772 research outputs found

    Gaze estimation driven solution for interacting children with ASD

    Get PDF

    A Deep Learning Approach for Multi-View Engagement Estimation of Children in a Child-Robot Joint Attention Task

    Get PDF
    International audienceIn this work we tackle the problem of child engagement estimation while children freely interact with a robot in a friendly, room-like environment. We propose a deep-based multi-view solution that takes advantage of recent developments in human pose detection. We extract the child's pose from different RGB-D cameras placed regularly in the room, fuse the results and feed them to a deep neural network trained for classifying engagement levels. The deep network contains a recurrent layer, in order to exploit the rich temporal information contained in the pose data. The resulting method outperforms a number of baseline classifiers, and provides a promising tool for better automatic understanding of a child's attitude, interest and attention while cooperating with a robot. The goal is to integrate this model in next generation social robots as an attention monitoring tool during various Child Robot Interaction (CRI) tasks both for Typically Developed (TD) children and children affected by autism (ASD)

    Gaze aversion during social style interactions in autism spectrum disorder and Williams syndrome

    Get PDF
    During face-to-face interactions typically developing individuals use gaze aversion (GA), away from their questioner, when thinking. GA is also used when individuals with autism (ASD) and Williams syndrome (WS) are thinking during question-answer interactions. We investigated GA strategies during face-to-face social style interactions with familiar and unfamiliar interlocutors. Participants with WS and ASD used overall typical amounts/patterns of GA with all participants looking away most while thinking and remembering (in contrast to listening and speaking). However there were a couple of specific disorder related differences: participants with WS looked away less when thinking and interacting with unfamiliar interlocutors; in typical development and WS familiarity was associated with reduced gaze aversion, however no such difference was evident in ASD. Results inform typical/atypical social and cognitive phenotypes. We conclude that gaze aversion serves some common functions in typical and atypical development in terms of managing the cognitive and social load of interactions. There are some specific idiosyncracies associated with managing familiarity in ASD and WS with elevated sociability with unfamiliar others in WS and a lack of differentiation to interlocutor familiarity in ASD. Regardless of the familiarity of the interlocutor, GA is associated with thinking for typically developing as well as atypically developing groups. Social skills training must take this into account

    Why study movement variability in autism?

    Get PDF
    Autism has been defined as a disorder of social cognition, interaction and communication where ritualistic, repetitive behaviors are commonly observed. But how should we understand the behavioral and cognitive differences that have been the main focus of so much autism research? Can high-level cognitive processes and behaviors be identified as the core issues people with autism face, or do these characteristics perhaps often rather reflect individual attempts to cope with underlying physiological issues? Much research presented in this volume will point to the latter possibility, i.e. that people on the autism spectrum cope with issues at much lower physiological levels pertaining not only to Central Nervous Systems (CNS) function, but also to peripheral and autonomic systems (PNS, ANS) (Torres, Brincker, et al. 2013). The question that we pursue in this chapter is what might be fruitful ways of gaining objective measures of the large-scale systemic and heterogeneous effects of early atypical neurodevelopment; how to track their evolution over time and how to identify critical changes along the continuum of human development and aging. We suggest that the study of movement variability—very broadly conceived as including all minute fluctuations in bodily rhythms and their rates of change over time (coined micro-movements (Figure 1A-B) (Torres, Brincker, et al. 2013))—offers a uniquely valuable and entirely objectively quantifiable lens to better assess, understand and track not only autism but cognitive development and degeneration in general. This chapter presents the rationale firstly behind this focus on micro-movements and secondly behind the choice of specific kinds of data collection and statistical metrics as tools of analysis (Figure 1C). In brief the proposal is that the micro-movements (defined in Part I – Chapter 1), obtained using various time scales applied to different physiological data-types (Figure 1), contain information about layered influences and temporal adaptations, transformations and integrations across anatomically semi-independent subsystems that crosstalk and interact. Further, the notion of sensorimotor re-afference is used to highlight the fact that these layered micro-motions are sensed and that this sensory feedback plays a crucial role in the generation and control of movements in the first place. In other words, the measurements of various motoric and rhythmic variations provide an access point not only to the “motor systems”, but also access to much broader central and peripheral sensorimotor and regulatory systems. Lastly, we posit that this new lens can also be used to capture influences from systems of multiple entry points or collaborative control and regulation, such as those that emerge during dyadic social interactions

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion

    Nuni-A case study

    Get PDF

    Analysis and enhancement of interpersonal coordination using inertial measurement unit solutions

    Get PDF
    Die heutigen mobilen Kommunikationstechnologien haben den Umfang der verbalen und textbasierten Kommunikation mit anderen Menschen, sozialen Robotern und kĂŒnstlicher Intelligenz erhöht. Auf der anderen Seite reduzieren diese Technologien die nonverbale und die direkte persönliche Kommunikation, was zu einer gesellschaftlichen Thematik geworden ist, weil die Verringerung der direkten persönlichen Interaktionen eine angemessene Wahrnehmung sozialer und umgebungsbedingter Reizmuster erschweren und die Entwicklung allgemeiner sozialer FĂ€higkeiten bremsen könnte. Wissenschaftler haben aktuell die Bedeutung nonverbaler zwischenmenschlicher AktivitĂ€ten als soziale FĂ€higkeiten untersucht, indem sie menschliche Verhaltensmuster in Zusammenhang mit den jeweilgen neurophysiologischen Aktivierungsmustern analzsiert haben. Solche QuerschnittsansĂ€tze werden auch im Forschungsprojekt der EuropĂ€ischen Union "Socializing sensori-motor contingencies" (socSMCs) verfolgt, das darauf abzielt, die LeistungsfĂ€higkeit sozialer Roboter zu verbessern und Autismus-Spektrumsstörungen (ASD) adĂ€quat zu behandeln. In diesem Zusammenhang ist die Modellierung und das Benchmarking des Sozialverhaltens gesunder Menschen eine Grundlage fĂŒr theorieorientierte und experimentelle Studien zum weiterfĂŒhrenden VerstĂ€ndnis und zur UnterstĂŒtzung interpersoneller Koordination. In diesem Zusammenhang wurden zwei verschiedene empirische Kategorien in AbhĂ€ngigkeit von der Entfernung der Interagierenden zueinander vorgeschlagen: distale vs. proximale Interaktionssettings, da sich die Struktur der beteiligten kognitiven Systeme zwischen den Kategorien Ă€ndert und sich die Ebene der erwachsenden socSMCs verschiebt. Da diese Dissertation im Rahmen des socSMCs-Projekts entstanden ist, wurden Interaktionssettings fĂŒr beide Kategorien (distal und proximal) entwickelt. Zudem wurden Ein-Sensor-Lösungen zur Reduzierung des Messaufwands (und auch der Kosten) entwickelt, um eine Messung ausgesuchter Verhaltensparameter bei einer Vielzahl von Menschen und sozialen Interaktionen zu ermöglichen. ZunĂ€chst wurden Algorithmen fĂŒr eine kopfgetragene TrĂ€gheitsmesseinheit (H-IMU) zur Messung der menschlichen Kinematik als eine Ein-Sensor-Lösung entwickelt. Die Ergebnisse bestĂ€tigten, dass die H-IMU die eigenen Gangparameter unabhĂ€ngig voneinander allein auf Basis der Kopfkinematik messen kann. Zweitens wurden—als ein distales socSMC-Setting—die interpersonellen Kopplungen mit einem Bezug auf drei interagierende Merkmale von „Übereinstimmung“ (engl.: rapport) behandelt: PositivitĂ€t, gegenseitige Aufmerksamkeit und Koordination. Die H-IMUs ĂŒberwachten bestimmte soziale Verhaltensereignisse, die sich auf die Kinematik der Kopforientierung und Oszillation wĂ€hrend des Gehens und Sprechens stĂŒtzen, so dass der Grad der Übereinstimmung geschĂ€tzt werden konnte. Schließlich belegten die Ergebnisse einer experimentellen Studie, die zu einer kollaborativen Aufgabe mit der entwickelten IMU-basierten Tablet-Anwendung durchgefĂŒhrt wurde, unterschiedliche Wirkungen verschiedener audio-motorischer Feedbackformen fĂŒr eine UnterstĂŒtzung der interpersonellen Koordination in der Kategorie proximaler sensomotorischer Kontingenzen. Diese Dissertation hat einen intensiven interdisziplinĂ€ren Charakter: Technologische Anforderungen in den Bereichen der Sensortechnologie und der Softwareentwicklung mussten in direktem Bezug auf vordefinierte verhaltenswissenschaftliche Fragestellungen entwickelt und angewendet bzw. gelöst werden—und dies in zwei unterschiedlichen DomĂ€nen (distal, proximal). Der gegebene Bezugsrahmen wurde als eine große Herausforderung bei der Entwicklung der beschriebenen Methoden und Settings wahrgenommen. Die vorgeschlagenen IMU-basierten Lösungen könnten dank der weit verbreiteten IMU-basierten mobilen GerĂ€te zukĂŒnftig in verschiedene Anwendungen perspektiv reich integriert werden.Today’s mobile communication technologies have increased verbal and text-based communication with other humans, social robots and intelligent virtual assistants. On the other hand, the technologies reduce face-to-face communication. This social issue is critical because decreasing direct interactions may cause difficulty in reading social and environmental cues, thereby impeding the development of overall social skills. Recently, scientists have studied the importance of nonverbal interpersonal activities to social skills, by measuring human behavioral and neurophysiological patterns. These interdisciplinary approaches are in line with the European Union research project, “Socializing sensorimotor contingencies” (socSMCs), which aims to improve the capability of social robots and properly deal with autism spectrum disorder (ASD). Therefore, modelling and benchmarking healthy humans’ social behavior are fundamental to establish a foundation for research on emergence and enhancement of interpersonal coordination. In this research project, two different experimental settings were categorized depending on interactants’ distance: distal and proximal settings, where the structure of engaged cognitive systems changes, and the level of socSMCs differs. As a part of the project, this dissertation work referred to this spatial framework. Additionally, single-sensor solutions were developed to reduce costs and efforts in measuring human behaviors, recognizing the social behaviors, and enhancing interpersonal coordination. First of all, algorithms using a head worn inertial measurement unit (H-IMU) were developed to measure human kinematics, as a baseline for social behaviors. The results confirmed that the H-IMU can measure individual gait parameters by analyzing only head kinematics. Secondly, as a distal sensorimotor contingency, interpersonal relationship was considered with respect to a dynamic structure of three interacting components: positivity, mutual attentiveness, and coordination. The H-IMUs monitored the social behavioral events relying on kinematics of the head orientation and oscillation during walk and talk, which can contribute to estimate the level of rapport. Finally, in a new collaborative task with the proposed IMU-based tablet application, results verified effects of different auditory-motor feedbacks on the enhancement of interpersonal coordination in a proximal setting. This dissertation has an intensive interdisciplinary character: Technological development, in the areas of sensor and software engineering, was required to apply to or solve issues in direct relation to predefined behavioral scientific questions in two different settings (distal and proximal). The given frame served as a reference in the development of the methods and settings in this dissertation. The proposed IMU-based solutions are also promising for various future applications due to widespread wearable devices with IMUs.European Commission/HORIZON2020-FETPROACT-2014/641321/E

    New light on neurocognitive processes linked to autism and attention deficit and hyperactivity disorder in childhood : studies of eye movements in twins

    Get PDF
    Visual attention and oculomotor response inhibition have been associated with Autism Spectrum Disorder (ASD) and Attention Deficit and Hyperactivity Disorder (ADHD) respectively. The aim of this thesis was to increase our knowledge about these cognitive functions relevant to ASD and ADHD in early infancy and childhood using eye tracking and twin modelling. Study 1 assessed the relative contribution of genetic and environmental influences to attentional networks and visual disengagement (using the gap overlap task) in a sample of twins from the general population, aged 9-14 years. It also assessed whether visual disengagement was associated with autistic traits. Gaze shift latencies across conditions were driven by shared genetic factors. Additionally, there were unique genetic influences to gaze shift latencies in the gap condition. In line with previous work, autistic traits were found to be heritable. There was no association between visual disengagement and autistic traits. Study 2 investigated the relative contribution of genetic and environmental factors to oculomotor response inhibition (using the antisaccade task) and the degree to which oculomotor response inhibition was associated with ADHD traits in the same twin sample. Oculomotor response inhibition in the form of premature anticipatory eye movements was heritable and associated to parent rated inattentive traits. This association was partially due to shared genetic factors. Study 3 investigated how visual disengagement relates to other cognitive developmental processes and behaviors, socioeconomic status and biological sex in early infancy. Gaze shift latencies in the overlap, baseline and gap conditions, of the Gap Overlap task, differed as a function of socioeconomic status and sex. No other associations between visual attention and developmental measures were observed. Thus, in summary, while these findings do not support neither a phenotypic nor a genetic link between visual disengagement and ASD, they support such association between oculomotor response inhibition and inattention (a core component of ADHD). Finally, these findings highlight the influence of sociodemographic factors on individual differences in visual attention in early infancy, thus underscoring the importance of understanding all sources of variation in attentional functions in childhood

    SELF-IMAGE MULTIMEDIA TECHNOLOGIES FOR FEEDFORWARD OBSERVATIONAL LEARNING

    Get PDF
    This dissertation investigates the development and use of self-images in augmented reality systems for learning and learning-based activities. This work focuses on self- modeling, a particular form of learning, actively employed in various settings for therapy or teaching. In particular, this work aims to develop novel multimedia systems to support the display and rendering of augmented self-images. It aims to use interactivity (via games) as a means of obtaining imagery for use in creating augmented self-images. Two multimedia systems are developed, discussed and analyzed. The proposed systems are validated in terms of their technical innovation and their clinical efficacy in delivering behavioral interventions for young children on the autism spectrum
    • 

    corecore