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A Deep Learning Approach for Multi-View Engagement Estimation of
Children in a Child-Robot Joint Attention Task

Jack Hadfield1,2, Georgia Chalvatzaki2, Petros Koutras1,2,
Mehdi Khamassi2,3, Costas S. Tzafestas2 and Petros Maragos1,2

Abstract— In this work we tackle the problem of child
engagement estimation while children freely interact with a
robot in a friendly, room-like environment. We propose a
deep-based multi-view solution that takes advantage of recent
developments in human pose detection. We extract the child’s
pose from different RGB-D cameras placed regularly in the
room, fuse the results and feed them to a deep neural network
trained for classifying engagement levels. The deep network
contains a recurrent layer, in order to exploit the rich temporal
information contained in the pose data. The resulting method
outperforms a number of baseline classifiers, and provides a
promising tool for better automatic understanding of a child’s
attitude, interest and attention while cooperating with a robot.
The goal is to integrate this model in next generation social
robots as an attention monitoring tool during various Child
Robot Interaction (CRI) tasks both for Typically Developed
(TD) children and children affected by autism (ASD).

I. INTRODUCTION

As robots become more integrated in modern societies, the
cases of interacting with humans during daily life activities
and tasks are increasing. Human-Robot Interaction (HRI)
refers to the communication between robots and humans.
This communication can be verbal or non-verbal, remote or
proximal. A special case of HRI is Child-Robot Interaction
(CRI) [1]. Robots enter children’s lives as companions,
entertainers or even educators [2]. Motivated by this need, in
the context of BabyRobot EU project [3], we have developed
and evaluated systems which employ multiple sensors and
robots, for childrens’ speech, gesture and action recognition
during CRI scenarios [4]–[6], in a specially designed area,
the “BabyRobot room”. Children are very adaptive, quick
learners with unique communication skills, able to easily
convey or share complex information with little spoken
language. A major challenge in the field of CRI, however,
entails equipping robots with the ability to pick up on such
information and adapt their behavior accordingly, in order to
achieve a more fruitful interaction.

Robots assisting children is of particular importance in
modern research, especially for mediating ASD therapy
towards the development of their social skills, [7]. A review
on social robots for education can be found in [8]. Children
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Fig. 1: Examples of three levels of engagement: (a) Limited attention
(class 1), (b) Attention but no cooperation (class 2), (c) Active
cooperation (class 3).

affected by ASD can benefit from interacting with robots,
since such a CRI may help them overcome the impediments
posed by face-to-face interaction with humans. Moreover,
it is important that the robot’s behavior can adapt to the
special needs of each specific child and maintain an identical
behavior for as long as needed in the intervention process [9].

One key issue for social robots is the development of
their ability to evaluate several aspects of interaction, such
as user experience, feelings, perceptions and satisfactions
[10]. Human engagement in HRI according to [11] “is a
category of user experience characterized by attributes of
challenge, positive affect, endurability, aesthetic and sensory
appeal, attention, feedback, variety/novelty, interactivity, and
perceived user control”. Poggi in [12] adds that engagement
is the level at which a participant attributes to the goal
of being together with other participants within a social
interaction and how much they continue this interaction.
Given this rich notion of engagement, many studies have
explored human-robot engagement [10]. Lemaignan et. al
[13] explored the level of “with-me-ness”, by measuring to
what extent the human is with the robot during an interactive
task, for assessing the engagement level. Human engagement
has been modeled in a number of works, using solely gaze
[14], speech and gaze [15], and human pose with respect to
the robot from static positions [10], [16].

Engaging children in CRI tasks is of great importance.
The social characteristics that robots should have when
performing as tutors were examined in [17], [18]. Specific



Fig. 2: Setup for recording joint attention experiments.

focus is given in estimating the engagement of children
with ASD interacting with adults [19] or robots [20]. A
study analyzing the engagement of children participating in
a robot-assisted therapy can be found in [21]. A method for
the automatic classification of engagement with a dynamic
Bayesian network using visual and acoustic cues and support
vector machine classifiers is described in [22]. Another
approach considers the facial expressions of children with
ASD to evaluate their engagement [23]. A robot-mediated
joint attention intervention system using as input the child’s
gaze is presented in [24]. A deep learning framework for
estimating the child’s affective states and engagement is
presented in [25] in a static setting in front of the robot.
Previous work from our research team focused on using
engagement estimates in a reinforcement learning setting to
adapt robot’s motion and expressivity [26], [27]. Hence, es-
timating children engagement level is important for adapting
the behavior of a robot companion.

In this paper we present an deep learning approach for
estimating the engagement of children in a CRI collaborative
task aiming to establish joint attention between a child and a
robot. In the specific scenario examined, the robot’s aim is to
elicit child’s attention through an experiment consisting of a
handover task, that tests the child’s attentiveness and social
coordination skills, with the hope that the child will correctly
understand the robot-agent’s intentions and ultimately take
part in a successful collaboration. In this setting, children
engagement refers to rich information about their movement
in the room w.r.t. the robot agent. Our method employs
the children full body pose estimates along with high-level
computed features, such as gaze and arm extension, to
capture a wide range of movements and actions relevant to
the child’s engagement.

Our method incorporates a multi-view estimation of the
child’s pose, where the child is inside a specially arranged
room with a network of cameras (Fig. 1). An LSTM-based
algorithm classifies the engagement of the child to the task
using the child’s pose as input and observations by experts
as control targets. We experimentally validate our algorithms
exploiting the RGB-D data from recordings of children who

Fig. 3: Multi-view pose estimation overview.

participated in the experimental procedure.
A major contribution of this work is the proposal and

validation of an engagement estimation method generalizable
to a multitude of CRI tasks. The setup allows the child to
freely move and interact with the robot, without being limited
to a stationary position in front of a robot, sensor or adult.
This is in contrast to prior works which are restricted in
such a sense. The data-driven nature of our approach also
contributes to its generalizability, as no prior hypotheses
are made regarding the actions most relevant to the task.
Instead, the algorithm learns to distinguish the movements
and stances most informative of the child’s engagement.
Finally, the multi-view fusion helps achieve a more robust
and accurate classifier by confronting cases of body part
occlusions and providing better pose estimations than if a
single camera was used. We believe that such a pose-related
framework can also apply to ASD children engagement
estimation who present a variability of behaviors and motions
in order to adapt the behavior of robot mediation accordingly.

II. METHOD

The main problem addressed in this work is to estimate the
engagement level of children from visual cues. The problem
is cast as one of multi-class classification, where each class
corresponds to a different level of engagement. Specifically,
we designate three distinct levels of engagement: the first
(class 1) signifies that the child is disengaged, i.e. paying
limited or no attention to the robot; the second (class 2)
refers to a partial degree of engagement, where the child
is attentive but not cooperative; the final level (class 3)
means that the child is actively cooperating with the robot to
complete the handover task. The task details are described in
Sec. III-A. During the course of an interactive session, the
engagement level varies. The goal is therefore to perform this
classification across a number of fixed-length time segments
during the session, rather than producing a single estimate
for the entire interaction. In the remainder of this section we
describe the proposed method to perform this classification.



Fig. 4: The detected pose is shown along with the detected bounding
box surrounding the robot’s head.

A. Multi-View child pose estimation

Perhaps the most informative data for recognizing the
engagement level in joint attention tasks is that of the child’s
pose. The problem of detecting human pose keypoints in
images is a challenging one, due to occlusions and widely
varying articulations and background conditions. Only re-
cently has the problem been solved to a satisfactory degree,
especially with the introduction of the Open Pose library
[28]–[30] for 2D keypoint detection.

In [31], an end-to-end 3D pose estimator from RGB-D
data is proposed. The Open Pose library is used to detect
2D keypoint score maps from the color image. These maps
are then fed to a deep neural network, along with a voxel
occupancy grid derived from the depth image. The network
is trained to produce 18 3D keypoint estimates: two for each
wrist, elbow, shoulder, hip, knee and ankle, one for the neck
and five facial points, consisting of the ears, the eyes and the
nose. We employ this system in our work, to estimate the
child poses during their interaction with the robot.

When using multiple cameras, the keypoints can be ex-
tracted for each view and fused to produce the final estimates
(Fig. 3). The first step to achieve this is to register the
points of each camera reference frame to a single common
frame. The registration parameters were found using the ICP
algorithm [32], which provides the transformation that best
fits the point cloud of one camera to that of another, given
an initial transformation that we set manually.

After transforming the keypoint coordinates of all cam-
eras to a common reference frame, the next step is to
determine which keypoints are valid from each view. The
pose estimation algorithm occasionally fails, either when
some of the child’s joints are hidden, or when the pose
differs substantially from those used to train the algorithm.
In such cases, the system produces noisy estimates or no
detections at all for certain keypoints. Another problem is
that the algorithm sometimes outputs multiple poses, when
another person is in view or occasionally when the network
is confused by some background artifact. To tackle such
problems, we only average the points that are sufficiently
close to those detected in the previous frame, i.e. at a
maximum distance of 0.5m. If no such points exist for a
certain joint, we mark the joint as missing in the current
frame.

Fig. 5: Extracted features shown from an overhead view of the room.
The detected keypoints are shown as black circles.

Having fused the pose detections of multiple views, we in-
terpolate the missing values using the previous estimates and
then smooth the output using a simple low-pass filter. The
points then undergo a final rotation, so that the coordinate
axes co-align with the edges of the room.

B. Feature Extraction

The child’s pose is particularly useful when examined in
relation to the robot’s position. Therefore, we would like to
estimate the 3D keypoints within the robot’s frame. Since
the Nao robot isn’t equipped with any localization sensors,
we must estimate its position with respect to the world
coordinates through other means. To this end, we detect
the robot in the color stream of one of the cameras, and
infer its 3D position via an inverse camera projection. The
robot’s localization is thus performed fully autonomously,
alleviating the need to provide an initial position and monitor
its trajectory withing the rooms.

We fine-tuned the YOLOv3 detection network [33] to
detect the robot’s head on a set of 100 manually annotated
images. Using this network, we then detected the robot
position in all video frames. An example is shown in Fig. 4.
Paired with the depth images, we converted the detections
to 3D points. The robot detections also contained noise and
missing values, and were subjected to a similar procedure as
the keypoints, ie. missing value interpolation and smoothing.
We also rejected erroneous detections if they lay outside a
certain expected range, based on the limitations of the robot’s
movement. The body 3D keypoints are transformed to the
detected robot frame each time instant, in order to capture
the child’s movements and transitions in relation to the robot.

Aside from the child’s pose keypoints, we produce a
number of high-level features that are expected to assist
the classification process (Fig. 5). These include the angle
between the child’s gaze and the robot, the angle between
the child’s body facing and the robot and the distance of
the child’s hands from their respective shoulders. The gaze
direction is calculated from the detected facial keypoints, by
taking the ear-to-ear vector in the 2D plane and rotating it
90deg. The body facing is calculated in a similar fashion
from the shoulder keypoints. From the two resulting angles,
we subtract the robot-to-child angle, which is calculated
using the keypoint center of mass and the detected robot
position. The high-level features are concatenated with the



(a) Network architecture: fully connected layers FC1, FC2, FC3, a single
LSTM layer and a final FC4 layer coupled with a softmax function on
the output.

Layer Output Includes
FC1 (N,L,2C) Dropout + ReLU
FC2 (N,L,2C) Dropout + ReLU
FC3 (N,L,2C) Dropout + ReLU

LSTM (N,L,C) -
FC4 (N,L,K) -

(b) Layer outputs sizes: N is the batch size, L is the
sequence length, C is the hidden states size and K is the
number of classes.

Fig. 6: (a) Architecture of neural network used to classify child engagement. (b) Network layer details.

keypoint values relative to the robot, mentioned above, to
form the input data to the classifier.
C. Engagement Estimation

A key observation worth noting is that the degree of
engagement heavily depends on temporal information. One
reason for this is that the child tends to display the same level
of interest over the course of a few-second interval. More
importantly, however, the child’s movement and actions con-
tain rich information which can be exploited. For example,
if the child is constantly shifting their gaze, this is usually an
indication of disengagement, whereas a steady focus signifies
a higher level of interest. By choosing suitable machine
learning algorithms capable of capitalizing on temporal data,
we can expect a notable improvement over simply classifying
each segment individually.

We use a deep NN to classify the engagement level over
time, the architecture of which can be seen in Fig. 6a. The
network consists of three fully connected (FC) layers, a
Long Short-Term Memory (LSTM) network [34] and a final
FC layer, with a softmax function applied to the output to
produce a probability score for each class. LSTM networks
are a certain type of recurrent neural network that are known
to be well-suited to dealing with time-varying data.

The network is fed a sequence of L inputs. We group the
input features described earlier into segments of 5 frames,
over which we compute the mean and standard deviation,
thus further reducing noise and avoiding training on spurious
data points, which can cause over-fitting. This gives us an
input vector xt for each segment t ≤ L, with a dimension of

D = 2 · [3 · (18 keypoints)+4 high-level features] = 116

The output yt(x1: t ,W) is a function of the previous t inputs
in the sequence and the weights W of the network, with a
dimension equal to the number of classes (K = 3). The FC
layers produce linear combinations of their inputs, operating
on each sequence point individually. The softmax layer
ensures that the elements of yt are positive and sum to one.
The data are fed in batches of size N. The output dimensions
of each layer are shown in the table in Fig. 6. The variable C
is the size of the LSTM’s hidden state. We set the output sizes
of the first three FC layers to 2 ·C after trial and error. The
first three FC layers are each followed by a dropout layer,
with probability 0.5, and a Rectified Linear Unit (ReLU).

(a) Approaching the brick (b) Pointing at the brick

(c) Looking at the child

Fig. 7: Examples of the robot’s attempts to elicit the child’s attention.

III. EXPERIMENTAL ANALYSIS & RESULTS

A. Experimental setup

1) Setup: The experimental setup can be seen in Fig. 2.
As shown, 4 Kinect devices are placed at various angles
to capture multiple views of the room. Devices 1 and 2
capture the room from either side, device 3 from above and
device 4 from the front. The Nao robot [35] was chosen for
the task because it is capable of a wide range of motion,
and its human-like features make it suitable for child-robot
interaction. One or more bricks were placed either on a table
in front of the robot, or on the floor close by. The child is
free to move around the room as they please.
2) Session Description: The experiments evolved as follows.
The robot approached one of the bricks and displayed the
intention of picking up the brick, without being able to
actually grasp it. With a series of motions it attempted to
capture the child’s attention and prompt the child to hand
over the brick. These motions included pointing at the brick,
opening and closing its hand, alternating its gaze between



Method Mean F-Score Accuracy Balanced Accuracy
Majority class 27.90 71.97 33.33
Gaze LSTM 32.78 71.58 36.10

SVM 54.79 68.27 58.61
RF 56.41 68.60 61.78

3FC+LSTM 62.18 77.11 61.88

TABLE I: Performance results of different algorithms on the data.
Results are averaged across folds of leave-one-out cross-validation.

the child and the brick and a combination of head turning
and hand movement. Example snapshots of such motions are
shown in Fig. 7. If after a certain length of time the child
failed to understand the robot’s intent, the robot proceeded
to ask the child verbally. Once the brick was successfully
handed over, the robot thanked the child and in some cases
looked for another brick to grasp.
3) Data Collection: We recorded a total of 25 sessions,
resulting in approximately 85 min of recorded RGB-D data
for the four cameras. The children were aged 6-10 years
old, 15 male and 10 female. The videos were then given
to experts for annotation, according to the scheme described
earlier.

B. Experimental Validation

We evaluate the method described above trained on the
recordings of the children. Since we only have 25 videos,
rather than splitting the set into training and testing sub-
sets, we carry out the evaluation via leave-one-out cross-
validation.
1) Implementation: We implemented the NN described in
section II using the PyTorch library. The network was trained
from scratch, with an initial learning rate of 0.1, momentum
0.5 and weight decay 10−6. We used early stopping on a
random subset of the training data, with a patience level of
10 epochs. When the training converged, we dropped the
learning rate by a factor of 10. We chose a training batch
size of N = 16 and set the hidden state size to C = 560. The
sequence length L was set to 30. These values were chosen
after an extensive hyper-parameter search.

Since LSTM networks generally require a large amount
of data to train successfully and avoid over-fitting, we
employ a few methods of data augmentation. Namely, we
add a small amount of Gaussian noise to the mean value
of each segment and randomly choose the starting point of
each sequence within a range of 2 seconds. We observed
a further improvement when training the FC layers first,
and then freezing their weights, adding the LSTM module
and training the remaining network. This forces the initial
layers to produce informative outputs with regard to each
individual segment, which the LSTM can then utilize to
extract meaningful temporal information. Additionally, since
we observed occasional spikes in the network’s gradients, we
performed gradient clipping on the LSTM layer by capping
the gradient norms at the value of 0.1.

The final classification is performed on 1-second segments,
by process of a majority vote within the segment. At a frame
rate of 30 fps, each second contains 6 smaller segments. This
seemed a logical compromise between over-sampling the

Net Architecture Mean F-Score Accuracy Balanced Accuracy
3 · FC + LSTM 62.18 77.11 61.88
2 · FC + LSTM 56.23 71.86 58.46

3 · FC + 2 · LSTM 54.78 70.60 56.30
2 · FC + 2 · LSTM 54.45 69.71 56.91

TABLE II: Cross-validation results for different network architec-
tures.

Parameters Mean F-Score Accuracy Balanced Accuracy
N=8, L=30 58.75 74.41 58.40
N=16, L=30 62.18 77.11 61.88
N=32, L=30 55.36 69.34 58.68
N=16, L=10 47.21 61.68 51.58
N=16, L=60 48.25 57.32 56.86

TABLE III: Results for different hyper-parameter values.

data points and segmenting the temporal stream too crudely
to be of use.

The classes were notably imbalanced, with 281 segments
belonging to class 1, 2578 to class 2 and 745 to class 3.
Though we also experimented with under-sampling and over-
sampling, the best results were achieved using a weighted
cross-entropy loss during training:

L =− 1
NL

N

∑
j

L

∑
t

wc j,t logyc j,t
(x j,1: t ,W) (1)

where y is the network output, c j denotes the class of the
j-th sample in the minibatch and w is a vector containing the
weights for each class. We set w = (9.16,1.00,3.42), based
on the appearance frequencies of each class in the dataset.
2) Evaluation Metrics: Due to the large class imbalance, the
standard accuracy measure is not very informative. There-
fore, we use two other measures of performance. The first is
the average F-Score across all three classes, which is high
only when both the precision and recall of each class is high.
The second is the balanced accuracy of [36], given by:

1
K

K

∑
c=1

T Pc

T Pc +FPc
(2)

where T Pc and FPc denote the true and false positives
respectively of class c, and K = 3 is the number of classes.
3) Results: In Table I we compare the LSTM-based network
against other popular classifiers, in particular a Support
Vector Machine (SVM) and a Random Forest (RF). The
SVM uses an RBF kernel with a regularization weight of
C = 100 and a kernel coefficient of γ = 0.01. The RF consists
of 10 trees with a maximum depth of 10. For fair comparison,
the hyper-parameters of both classifiers were tuned via an
equally extensive grid search as the LSTM network. We also
include two baseline approaches. The first consists of the
results if the majority class (class 1) is always predicted.
The second is another LSTM-based network trained solely
on the gaze direction feature, which is a commonly used
feature in literature [37].

Notice that the proposed method outperforms all other
classifiers, confirming our hypothesis that exploiting tem-
poral relations in the input data can lead to better results.
The SVM and the RF fail to capture temporal continuity



Fig. 8: ROC curves of network with optimal hyper-parameters.

and logical transitions between engagement states1. Both
classifiers perform significantly better than simply predicting
the majority class, however, meaning that even stationary
pose information is partially descriptive of the engagement
level. On the other hand, the network trained only on
gaze direction performs rather poorly, since (a) the gaze
estimate contains a lot of noise which the network can’t deal
with using redundant variables, and more importantly (b) it
doesn’t capture information such as arm extentions, walking
and other movements.

In Table II we evaluate some other network architectures
that we also tried. We experimented with the removal of the
third FC layer (rows 2 and 4) and with the addition of a
second LSTM layer (rows 3 and 4). As shown, the chosen
architecture provides notably better results across all metrics.
The additional LSTM layer causes over-fitting, rather than
learning any deeper information in the data. The use of
dropout allows a deeper network, with the addition of the
third FC layer boosting the performance by a large margin.

In Table III we provide a comparison of different hyper-
parameter values. The optimal sequence length is small
enough to allow the training set to be divided into enough
sequences to avoid over-fitting, but large enough to capture
long term dependencies in the data. A batch size of 16 also
provides a compromise between finely sampling the training
data in each iteration and avoiding local minima while
training. In Fig. 8 we can see the ROC curves for each class
separately along with the micro and macro-average ROC
curves. The macro-average number of True/False positives
is simply the average of each class. The micro-averages, on
the other hand, are weighted by the number of samples in
each class. Therefore, the micro-average curve is better suited
due to the large class imbalance, and our network achieves
an Area Under Curve of 0.83 regarding this ROC.

Finally, in order to examine which features are of greater
importance to the model, we calculate the gradient of the
loss function with respect to each input variable. A higher
gradient means the network is more sensitive to changes of
the input variable, indicating a higher importance. Due to

1See supplementary video for examples.

the high correlation between inputs, the network focused
on different variables each time it is trained. Therefore,
we trained the model 100 times and averaged the gradients
calculated in each run. The results are shown in Fig. 9. We
can see that both the high-level features and the keypoint
positions contribute to the algorithm’s output, justifying our
pose-based approach to the problem. While the child’s gaze
is the most informative variable, a number of other inputs
also score similarly. The child’s body facing can sometimes
complement the gaze, while the 2D position conveys how
close the child is to the robot. The limb positions allow the
network to exploit temporal differences to detect walking and
reaching movements. Also note that although the segment
standard deviations are less important than the mean values,
they are not entirely uninformative, as they contain informa-
tion regarding abrupt movements that can be indicative of
the child’s reactions to the robot’s actions.

As we see from the results above, the proposed deep
network architecture can learn and accurately track the
child’s engagement based on their pose variation during the
proposed freely interaction task. The developed system can
be further improved with the presence of more annotated data
and can easily be adapted to a range of CRI tasks that require
body movement on the child’s behalf. The whole engagement
module can be integrated alongside with child’s speech,
action or emotion recognition modules in order to create
next generation social robots that can detect and recognize
the children’s behavior.

IV. CONCLUSIONS & FUTURE WORK

In this work we proposed, by taking advantage of recent
progress in deep learning, a method of child engagement es-
timation during child-robot collaboration without restricting
their movement. The use of child pose data, in conjunction
with an LSTM-based neural network, proved to be effective
towards this goal. This is especially important considering
the difficulty of the problem. Differences in child behavior
and personality, a wide range of possible motions and
actions and various technical challenges all contribute to this
difficulty. The concept of engagement is not rigidly defined,
thus making the task hard even for humans. Despite this, we
achieve relatively high evaluation metrics across a dataset of
25 children. An important direction for future work will be
to test and adapt the system to children affected by ASD.
Naturally, this imposes a further challenge, as ASD children
act very differently to children in typical development.
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