38,668 research outputs found

    Gaussian process approximations of stochastic differential equations

    Get PDF
    Stochastic differential equations arise naturally in a range of contexts, from financial to environmental modeling. Current solution methods are limited in their representation of the posterior process in the presence of data. In this work, we present a novel Gaussian process approximation to the posterior measure over paths for a general class of stochastic differential equations in the presence of observations. The method is applied to two simple problems: the Ornstein-Uhlenbeck process, of which the exact solution is known and can be compared to, and the double-well system, for which standard approaches such as the ensemble Kalman smoother fail to provide a satisfactory result. Experiments show that our variational approximation is viable and that the results are very promising as the variational approximate solution outperforms standard Gaussian process regression for non-Gaussian Markov processes

    An Exact Auxiliary Variable Gibbs Sampler for a Class of Diffusions

    Full text link
    Stochastic differential equations (SDEs) or diffusions are continuous-valued continuous-time stochastic processes widely used in the applied and mathematical sciences. Simulating paths from these processes is usually an intractable problem, and typically involves time-discretization approximations. We propose an exact Markov chain Monte Carlo sampling algorithm that involves no such time-discretization error. Our sampler is applicable to the problem of prior simulation from an SDE, posterior simulation conditioned on noisy observations, as well as parameter inference given noisy observations. Our work recasts an existing rejection sampling algorithm for a class of diffusions as a latent variable model, and then derives an auxiliary variable Gibbs sampling algorithm that targets the associated joint distribution. At a high level, the resulting algorithm involves two steps: simulating a random grid of times from an inhomogeneous Poisson process, and updating the SDE trajectory conditioned on this grid. Our work allows the vast literature of Monte Carlo sampling algorithms from the Gaussian process literature to be brought to bear to applications involving diffusions. We study our method on synthetic and real datasets, where we demonstrate superior performance over competing methods.Comment: 37 pages, 13 figure

    Marcus versus Stratonovich for Systems with Jump Noise

    Full text link
    The famous It\^o-Stratonovich dilemma arises when one examines a dynamical system with a multiplicative white noise. In physics literature, this dilemma is often resolved in favour of the Stratonovich prescription because of its two characteristic properties valid for systems driven by Brownian motion: (i) it allows physicists to treat stochastic integrals in the same way as conventional integrals, and (ii) it appears naturally as a result of a small correlation time limit procedure. On the other hand, the Marcus prescription [IEEE Trans. Inform. Theory 24, 164 (1978); Stochastics 4, 223 (1981)] should be used to retain (i) and (ii) for systems driven by a Poisson process, L\'evy flights or more general jump processes. In present communication we present an in-depth comparison of the It\^o, Stratonovich, and Marcus equations for systems with multiplicative jump noise. By the examples of areal-valued linear system and a complex oscillator with noisy frequency (the Kubo-Anderson oscillator) we compare solutions obtained with the three prescriptions.Comment: 14 pages, 4 figure
    • …
    corecore