911,180 research outputs found
Deep Gaussian Mixture Models
Deep learning is a hierarchical inference method formed by subsequent
multiple layers of learning able to more efficiently describe complex
relationships. In this work, Deep Gaussian Mixture Models are introduced and
discussed. A Deep Gaussian Mixture model (DGMM) is a network of multiple layers
of latent variables, where, at each layer, the variables follow a mixture of
Gaussian distributions. Thus, the deep mixture model consists of a set of
nested mixtures of linear models, which globally provide a nonlinear model able
to describe the data in a very flexible way. In order to avoid
overparameterized solutions, dimension reduction by factor models can be
applied at each layer of the architecture thus resulting in deep mixtures of
factor analysers.Comment: 19 pages, 4 figure
Positivity for Gaussian graphical models
Gaussian graphical models are parametric statistical models for jointly
normal random variables whose dependence structure is determined by a graph. In
previous work, we introduced trek separation, which gives a necessary and
sufficient condition in terms of the graph for when a subdeterminant is zero
for all covariance matrices that belong to the Gaussian graphical model. Here
we extend this result to give explicit cancellation-free formulas for the
expansions of nonzero subdeterminants.Comment: 16 pages, 3 figure
Gaussian process model based predictive control
Gaussian process models provide a probabilistic non-parametric modelling approach for black-box identification of non-linear dynamic systems. The Gaussian processes can highlight areas of the input space where prediction quality is poor, due to the lack of data or its complexity, by indicating the higher variance around the predicted mean. Gaussian process models contain noticeably less coefficients to be optimized. This paper illustrates possible application of Gaussian process models within model-based predictive control. The extra information provided within Gaussian process model is used in predictive control, where optimization of control signal takes the variance information into account. The predictive control principle is demonstrated on control of pH process benchmark
Gaussian process models for periodicity detection
We consider the problem of detecting and quantifying the periodic component
of a function given noise-corrupted observations of a limited number of
input/output tuples. Our approach is based on Gaussian process regression which
provides a flexible non-parametric framework for modelling periodic data. We
introduce a novel decomposition of the covariance function as the sum of
periodic and aperiodic kernels. This decomposition allows for the creation of
sub-models which capture the periodic nature of the signal and its complement.
To quantify the periodicity of the signal, we derive a periodicity ratio which
reflects the uncertainty in the fitted sub-models. Although the method can be
applied to many kernels, we give a special emphasis to the Mat\'ern family,
from the expression of the reproducing kernel Hilbert space inner product to
the implementation of the associated periodic kernels in a Gaussian process
toolkit. The proposed method is illustrated by considering the detection of
periodically expressed genes in the arabidopsis genome.Comment: in PeerJ Computer Science, 201
- …
