345 research outputs found

    Dictionary-based Debiasing of Pre-trained Word Embeddings.

    Get PDF
    Word embeddings trained on large corpora have shown to encode high levels of unfair discriminatory gender, racial, religious and ethnic biases. In contrast, human-written dictionaries describe the meanings of words in a concise, objective and an unbiased manner. We propose a method for debiasing pre-trained word embeddings using dictionaries, without requiring access to the original training resources or any knowledge regarding the word embedding algorithms used. Unlike prior work, our proposed method does not require the types of biases to be pre-defined in the form of word lists, and learns the constraints that must be satisfied by unbiased word embeddings automatically from dictionary definitions of the words. Specifically, we learn an encoder to generate a debiased version of an input word embedding such that it (a) retains the semantics of the pre-trained word embeddings, (b) agrees with the unbiased definition of the word according to the dictionary, and (c) remains orthogonal to the vector space spanned by any biased basis vectors in the pre-trained word embedding space. Experimental results on standard benchmark datasets show that the proposed method can accurately remove unfair biases encoded in pre-trained word embeddings, while preserving useful semantics.Comment: EACL 202

    Quantifying and Reducing Stereotypes in Word Embeddings

    Full text link
    Machine learning algorithms are optimized to model statistical properties of the training data. If the input data reflects stereotypes and biases of the broader society, then the output of the learning algorithm also captures these stereotypes. In this paper, we initiate the study of gender stereotypes in {\em word embedding}, a popular framework to represent text data. As their use becomes increasingly common, applications can inadvertently amplify unwanted stereotypes. We show across multiple datasets that the embeddings contain significant gender stereotypes, especially with regard to professions. We created a novel gender analogy task and combined it with crowdsourcing to systematically quantify the gender bias in a given embedding. We developed an efficient algorithm that reduces gender stereotype using just a handful of training examples while preserving the useful geometric properties of the embedding. We evaluated our algorithm on several metrics. While we focus on male/female stereotypes, our framework may be applicable to other types of embedding biases.Comment: presented at 2016 ICML Workshop on #Data4Good: Machine Learning in Social Good Applications, New York, N

    Towards Socially Responsible AI: Cognitive Bias-Aware Multi-Objective Learning

    Full text link
    Human society had a long history of suffering from cognitive biases leading to social prejudices and mass injustice. The prevalent existence of cognitive biases in large volumes of historical data can pose a threat of being manifested as unethical and seemingly inhuman predictions as outputs of AI systems trained on such data. To alleviate this problem, we propose a bias-aware multi-objective learning framework that given a set of identity attributes (e.g. gender, ethnicity etc.) and a subset of sensitive categories of the possible classes of prediction outputs, learns to reduce the frequency of predicting certain combinations of them, e.g. predicting stereotypes such as `most blacks use abusive language', or `fear is a virtue of women'. Our experiments conducted on an emotion prediction task with balanced class priors shows that a set of baseline bias-agnostic models exhibit cognitive biases with respect to gender, such as women are prone to be afraid whereas men are more prone to be angry. In contrast, our proposed bias-aware multi-objective learning methodology is shown to reduce such biases in the predictied emotions

    A Causal Inference Method for Reducing Gender Bias in Word Embedding Relations

    Full text link
    Word embedding has become essential for natural language processing as it boosts empirical performances of various tasks. However, recent research discovers that gender bias is incorporated in neural word embeddings, and downstream tasks that rely on these biased word vectors also produce gender-biased results. While some word-embedding gender-debiasing methods have been developed, these methods mainly focus on reducing gender bias associated with gender direction and fail to reduce the gender bias presented in word embedding relations. In this paper, we design a causal and simple approach for mitigating gender bias in word vector relation by utilizing the statistical dependency between gender-definition word embeddings and gender-biased word embeddings. Our method attains state-of-the-art results on gender-debiasing tasks, lexical- and sentence-level evaluation tasks, and downstream coreference resolution tasks.Comment: Accepted by AAAI 202

    Do Neural Ranking Models Intensify Gender Bias?

    Full text link
    Concerns regarding the footprint of societal biases in information retrieval (IR) systems have been raised in several previous studies. In this work, we examine various recent IR models from the perspective of the degree of gender bias in their retrieval results. To this end, we first provide a bias measurement framework which includes two metrics to quantify the degree of the unbalanced presence of gender-related concepts in a given IR model's ranking list. To examine IR models by means of the framework, we create a dataset of non-gendered queries, selected by human annotators. Applying these queries to the MS MARCO Passage retrieval collection, we then measure the gender bias of a BM25 model and several recent neural ranking models. The results show that while all models are strongly biased toward male, the neural models, and in particular the ones based on contextualized embedding models, significantly intensify gender bias. Our experiments also show an overall increase in the gender bias of neural models when they exploit transfer learning, namely when they use (already biased) pre-trained embeddings.Comment: In Proceedings of ACM SIGIR 202
    • …
    corecore