35 research outputs found

    Cross-Spectral Periocular Recognition with Conditional Adversarial Networks

    Full text link
    This work addresses the challenge of comparing periocular images captured in different spectra, which is known to produce significant drops in performance in comparison to operating in the same spectrum. We propose the use of Conditional Generative Adversarial Networks, trained to con-vert periocular images between visible and near-infrared spectra, so that biometric verification is carried out in the same spectrum. The proposed setup allows the use of existing feature methods typically optimized to operate in a single spectrum. Recognition experiments are done using a number of off-the-shelf periocular comparators based both on hand-crafted features and CNN descriptors. Using the Hong Kong Polytechnic University Cross-Spectral Iris Images Database (PolyU) as benchmark dataset, our experiments show that cross-spectral performance is substantially improved if both images are converted to the same spectrum, in comparison to matching features extracted from images in different spectra. In addition to this, we fine-tune a CNN based on the ResNet50 architecture, obtaining a cross-spectral periocular performance of EER=1%, and GAR>99% @ FAR=1%, which is comparable to the state-of-the-art with the PolyU database.Comment: Accepted for publication at 2020 International Joint Conference on Biometrics (IJCB 2020

    Periocular Biometrics: A Modality for Unconstrained Scenarios

    Full text link
    Periocular refers to the region of the face that surrounds the eye socket. This is a feature-rich area that can be used by itself to determine the identity of an individual. It is especially useful when the iris or the face cannot be reliably acquired. This can be the case of unconstrained or uncooperative scenarios, where the face may appear partially occluded, or the subject-to-camera distance may be high. However, it has received revived attention during the pandemic due to masked faces, leaving the ocular region as the only visible facial area, even in controlled scenarios. This paper discusses the state-of-the-art of periocular biometrics, giving an overall framework of its most significant research aspects

    A Reminiscence of ”Mastermind”: Iris/Periocular Biometrics by ”In-Set” CNN Iterative Analysis

    Get PDF
    Convolutional neural networks (CNNs) have emerged as the most popular classification models in biometrics research. Under the discriminative paradigm of pattern recognition, CNNs are used typically in one of two ways: 1) verification mode (”are samples from the same person?”), where pairs of images are provided to the network to distinguish between genuine and impostor instances; and 2) identification mode (”whom is this sample from?”), where appropriate feature representations that map images to identities are found. This paper postulates a novel mode for using CNNs in biometric identification, by learning models that answer to the question ”is the query’s identity among this set?”. The insight is a reminiscence of the classical Mastermind game: by iteratively analysing the network responses when multiple random samples of k gallery elements are compared to the query, we obtain weakly correlated matching scores that - altogether - provide solid cues to infer the most likely identity. In this setting, identification is regarded as a variable selection and regularization problem, with sparse linear regression techniques being used to infer the matching probability with respect to each gallery identity. As main strength, this strategy is highly robust to outlier matching scores, which are known to be a primary error source in biometric recognition. Our experiments were carried out in full versions of two well known irises near-infrared (CASIA-IrisV4-Thousand) and periocular visible wavelength (UBIRIS.v2) datasets, and confirm that recognition performance can be solidly boosted-up by the proposed algorithm, when compared to the traditional working modes of CNNs in biometrics.info:eu-repo/semantics/publishedVersio

    One-Shot Learning for Periocular Recognition: Exploring the Effect of Domain Adaptation and Data Bias on Deep Representations

    Full text link
    One weakness of machine-learning algorithms is the need to train the models for a new task. This presents a specific challenge for biometric recognition due to the dynamic nature of databases and, in some instances, the reliance on subject collaboration for data collection. In this paper, we investigate the behavior of deep representations in widely used CNN models under extreme data scarcity for One-Shot periocular recognition, a biometric recognition task. We analyze the outputs of CNN layers as identity-representing feature vectors. We examine the impact of Domain Adaptation on the network layers' output for unseen data and evaluate the method's robustness concerning data normalization and generalization of the best-performing layer. We improved state-of-the-art results that made use of networks trained with biometric datasets with millions of images and fine-tuned for the target periocular dataset by utilizing out-of-the-box CNNs trained for the ImageNet Recognition Challenge and standard computer vision algorithms. For example, for the Cross-Eyed dataset, we could reduce the EER by 67% and 79% (from 1.70% and 3.41% to 0.56% and 0.71%) in the Close-World and Open-World protocols, respectively, for the periocular case. We also demonstrate that traditional algorithms like SIFT can outperform CNNs in situations with limited data or scenarios where the network has not been trained with the test classes like the Open-World mode. SIFT alone was able to reduce the EER by 64% and 71.6% (from 1.7% and 3.41% to 0.6% and 0.97%) for Cross-Eyed in the Close-World and Open-World protocols, respectively, and a reduction of 4.6% (from 3.94% to 3.76%) in the PolyU database for the Open-World and single biometric case.Comment: Submitted preprint to IEE Acces

    Biometric presentation attack detection: beyond the visible spectrum

    Full text link
    The increased need for unattended authentication in multiple scenarios has motivated a wide deployment of biometric systems in the last few years. This has in turn led to the disclosure of security concerns specifically related to biometric systems. Among them, presentation attacks (PAs, i.e., attempts to log into the system with a fake biometric characteristic or presentation attack instrument) pose a severe threat to the security of the system: any person could eventually fabricate or order a gummy finger or face mask to impersonate someone else. In this context, we present a novel fingerprint presentation attack detection (PAD) scheme based on i) a new capture device able to acquire images within the short wave infrared (SWIR) spectrum, and i i) an in-depth analysis of several state-of-theart techniques based on both handcrafted and deep learning features. The approach is evaluated on a database comprising over 4700 samples, stemming from 562 different subjects and 35 different presentation attack instrument (PAI) species. The results show the soundness of the proposed approach with a detection equal error rate (D-EER) as low as 1.35% even in a realistic scenario where five different PAI species are considered only for testing purposes (i.e., unknown attacks
    corecore