine-learning algorithms, SFS aims to achieve a subset size, 

which provides maximum performance. Unlike standard machine-learning 

algorithms, PO is a multi-objective decision method, and so it evaluates all 

results together. Then, it gives all optimal solutions. A multi-objective 

technique is more suitable for the analysis of gene-expression datasets because 

of its ability to provide comprehensive information for biological studies. 

Cancer is a polygenic disease, and so if a potentially important gene is 

eliminated in the feature selection stage, the discovery of cancer-related genes 

will remain incomplete. Thus, the final subset should be optimal in the sense of 

allowing the discovery of possible disease-associated genes. 

4.7 Conclusion 

The novel framework proposed in this chapter provides promising results in 

terms of accuracy and stability over the three different benchmark microarray 

gene-expression datasets under different conditions. It was also observed that 

the ensemble of methods boosted the feature selection process, and the PO-

based approach yielded comparatively smaller feature subset sizes. 

Furthermore, in this study, a PO-based multi-objective predictive model is used 

to identify cancer-related genes in microarray data. A different set of genes was 

assessed for each cancer data set through a combination of SFS with PO. The 

proposed method outperforms SFS, and additionally the multi-objective 

framework is more effective in identifying all disease-related genes. This makes 

the final subset more representative of the whole dataset. 

In the literature, ensemble methods are mostly used for imbalanced datasets, 

and research has intensively focused on splitting methods to balance datasets. 

However, these studies either add artificial samples (oversampling) or remove 

some samples (undersampling) to achieve balance in the dataset. Next chapter 
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addresses how the proposed framework could handle the problems of data 

imbalance in gene expression datasets.  
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5 A PARETO-OPTIMAL GENE SELECTION 

FRAMEWORK FOR IMBALANCED DATA 

5.1 Introduction 

Microarray gene-expression data analysis presents a critical role for decision-

making in clinical and medical studies. However, natural datasets are mostly 

imbalance that creates a bias towards majority class when feature selection and 

classifying samples. This situation generally causes problems during the 

learning of the classifier. Among many data-level approaches commonly used 

to tackle this problem are undersampling, over-sampling and ensemble learning. 

Undersampling or oversampling may result in a loss of valuable data and 

unreliable results due to the artificially created or altered samples. 

Various datasets present more cancer cases of one class than the control samples 

of the other class in the various datasets (Shipp et al., 2002). Therefore, applying 

feature selection on imbalanced datasets requires further investigation since the 

features selected are likely to be more representative of the majority class 

(Fernandez, Garcia and Herrera, 2011). An increasing number of studies are 

being conducted on imbalanced datasets in various domains and also in 

bioinformatics (Haixiang et al., 2017).  

Gene-expression datasets have low number of samples and high numbers of 

features. Traditional classification methods are not designed for imbalanced 

situations and so classifier predictions are biased towards majority class (Ling 

and Sheng, 2010). Various solutions have been proposed in machine learning 

domain in recent years for overcoming poor prediction performance of 

classifiers on imbalanced datasets. These solutions are mainly categorised in 

data-based and algorithm-based approaches.  

A novel approach has been proposed to imbalanced microarray datasets for 

feature selection in this chapter. Since the class ratio of samples is not uniformly 

distributed, a framework is designed to handle imbalanced datasets. For this 

purpose, sub datasets that keep a balance between minority and majority classes 

were generated then combined with the imbalanced dataset. Hence, multi-

objective structure is generated with a set of balanced-sub datasets along with 

the original imbalanced dataset. Thus, the proposed framework prevented the 
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side effects of methods such as undersampling or oversampling and benefited 

from boosting the feature selection performance using supportive balanced sub-

datasets. 

5.1.1 Performance Metrics for Imbalanced Microarray Gene Expression 

Data 

The evaluation metrics (e.g., accuracy) that work well with standard balanced 

datasets might not be applicable when analysing imbalanced microarray gene-

expression data. This is due to the fact that accuracy achieved will be biased 

towards the majority class. Therefore, performance metrics other than accuracy 

should be considered in the evaluation of the classification performance of the 

proposed framework. One approach that could be used for this purpose is to find 

values of recall and precision for minority and majority classes separately using 

a confusion matrix Table 5.1 (Anaissi and Kennedy, 2011). 

Table 5.1 Confusion Matrix 

  Predicted 

  Negative Positive 

Actual 
Negative True Negative False Positive 

Positive False Negative True Positive 

 

The outcomes of the confusion matrix can be used to calculate TPR and FPR. 

Formulas are as follows (Fawcett, 2006); 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  Equation 5-1 

And 

       𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
      Equation 5-2 

The F-measure (or F1 score) could also be used, which is a combination of recall 

and precision represented in the function below: 

𝐹1 = 2𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
     Equation 5-3 
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The F-measure is a better measure for imbalanced datasets than  accuracy as it 

is more capable of representing the impact of precision and recall in 

combination (Yin et al., 2013). 

5.1.2 Gene selection in imbalanced microarray datasets 

This section explains the challenges for gene selection caused by imbalanced 

data which is useful to increase the classification results in terms of f-measure 

and efficiency (Yin et al., 2013; Maldonado, Weber and Famili, 2014). Selected 

genes are supposed to improve the classification model’s ability to differentiate 

between classes. However, classifiers and feature selection methods are 

adversely affect the performs poorly when applied on imbalanced datasets.  

In many medical domains, dataset classes are not evenly distributed, and cancer 

patients represent a very small minority class, especially when the disease is 

very rare. However, most of the time, the important information to identify 

relevant genes that belongs to the minority class.   

There are two main strategies that could be used to approach the problem of 

imbalanced datasets: data-based strategy and algorithm-based strategy. For 

data-based strategy resamples the dataset in order to uniformly distribute classes 

(Chawla et al., 2003). There are two main methods used to resample the dataset 

for this purpose: undersampling and oversampling. Although some research 

studies suggest employing both of them (Anaissi and Kennedy, 2011). 

Undersampling is the removal of samples of the majority classes to match their 

size with that of the minority class. For example, SHRINC is a under sampling 

algorithm proposed by (Kubat and Matwin, 1997), to be used in reducing the 

number of majority class samples. This technique has the disadvantage of 

removing potentially useful information. Moreover, gene-expression datasets 

often have small number of samples, and in this case, undersampling is not 

suitable. Conversely, increasing the number of minority class samples is the aim 

of oversampling techniques. Minority samples are replicated so that, their 

number become equivalent to the majority class. 

Second strategy that can be used for imbalanced datasets is the algorithm-based 

approach. One main algorithm proposed for handling class imbalance is the cost 

sensitive learning (López et al., 2013). This algorithm assigns high costs to 
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misclassified samples of minority class to achieve the objective. Another well-

known strategy is the boosting approach. SMOTEBoost algorithm (Chawla et 

al., 2003), for instance, iteratively learn patterns from minority class samples 

during the training process of the classifier. 

5.2 Proposed approach for handling data imbalance 

A proposed multi-criteria approach using PO for feature selection that handles 

the microarray gene expression imbalanced datasets is presented in this section. 

In this method, the majority class is split in subsets equivalent to the size of the 

minority class. The proposed approach handled the original dataset and its 

balanced-sub datasets together. Multi-objective structure is used to match up 

balanced sub-datasets with the original dataset. 

TRAINING DATA (e.g. 80%) TEST (e.g. 20%)

Original 
Training data

50%-50% (1) 50%-50% (n.). . . . .

SFS SFS SFS

Extract selected 
features

SFS

PARETO 
OPTIMAL

Gene Subset

Classification

DATA SET VARIATIONS

Filtered 
Features 

Pool

ORIGINAL DATA

(a)

(b)

(c)

(d)

(e)

(f)

 

Figure 5-1 Flowchart of the proposed framework using Pareto Optimality on 

paired-up features of the filter-wrapper combination to be used for 

imbalanced datasets. 
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a) The dataset is split into test and training sets (80% training and 20% test) 

and numbers of feature dimensions are decreased in the selected feature 

pool. 

b) Folds are arranged in the training part to keep the balance of the classes 

(50%-50%) of the datasets. SFS applied to these balanced folds. SFS 

operates with an internal kNN classifier to select the relevant genes. 

c) SFS selects genes from each fold, and each fold forms a vector of fixed 

size features for PO. After many experimental trials, we set the size of 

feature vectors to 10. 

d) Common subset: Duplicated genes are removed from the resulting gene 

set, and a common subset is established using this unique gene content. 

e) The PO solution set is ready for classification. 

f) For the classification task, the kNN classifier (1, 3, 5, 7, 9 NN) 

respectively is applied to test sets 20%. 

As shown in Figure 5-1 proposed framework, dataset with its original 

distribution of classes is used and supported with balance-distributed sub-

datasets. Similar to the widely accepted 5-fold and 10-fold approach in the 

literature, the number of balanced datasets is chosen as ratio between each class 

data samples. During the training process, without losing any features derived 

from the original dataset, supportive features coming from the balanced sub-

datasets made an impact on the classification performance particularly for the 

minority class samples. 

Skewed class distribution has been determined a training problem in the 

literature. K-fold approach usually splits the dataset without considering 

whether it is balanced or imbalanced. In our work, the proposed sub-datasets 

are a type of replacement for the common K-fold approach specifically for the 

imbalanced datasets. Research studies on the classification of gene expression 

data widely assume the classes in the dataset are balanced and suggest ways for 

improving the classifier performance. However, as far as we know, there are not 

many studies in the bioinformatics research domain, seeking an alternative way 

of handling the problem of gene selection in imbalanced microarray gene-

expression datasets. Therefore, we proposed a PO-based approach that supports 

feature discovery to identify minority classes in a better way. According to 
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aspect ratio between classes, sub-datasets utilised with PO provides more 

comprehensive feature subsets. The proposed imbalanced dataset framework 

structure is as follows: 

• The dataset is split into test and training sets (80% training and 20% test) 

and feature dimensions decreased in the selected feature pool. 

• Training data first employed with filter methods to gain common genes 

and created a gene pool for a wrapper method. Duplicated genes are 

removed from the resulting gene set and a common subset is established 

using this unique gene content. 

• Then narrowed down dataset with the common gene pool employed with 

a wrapper method. At the same time, random subsets of major class 

samples matches with minor samples.   

• SFS is applied to the original training and balanced folds. SFS operates 

with an internal kNN classifier to select the relevant genes. 

• SFS selects genes from each fold, and each fold forms a vector of 10 

features for PO 

• The PO solution set is ready for classification. 

• For the classification task, the 𝑘NN classifier (1, 3, 5, 7 NN) is applied 

to the test sets.   

5.3 Results and Discussion 

In this section, the results of the proposed framework applied on imbalanced 

datasets were presented. Mainly, balanced datasets are important for minority 

samples classification, so they help to discover important features of the dataset 

more effectively. 

Table 5.2 Characteristics of Imbalanced Gene Expression Datasets 

  Size Features Target #Majority/#minority Ratio 

CNS 60 7129 Failures 39/21 1.86 

LYMPH 77 6817 FL 58/19 3.63 

OVARIAN 253 15154 Normal 162/91 1.78 

 

Characteristics of the applied imbalanced gene expression datasets are shown 

on Table 5.2. Three different cancer datasets in different size of samples and 
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features investigated. We studied the CNS, Lymphoma and Ovarian datasets. 

The Lymph dataset has the most imbalanced characteristics as compared the 

remaining datasets having 58 majority classes and 19 minority classes. The 

steps of the proposed multi-criteria approach using Pareto Optimality for feature 

selection are shown in Figure 5-1. 

Table 5.3 Mean and standard deviations generated for the subset-balanced 

dataset sizes and k-level of the kNN classifier at the Maximum Accuracy 

Dataset Mean Subset Size Standard Deviation of Subset Size k Level 

OVARIAN 7.59 2.45 9 

CNS 14.67 2.41 5 

LYMPH 9.31 1.91 9 

 

The mean and standard deviations of the subset-balanced dataset sizes that are 

generated and the k-level of the kNN classifier obtained at the best accuracy 

performance of our proposed framework is presented in Table 5.2. 

Table 5.4 Performance comparisons for the imbalanced CNS gene expression 

dataset 

 
F-measure for rare class F-measure for major class 

MI 0.66 0.87 

D-MI 0.70 0.85 

Fisher 0.54 0.85 

D-Fisher 0.60 0.87 

Corr 0.69 0.89 

D-Corr 0.77 0.88 

SFSPO+ 9NN 0.80 0.85 

 

In the Table 5.3 we reported the F-measure results of various methods presented 

in this research domain (Yin et al., 2013) including the proposed framework 

which are applied on imbalanced CNS gene expression dataset. Our proposed 

framework provided highest F-measure (0.80) for the minority class with a good 

F-measure (0.85) for the majority class.  
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Table 5.5 Performance comparisons for the imbalanced Lymph gene 

expression dataset 

 
F-measure for rare class F-measure for major class 

MI 0.65 0.86 

D-MI 0.70 0.90 

Fisher 0.54 0.85 

D-Fisher 0.59 0.87 

Corr 0.17 0.85 

D-Corr 0.32 0.87 

SFSPO+ 5NN 0.74 0.89 

 

In the Table 5.4, we reported the F-measure results of seven methods including 

the proposed framework, which are applied, on imbalanced Lymphoma gene 

expression dataset. Our proposed framework provided highest F-measure (0.74) 

for the minority class along with the second-best F-measure (0.89) for the 

majority class.  

Table 5.6 Performance comparisons for the imbalanced Ovarian gene-

expression dataset 

 
F-measure for rare class F-measure for major class 

MI 0.66 0.87 

D-MI 0.70 0.85 

Fisher 0.54 0.85 

D-Fisher 0.60 0.87 

Corr 0.59 0.91 

D-Corr 0.61 0.92 

SFSPO+9NN 0.79 0.91 

 

In the Table 5.5, we reported the F-measure results of seven methods including 

the proposed framework, which are applied, on imbalanced Ovarian gene-

expression dataset. Our proposed framework provided highest F-measure (0.74) 

for the minority class along with a second-best F-measure (0.91) for the majority 

class.  

We obtained significantly better minority class performances for the CNS, 

Lymphoma, and Ovarian gene expression datasets. Even, in the majority class, 

there is no significant difference on the performance measure. Ovarian dataset 
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has the highest number of samples, which could mitigate the effects of 

imbalanced distribution of classes. As a consequence the classifier performance 

achieved a high F-measure performance rate for both majority and minority 

class samples. In the Lymphoma dataset, interestingly we observed low F-

measures for the Corr and D-Corr methods however, their F-measures were 

better on the CNS dataset.  

Additionally, it is always preferable choosing a feature selection approach that 

proves its superiority among different dataset characteristics. In all datasets on 

which the proposed framework was applied, the remaining the methodologies 

were outperformed on the important minority class, achieving the best or 

second-best performances on the majority class. The reason for not achieving 

the best majority classification performance might be due to the fact that as the 

important genes were being added to the subset by the ensemble framework, a 

bias towards the majority class samples is inevitably occurred.  

One more interesting point we observed that performance is highly affected with 

different k-levels of the kNN classifier. The expression values of neighbour 

samples have impacts on the classifier performance. In multi-objective 

approach, different resampling of the dataset has resulted different feature 

means. Therefore, structure of the framework improved the minority class 

identification while minimising the bias effect of the majority class.  

As a result, we observed that the sample dependency is highly related with the 

performance of computational models when studying with the imbalanced gene 

expression datasets. Thus, the proposed PO based multi-objective approach has 

shown its ability in minimising such issues for the imbalance datasets. 

Moreover, since our objective is to better classify the minority class, our 

approach accomplished its objective by effectively revealing the genes having 

the most discriminative ability between the healthy and disease samples. 

5.4 Conclusion 

In this study, we have proposed a framework that selects the relevant and 

important genes particularly in imbalanced microarray gene-expression 

datasets. To the best of our knowledge, this is the first time Pareto Optimality 

is employed for gene selection in imbalanced microarray datasets. Apart from 
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the classification performance, it was shown that the proposed approach is 

capable of generating a narrow subset of genes using ensemble of feature 

selection methods.  
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6 A PARETO-OPTIMAL GENE SELECTION 

FRAMEWORK WITH MISSING VALUE 

IMPUTATION 

6.1 Introduction 

Many types of real-world experimental data often include missing values (MVs) 

(Tibshirani et al. 2001; Celton et al. 2010; Oh et al. 2011; Chiu et al. 2013) and 

microarray datasets are no exception where missing values can be found at 

different levels of gene expression profiles (Dyrskjot et al., 2003). There are 

several reasons why these experiments produce such MVs. For instance, the 

fluorescence intensity of spots may be corrupted by background signal intensity, 

fabrication faults may take place, or the microarray image might be corrupted, 

and its resolution may not be sufficient. A significant problem in microarray 

gene-expression datasets is that they often contain missing values, which can 

have adverse effects on the decision-making process (Souto et al., 2015, Wang 

et al., 2018). 

Gene expression data is now used in medical treatment, and particularly cancer 

therapeutics, more than ever before. However, this data often contains missing 

values, which should be appropriately handled before the analysis. One way to 

handle missing values is to use pre-processing methods to impute those missing 

values. 

Numerous studies have been conducted on datasets with missing values and 

how to apply imputation to them. In recent years, varieties of new imputations 

approaches have been proposed. Formerly, statistical metrics were effectively 

used in algorithms to impute missing values. 

Microarray datasets cannot be treated solely on the numerical values of gene 

expressions. They should also be considered with their biological backgrounds, 

such as gene interactions and functional importance for human life. Thus, some 

imputation methods cannot work properly with microarray data (Yang, Xu and 

Song, 2015). When samples containing MVs are eliminated from the gene 

expression dataset, the results of the classification can be biased. Discarding 
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missing values can only work for gene expression profiles that contain small 

numbers of MVs (< 5%)(Souto, Jaskowiak and Costa, 2015). 

The most basic imputation applications substitute missing values with a fixed 

number (such as zero), or finding a value from a sample very close to the sample 

containing MVs or simply replacing missing values with the mean value of the 

corresponding feature (Alizadeh et al., 2000). However, these simplistic 

approaches may lead to poor accuracy performance as they do not consider data  

correlation from the classification perspective (Troyanskaya et al., 2001). More 

advanced methods utilise feature correlations to mitigate the problem of missing 

values. These techniques include, for instance, weighted k-nearest neighbours 

(WKNN) (Troyanskaya et al., 2001), local least squares (LLS) (Kim, Golub and 

Park, 2005), and Bayesian principal component analysis (BPCA) (Oba et al., 

2003).  There is no superior imputation method that overcomes the problem of 

missing values completely. 

In recent studies, further improvements in various imputation methods have 

been achieved  (Oba et al., 2003; Wang et al., 2006; Enders, 2010; García-

Laencina, Sancho-Gómez and Figueiras-Vidal, 2010; Celton et al., 2012; Chai 

et al., 2014). The process validation usually involves a comparison of imputed 

and observed values with various performance indices (Liew, Law and Yan, 

2011). In the work of (Wang et al., 2006), three imputation algorithms, WKNN, 

LLS and BPCA, were used to impute the missing values of five different cancer 

gene-expression datasets. 

A variety of feature selection methods are used with microarray gene expression 

datasets to increase classifier performance and  prevent overfitting (Yu and Liu, 

2004; Nguyen et al., 2015; Li, Li and Yin, 2016; Mortazavi and Moattar, 2016; 

Ogutcen et al., 2016; Li, Li and Liu, 2017; Ogutcen, Belatreche and Seker, 

2018). Each method has different advantages and disadvantages, so an ensemble 

of multiple methods is discovered via Pareto Optimality. Therefore, each 

method’s benefits are combined to attain a better feature subset. 

Different imputation methods, such as using means and medians, create 

different values for the same features. However, there is no approach to combine 

and present their estimates under one solution. Imputed features are valuable as 



99 

 

they contribute to the classification, but they must be subjected to the feature 

selection process. The feature selection has been considered a standard process 

in this field, so imputed datasets were employed, and their effectiveness was 

evaluated. 

Existing studies are only applicable to gene expression profiles that are 

complete and do not consider those datasets containing missing values (Souto, 

Jaskowiak and Costa, 2015). In addition, no approach so far considers Pareto 

optimality in this context to address the modelling of microarray data with 

missing values. 

In this study, the proposed PO-based framework is used to evaluate the effect 

of imputations methods on the performance of ensemble feature selection 

methods and different classifiers. Applied framework provided promising 

results on various gene expression datasets having one or more missing gene 

values exist on their samples. 

6.2 Imputation Methods 

One of the best explanations of the precise mathematical background for 

imputing missing values can be found in Little and Rubin (Little and Rubin, 

2019). However, that work does not consider the use of machine learning 

techniques to impute the missing data. Moreover, the literature related to 

missing data imputation for microarray datasets are very limited (Troyanskaya 

et al., 2001). 

Distribution of missing values and amount of samples are effectively influences 

evaluating an imputation method, investigating the connection between 

performance of imputation methods and applicability on different datasets 

having missing values (Moorthy, Mohamad and Deris, 2014). While a variety 

of imputation techniques exist, most are local learning-based techniques which 

tend to suffer from overfitting (Wang et al., 2018). In this study, this relationship 

is investigated using the proposed Pareto optimal based multi-objective 

framework. We have implemented both statistical imputation and machine 

learning-based imputation methods to estimate missing values in gene 

expression datasets. 
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6.2.1 Statistical Imputation for Gene Expression 

Mean imputation: Mean imputation for gene expression replaces a single 

missing value of gene expression with the average of remaining gene 

expressions in microarray data. However, one drawback of using this method is 

that the variability (e.g., standard deviations and variance) of gene expression 

decreases which can reduce the discrimination ability of that gene (Eekhout et 

al., 2012). 

Median imputation: Median imputation for gene expression replaces a single 

missing value of gene expression with the median of remaining gene 

expressions in microarray data. This strategy is mathematically similar to 

estimating missing values with mean imputation. The median value of a gene 

of interest is simply obtained and replaced with the missing gene expressions 

found in samples. 

6.2.2 Machine Learning-based Imputation for gene expression 

Unlike basic statistical substitution methods such as mean and median based 

imputation methods, machine learning-based imputation methods are more 

complex and consider how the data is correlated (Souto, Jaskowiak and Costa, 

2015). There are variety of machine learning-based imputation methods 

available, however we have used imputation methods that are based on  k-

nearest neighbour, local least squares and Bayesian principal component 

analysis that are preferred to be studied in (Souto, Jaskowiak and Costa, 2015). 

They are particularly proposed to handle the missing values in gene-expression 

datasets and the computational complexity of them is provided in Table 6.1. In 

this table, n indicates the number of samples, p is the number of selected genes, 

k is the number of neighbours, and c is the number of components. 

These machine learning-based imputation approaches have been applied in 

numerous research studies to estimate missing values of bioinformatics related 

datasets (Souto, Jaskowiak and Costa, 2015; Choi et al., 2018; Wei et al., 2018; 

Magzoub et al., 2019). 

kNN-based imputation: kNN-based imputation is a machine learning-based 

imputation approach (Troyanskaya et al., 2001). This method finds 𝑘 neighbour 

gene expressions in samples that are closest to the gene that is of interest 
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containing missing gene expression. Each neighbour gene is weighted based on 

their similarity to the gene having the missing value. Then, kNNimpute 

algorithm replaces the missing value with weighted mean of the neighbour gene 

expressions. 

Local least squares-based imputation: Local least squares (LLS) is another 

machine learning-based imputation method that uses linear regression to 

estimate the missing gene expression (Kim, Golub and Park, 2005). Like the 

kNN approach, the LLSimpute algorithm also benefits from the nearby gene 

expressions. LLSimpute is a simple yet powerful approach and can be a better 

alternative to more used kNNimpute (Liew, Law and Yan, 2011). 

The Bayesian principal component analysis-based imputation: The 

Bayesian principal component analysis (BPCA) is a machine learning-based 

imputation method that benefits from the Bayesian methodology and a number 

of principal components for inferring the gene expression missing value (Oba 

et al., 2003). Even though BPCAimpute method is reported to be better at 

estimating missing values, its structure is relatively complex (Chai et al., 2014). 

Therefore, it is less used as compared to the well-known kNNimpute method. 

Table 6.1 The computational complexity of machine learning-based 

imputation methods used in the proposed framework 

Machine learning-based  

imputation method 

Computational Complexity 

kNN-based imputation O(npk) 

LLS-based imputation O(npk) 

BPCA-based imputation O((p + n)c + 2nc) 

  

6.3 Proposed Framework 

This section describes the proposed framework for the imputation of missing 

gene expression data. The Pareto Optimal (PO) based framework is applied to 

evaluate the effect of several imputation methods on the framework 

performance. Five different imputation techniques are applied to five different 

datasets. The imputation procedure followed is as in (Souto, Jaskowiak and 

Costa, 2015). PO selects different subsets for each dataset. Owing to feature 

selection, classification results of the proposed framework show improved 

accuracy throughout the majority of the datasets.  
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The proposed framework structure is shown in Figure 6-1; 

PARETO 
OPTIMAL

TRAINING DATA (e.g. 80%) TEST (e.g. 20%)

DATA SET

1. Fold

Ranking Method 1  Ranking Method 2 Ranking Method m

Gene Subset Gene Subset . . . . . . Gene Subset

Consensus Gene 
Subset

K-Nearest 
Neighbour

Extract 

Consensus Gene 
Subset
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. . . . . . . .
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(a)
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(c)

(d)

(e)

(f)

(g)

(h)

2. Fold . . . . . n. Fold

n × n × n × n × 

MISSING DATA SET

DATA 
IMPUTATION

 

Figure 6-1 Flowchart of the proposed framework using Pareto Optimality on 

paired-up features of Filter Methods (Model-1) applied for the datasets having 

missing values 

a) Missing values reside in the cancer datasets are imputed using both 

statistical and machine learning-based imputation methods. 

b) The dataset is divided into training and test cases and different dataset 

(20% test and 80% training or 40% test and 60% training). 

c) 𝐾-fold (5, 10 and LOO) cross-validation is applied to the training data 

sets (80% and 60%). 

d) The filter methods t-test, entropy, Bhattacharya, ROC, and Wilcoxon are 

used to rank the features. Each filter method is applied to each fold and 

ranked features are obtained. For the applied filter method, the ranked 

features of n-folds paired up. 
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e) The paired-up features from each filter test are further combined using 

PO (Figure 4-1). This will result in one subset of features. 

f) The final gene set is formed at the end of PO process. The duplicated 

genes that reside in the final gene set will then be removed. This will 

yield unique subset of a consensus gene subset.  

g) The genes that derived from the training data (consensus gene subset) 

using the PO analysis is validated using the test data. The test datasets 

(20% and 40%) are formed in two separate cases and organised using 

the consensus gene subset to validate our framework (aggregated gene 

selection using filter methods).  

h) The kNN is applied as the classification technique to evaluate our 

framework. 

In the comparison conducted by Souto et al. (2015), 5 different methods for data 

imputation were used: K-nearest neighbours (kNN), mean, median, Bayesian 

principal component analysis (BPCA), and local least squares (LSS). The 

applicability of Pareto Optimal is explored for datasets, which have missing data 

in terms of how it will improve classification performance. Different imputation 

methods create different values for genes. However, previous studies did not 

combine imputed features and neither did they apply feature selection. In the 

present study, Pareto Optimality is applied in a new way, in order to benefit 

from different set of feature selection methods. 

Previous studies (Souto, Jaskowiak and Costa, 2015) compared the distance 

calculations such as Pearson correlation, Euclidean distance, variance 

minimisation, so the most sufficiently accurate calculation is Euclidian distance 

for missing values. Therefore, the commonly used Euclidean distance metric 

was used to determine the neighbours. Nevertheless, the findings suggest that 

Euclidean distance is sensitive to outliers that can exist in microarray data  

(Troyanskaya et al., 2001).  

In this study, the imputation of varying percentage of missing values (between 

3% and 8%) of the data was investigated. One can consider the ability of the 

method to preserve the significant genes in the dataset, or its discriminatory / 

predictive power for classification or clustering purposes. The performance 
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levels of data imputation methods with a multi-criteria decision*making 

framework is compared to those found in previous studies. A Different level of 

missing data is used for comparison purposes. 

6.4 Results and Discussion 

In this section, the proposed framework is applied after the missing values have 

been imputed. Both statistical and machine learning-based imputation methods 

have been used and their impact on the performance were reported.  

The characteristics of five cancer datasets with varying percentage of missing 

values (between 3% and 8%) used in the proposed experiments is presented in 

Table 6.2. A description of the five cancer datasets, with 10% missing values, 

used in the proposed experiments is presented in Table 6.1. It shows the class 

distributions, class numbers and how many samples in classes. The proposed 

framework has used various ranking methods including t-test, Entropy, 

Bhattacharya, ROC, and Wilcoxon test and combined with PO. Also, the ratio 

of missing values that impacts the number of genes (between 40 and 75) in each 

dataset are shown in Table 6.2. Default values were applied with classifier 

settings of the linear kernel for the SVMs, kNN with k=1 and Euclidean distance 

based on comparative study. 
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Table 6.2 Cancer datasets with missing values 

     Original Data  

Dataset Tissue No. 

Classes 

Size of 

classes 

No. 

Samples 

No. genes %MV %Genes 

with MV 

DLBCL Blood 2 21,21 42 4022 3.25 49.3 

Brain Brain 3 31,14,5 50 41472 7.57 43.06 

Lung Lung 4 17,40,4,5 66 24192 3.87 67.81 

Prostate Prostate 4 11,39,19,41 110 42640 4.93 67.16 

Endometrium  Endometrium 4 13,3,19,7 42 24192 7.97 74.33 

 

The proposed PO-based framework is used to assess the contribution of each 

imputation method to finding a good subset of selected genes. The performance 

of the data imputation methods with a multi-criteria decision framework with 

respect to (Souto’s, 2015) results is given in Table 6.3. 

Table 6.3 Accuracy performance comparison of various imputation methods on 

gene expression datasets using PO-based feature selection with kNN classifier. 

  

BPCA BPCA-PO kNN kNN-PO LLS LLS-PO MEAN MEAN-

PO 

MEDIAN MEDIAN-

PO 

DLBCL- 

Blood 

Accuracy 69.05% 92.80% 66.67% 93.20% 69.05% 91.20% 66.67% 92% 66.67% 92.40% 

Subset Size 960 32 945 29 962 32 932 23 932 25 

Brain 
Accuracy 80% 82.54% 80.00% 84.55% 80.00% 82.73% 80.00% 83.82% 80.00% 84.55% 

Subset Size 3819 65 3833 66 3825 65 3850 65 3852 66 

Lung 
Accuracy 83.33% 87.86% 83.33% 88.00% 81.82% 86.57% 83.33% 88.29% 83.33% 88.14% 

Subset Size 2563 33 2540 32 2578 36 2584 30 2603 32 

Prostate 
Accuracy 66.67% 77.39% 66.67% 75.12% 65.22% 75.56% 66.67% 77.22% 63.77% 77.04% 

Subset Size 3846 34 3811 35 3833 32 3838 37 3930 39 

Endometrium 
Accuracy 80.95% 82.87% 76.19% 85.18% 76.19% 85.17% 76.19% 84.72% 76.19% 84.26% 

Subset Size 942 51 2074 69 2078 65 2073 63 2073 63 

 

The obtained results show that the proposed framework provided higher 

accuracy for the microarray imputed gene expression datasets. Real-world 

datasets often contain missing values and simple removal of samples involving 

missing values can cause overfitting of the trained model to the dataset or bias 

toward the classes of samples that do not contain any missing value. However, 

the obtained results clearly show how important finding unique subsets 

representing genes with imputed missing values on gene expression datasets 

reflecting a realistic real-world solution. 
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Table 6.4 Accuracy performance comparison of various imputation methods on 

gene expression datasets using PO-based feature selection with SVM classifier. 

 

 
BPCA BPCA-PO kNN kNN-PO LLS LLS-PO MEAN 

MEAN-

PO MEDIAN 

MEDIAN-

PO 

DLBCL- 

Blood 

Accuracy 91.48% 93.60% 91.48% 93.60% 88.10% 92.00% 91.48% 93.20% 91.48% 92.40% 

Subset Size 960 32 945 28 962 32 932 23 932 25 

Brain 
Accuracy 84.00% 95.44% 84.00% 95.45% 84.00% 95.45% 84.00% 95.45% 84.00% 95.45% 

Subset Size 3819 65 3819 66 3819 65 3819 65 3819 66 

Lung 
Accuracy 81.82% 94.99% 81.82% 94.29% 80.30% 93.57% 83.33% 92.86% 83.33% 93.57% 

Subset Size 2563 33 2563 32 2563 36 2563 30 2563 32 

Prostate 
Accuracy 82.61% 95.65% 84.06% 95.00% 79.71% 95.65% 82.61% 96.52% 81.16% 96.52% 

Subset Size 3846 34 3846 32 3846 32 3846 37 3846 39 

Endometrium 
Accuracy 79.57% 89.81% 80.95% 90.74% 80.95% 91.20% 78.57% 90.74% 80.95% 90.28% 

Subset Size 942 51 942 63 942 64 942 62 942 63 

 

Each gene expression dataset has its natural content and causes a different level 

of accuracy and subset sizes. The proposed method obtained a high accuracy 

classification performance on DLBCL-Blood dataset for each of the imputation 

method that is employed. This shows that dominant features of that dataset were 

successfully identified. kNN-PO resulted in the best classification performance 

(93.2%) for this dataset. However, we observed that our work accomplishes 

very close outcomes for each of the imputation method we studied. Likewise, a 

drastic increase in accuracy is observed for the Prostate dataset, the kNN-PO 

yielded the best classification performance reaching 98.26%. It should be noted 

that, the main similarity here is that both of these datasets include binary class 

data. 

The applied framework is provided better performance with two of the 

multiclass datasets. Increases in performance are observed between 2% to 5% 

on accuracy. However, for the Endometrium dataset accuracy performance is 

slightly lower than the previous study.  

It is observed that the different imputation methods could not easily be separated 

in terms of accuracy. There is no clear distinction for the best imputation method 

to generalise for imputation technique. When we change the classifier, the 

highest accuracies changed, occasionally switching to a different imputation 

method. In addition, regardless of which imputation method was used, feature 
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subsets of similar size were chosen. These shows that the recovery of missing 

data with different imputation methods do not provide a significant benefit 

among themselves. But we still consider that the difference in classifier 

performance highly dependent on variance of the gene expressions. The main 

benefit of our PO-based study is its ability to narrow down the genes from a 

thousand of genes. Moreover, these genes might more likely related to samples 

having the disease As seen in Table 6.3, accuracy values for the DLBCL(Blood) 

and Prostate datasets are increased dramatically. This can provide a baseline for 

further studies. 

Missing values in datasets is challenging and it is hard to gain maximum 

accuracy because recovering missing values is limited to the number of other 

samples and general structure of the dataset. 

The results reported in this chapter provided improvements in 4 out of 5 the 

dataset considered. In two datasets, namely DLBCL(Blood) and Prostate, a 

significant improvement in results were achieved. Of the remaining two 

datasets, the results from the proposed framework for Brain and Lung showed 

3% to 5% higher accuracy respectively. Only for the Endometrium dataset was 

accuracy slightly lower than in the previous study.  

The Endometrium dataset was a challenging dataset with a huge number of 

genes however only a small number of samples utilizing such a gene set. It has 

42 samples and 24,192 genes. In this case, multi-criteria feature selection could 

not improve the results.  

6.5 Conclusion 

The impact of common imputation methods on feature selection for different 

classification methods with PO-based framework has been analysed and their 

performance accuracy is compared against existing related works (Souto, 

Jaskowiak and Costa, 2015). There are not many studies that evaluate the 

contributions of imputation methods on ensemble methods. The experimental 

evaluation showed that the proposed framework based on ensemble feature 

selection methods performed reasonably well on datasets with missing values 

using different data imputation methods to recover missing gene information. 

Moreover, the outcome of this study provides a perspective on how imputation 
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methods affect different disease-related gene expression datasets and the 

performance of different classifiers combined with ensemble feature selection 

methods.   
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7 CONCLUSION AND FUTURE WORK 

7.1 Thesis Summary 

This thesis proposed, for the first time, a Pareto optimal based gene selection 

framework for biomarker discovery in microarray datasets. The proposed 

framework aims to identify a subset of disease relevant genes in microarray 

datasets. The framework integrates different filter methods combined with 

cross-validation and various classification approaches.  A PO method was used 

to combine the results of multiple learning methods to represent the data from 

different perspectives. While the proposed framework has been thoroughly 

evaluated on various well-known microarray datasets, its applicability can be 

further extended to other datasets, which contain a low number of high-

dimensional samples. The experimental results have shown that the proposed 

framework can achieve comparable or higher predictive accuracy with 

relatively fewer features.  

Another problem in representative gene selection is the dependency on the 

employed feature selection method where different filtering methods can 

achieve different subsets of genes. The use of PO method again proved to 

provide a viable solution to this problem and was able to select relevant subsets 

of genes. 

Class imbalance is one of the challenging problems in data classification and 

bioinformatics datasets are no exception.  The ability of the proposed 

framework to handle imbalanced microarray datasets was explored. It was 

shown that the proposed PO based framework can leverage the power of 

combining various data sampling methods in order to select optimal subsets of 

genes that are less biased towards the majority class.  

Missing data is another crucial problem that was considered by the proposed 

framework given that microarray gene-expression datasets often contain 

missing values, which can result in a biased gene classification. The ability of 

the proposed framework to benefit from common data imputation methods was 

investigated in this thesis. The effect of common imputation methods on the 

performance of the proposed Pareto optimal based gene selection framework 
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was been analysed. The obtained results showed that the proposed framework 

can cope reasonably well with datasets presenting missing values. 

7.2 Summary of Core Contributions 

7.2.1 Pareto Optimal Framework for Feature Selection on Biological 

Data Sets 

The primary contribution of this thesis is a new Pareto Optimal framework to 

select a subset of genes from microarray gene-expression datasets. The 

dependencies of the selection process were observed on a sample dataset. The 

results showed that even in almost identical subsets formed by excluding one 

sample of the entire dataset and including the other, attribute selection methods 

could produce different selections. The experiments showed that the results 

obtained with a single method or a single training set are unreliable because 

different data sets and different methods select different attributes. In order to 

find solutions to this problem, multi-criteria approaches have been proposed to 

improve the feature selection methods. The proposed methods have been 

applied to different biological data sets. 

An aggregated cross-validation PO framework combined different filter 

methods, t-test, entropy, Wilcoxon, ROC, and Bhattacharya. Moreover, 

different data variations combined with SFS that is a wrapper method. This 

framework is applied to three different data conditions. As a result, it has been 

shown that the PO-based hybrid approach, which combines local experts in 

multi-criteria decision-making, can be used to select the genes most relevant to 

various cancer diseases. In addition, PO minimized dependence on data set 

diversity using multiple criteria to select genes. Furthermore, when selecting the 

most successful gene subset, the number of subsets was determined by the 

method when the PO did not need parameters such as the number of elements 

to be selected or the selection threshold. Applying PO with a combination of 

different methods increases the success of attribute selection methods.  

The results in three studies with multiple datasets demonstrate the benefit of 

ensemble framework with on multi-objective method, namely PO. Progressive 

improvement on the subsets of each dataset provided higher accuracy than 

previous studies and narrowed down subsets for further biological studies. 
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7.2.2 Gene Selection on Imbalanced Datasets  

The proposed multi-criterion mixing method was applied to the imbalanced data 

set. Again, the dependence on data set variation was minimized by using 

multiple learning sets with PO method. In addition, it is aimed to reduce the 

method dependence of the feature selection process by using a combination set 

of 5 different methods. Moreover, natural distribution, balanced distribution and 

support method has been reached with more inclusive gene clusters. Better 

recognition of the minority class by the genes we selected confirms our results. 

The results show that additionally selected genes are useful in identifying the 

minority class. 

Then imbalanced classes supported by balanced subsets and gained higher 

discriminative genes and bring some noise for majority class identification. 

7.2.3 Gene Selection on Datasets Having Missing Values 

Imputation methods compared for feature selection on the PO-based 

framework. Effectiveness of each method has been measured. 𝑘-NN based 

imputation presented a slightly better contribution to features selection for 

classification. 

7.3 Future Research Directions 

The successful integration of local methods with multi-criteria decision-making 

methods suggests that local attribute selection methods can also be combined to 

further optimise both the size and relevance of the selected subsets of the genes. 

This possibility can be considered as a future extension of the proposed 

framework.  

In microarray data, the proposed hybrid method can also be used to reduce the 

relatively large number of genes selected by conventional microarray methods. 

The applicability of the proposed framework can be further extended to other 

microarray analysis applications such as predictive modelling of gene 

expression, gene sequencing and building genomic diagnostic tools.   

For imbalanced classes, PO based framework can adjust learning difference as 

inverse class ratio, that means making the minority class as majority class for 

sub-dataset when dataset has enough sample size for the minority class. 
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Following the promising results of this study, future work could investigate the 

impact of different PO thresholds and consider the different levels of dominated 

features to boost accuracy for different datasets. Also, the efficiency of various 

combinations of filter methods and classifier models can be further explored 

using the proposed framework. 

Finally, the prioritisation of genes is another critical issue. The analytical 

hierarchy process could be integrated into to the proposed framework, which 

will allow more detailed experiments to be conducted with the subsets. 
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