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Abstract

We explore elliptical graphical models as a generalization of Gaussian graphical models, that
is, we allow the population distribution to be elliptical instead of normal. Towards a statis-
tical theory for such graphical models, consisting of estimation, testing and model selection,
we consider the problem of estimating partial correlations. We derive the asymptotic distri-
bution of a class of partial correlation matrix estimators based on affine equivariant scatter
estimators.
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1. Introduction: partial correlations and graphical models

Let p ≥ 3 and X = (Z,Y ) with Z = (Z1, Z2), Y = (Y1, ..., Yp−2), be a p-dimensional
random vector having distribution F and a non-singular covariance matrix Σ. Let further-
more Ẑi(Y ), i = 1, 2, be the projection of Zi onto the space of all affine linear functions of
Y . Then the partial correlation of Z1 and Z2 given Y is defined as

%1,2•Y =
cov
(
Z1 − Ẑ1(Y ), Z2 − Ẑ2(Y )

)
√

var
(
Z1 − Ẑ1(Y )

)
var
(
Z2 − Ẑ2(Y )

) ,

i.e. it is the correlation between the residuals Z1−Ẑ1(Y ) and Z2−Ẑ2(Y ). One can extend the
definition of partial correlation (and thus partial uncorrelatedness) to vector-valued random
variables in a straightforward manner. The partial correlation %1,2•Y can be computed from
the covariance matrix Σ of X:

%1,2•Y = − k1,2√
k1,1k2,2

,

where ki,j, i, j = 1, ..., p, are the elements of K = Σ−1, see e.g. [8], p. 143. K is called the
concentration matrix (or precision matrix ) of X. Let

P = (pi,j)i,j=1,...,k = K
− 1

2
D KK

− 1
2

D ,

where KD denotes the diagonal matrix having the same diagonal as K and K
− 1

2
D is to be

read as (KD)−
1
2 . The matrix P equals 1 on the diagonal and contains the negative partial

correlations as its off-diagonal elements, i.e. %1,2•Y = −p1,2. We will also refer to P as partial
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correlation matrix even though it contains negative partial correlations. In this paper we
consider the task of estimating P in the elliptical model, which is a popular generalization
of the multivariate normal model. Its first and second order characteristics provide an
intuitive description of the geometry of the distribution, and it is mathematically tractable.
In addition it allows to model different tail behaviours, and is often chosen to model data
with heavy tails.

Our interest in partial correlation is originated in its application in graphical models. A
thorough introduction of the latter would go beyond the scope of this exposition, we refer to
standard volumes, e.g. [4] or [8]. If the population distribution is jointly normal, due to the
particular properties of the normal family (most notably that it is closed under conditioning,
and that correlation zero implies independence) partial uncorrelatedness implies conditional
independence. A spherical distribution, however, has independent margins if and only if it
is a normal distribution. This is also known as the Maxwell-Hershell-theorem cf. e.g. [2], p.
51. Consequently, in the elliptical model partial uncorrelatedness (i.e. an off-diagonal zero
entry in the precision matrix K) does not imply conditional independence. It does, however,
imply conditional uncorrelatedness, cf. [1], i.e. the conditional distribution of (Z1, Z2) given
Y = y (which is a bivariate distribution depending on y) is for almost all values y such
that it has correlation zero. Thus, in the elliptical model partial correlation is a measure of
conditional correlation.

2. Elliptical distributions and shape matrices

In this introduction to elliptical distributions we mainly follow the notation of chapter 13
of [2]. A continuous distribution F in Rp is said to be elliptical if it has a Lebesgue-density
f of the form

f(x) = det(S)−
1
2 g
(
(x− µ)TS−1(x− µ)

)
. (1)

for some µ ∈ Rp and symmetric, positive definite p× p matrix S. We call µ the symmetry
center and S the shape matrix of F , and denote the class of all continuous elliptical distri-
butions on Rp having these parameters by Ep(µ, S). If second-order moments of X ∼ F
exist, then E(X) = µ, and Var(X) = Σ(F ) is proportional to S. In the parametrization
(µ, S), the symmetry center µ is uniquely defined whereas the matrix S is unique only up to
scale, that is, Ep(µ, S) = Ep(µ, cS) for any c > 0. One is tempted to impose some form of
general standardization on S (several have been suggested in the literature, e.g., setting the
trace to p or the determinant or a specific element of S to 1) and thus uniquely defining the
shape matrix of an elliptical distribution. However, we refrain from such a standardization
and call any matrix S satisfying (1) for a suitable function g a shape matrix of F . This
allows, for example, to work always with the “simplest” function g. We want to mention two
examples of elliptical distributions, the normal distribution Np(µ, S), which corresponds to
gNp(y) = (2π)−

p
2 exp

(
− 1

2
y
)
, and the multivariate tν,p-family with

gtν,p(y) =
Γ(ν+p

2
)

(νπ)
p
2 Γ(ν

2
)
(1− y

ν
)−

ν+p
2 .

Here the first subscript ν denotes the degrees of freedom. The tν,p(µ, S) distribution con-
verges to Np(µ, S) as ν → ∞ and is, for small ν, a popular example of a heavy-tailed
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distribution. Its moments are finite only up to order (ν − 1). For ν ≥ 3 its covariance is
Σ(tν,p(µ, S)) = ν

ν−2
S.

We now turn to our statistical problem of interest: to estimate P in the elliptical model.
Let X1, ...,Xn be i.i.d. random variables with elliptical distribution F ∈ Ep(µ, S) and co-
variance matrix Σ. Let furthermore Xn = (XT

1 , ...,X
T
n )T be the n×p data matrix containing

the data points as rows and Ŝn = Ŝn(Xn) a scatter estimator. Here we use the term scatter
estimator in a very informal way for any symmetric matrix-valued estimator that gives some
form of information about the spread of the data. In a narrower sense scatter estimators
aim at estimating the covariance matrix. Hence it is a desirable property of such estimators
to transform in the same way as the covariance matrix under affine linear transformations,
that is, they satisfy Ŝn(XnA

T + 1bT ) = AŜn(Xn)AT for any full rank matrix A ∈ Rp×p and
vector b ∈ Rp. This property of a scatter estimator is called affine equivariance. However,
there are estimators that do not satisfy affine equivariance, but a slightly weaker condition
which we want to call affine pseudo-equivariance or proportional affine equivariance.

Condition C1 Ŝn(XnA
T + 1bT ) = h(A)AŜn(Xn)AT for b ∈ Rp, A ∈ Rp×p with full rank,

and h : Rp×p → R satisfying h(H) = 1 for any orthogonal matrix H.

Estimators satisfying C1 shall also be called shape estimators: they give information
about the shape (orientation and relative length of the axes of the contour-ellipses of F ),
but not the overall scale. Since the overall scale is irrelevant for (partial) correlations, i.e.

P = V
− 1

2
D V V

− 1
2

D , where V = S−1, (2)

for any shape matrix S of F , shape estimators are useful for estimating partial correlations,
and we will turn our attention to this class of estimators in the following. A variety of
shape estimators have been proposed and extensively studied, primarily in the robustness
literature, see e.g. [9] for a review, but also the MLE of the covariance matrix at an elliptical
distribution possesses this property. Affine (pseudo-)equivariance is indeed a very handy
property, and such estimators are particularly suited for the elliptical model. Their variance
(which then appears as asymptotic variance if the estimator is asymptotically normal) can be
shown to have a rather simple general form under elliptical population distributions, which
is given below in condition C2, and is basically due to Tyler [5]. We need to introduce some
matrix notation.

For matrices A,B ∈ Rp×p, the Kronecker product A⊗B is the p2× p2 matrix with entry
ai,jbk,l at position (i(p − 1) + k, j(p − 1) + l). Let e1, ..., ep be the unit vectors in Rp and
define the following matrices: Jp =

∑p
i=1 eie

T
i ⊗ eieTi , Kp =

∑p
i=1

∑p
j=1 eie

T
j ⊗ ejeTi (the

commutation matrix), Ip2 the p2 × p2 identity matrix and Np = 1
2
(Ip2 +Kp). Finally vec(A)

is the p2 vector obtained by stacking the columns of A ∈ Rp×p from left to right underneath
each other. Many shape estimators have been shown to satisfy the following condition in the
elliptical model (possibly under additional assumptions on the population distribution F ).

Condition C2 There exist constants η ≥ 0, σ1 ≥ 0 and σ2 ≥ −2σ1/p such that

Ŝn
p−→ ηS and

√
n vec(Ŝn − ηS)

L−→ Np2(0,W ),
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where
W = 2σ1η

2Np(S ⊗ S) + σ2η
2 vec(S)

(
vec(S)

)T
,

and the constants σ1 and σ2 do not depend on S.

By means of the CMT and the multivariate delta method one can derive the general
form of the asymptotic variance of any partial correlation estimator derived from a scatter
estimator satisfying C2.

Proposition 1 If Ŝn fullfills C2, the corresponding partial correlation estimator

P̂n = (Ŝ−1
n )

− 1
2

D Ŝ−1
n (Ŝ−1

n )
− 1

2
D

satisfies

P̂n
p−→ P and

√
n vec(P̂n − P )

L−→ Np2(0, 2σ1ΓNp(V ⊗ V )ΓT ) (3)

with P and V as in (2) and Γ = (V
− 1

2
D ⊗ V − 1

2
D )−Np(P ⊗ V −1

D )Jp.

Remark. In the expression for the asymptotic variance of P̂n the constant η obviously
has to cancel out. But also the constant σ2 does not appear. Thus the comparison of
the asymptotic efficiencies of partial correlation matrix estimators based on affine (pseudo-)
equivariant scatter estimators reduces to the comparison of the respective values of the scalar
σ1. This is generally true for “scale-free” functions of Ŝn and has already been noted by Tyler
[6].

3. Example: Tyler’s M-estimator of scatter

Strictly speaking, two examples are given: Tyler’s estimator mentioned in the title and,
for comparison, the empirical covariance matrix Σ̂n = 1

n

∑n
i=1(X i−Xn)(X i−Xn)T , which

is the maximum likelihood estimator for Σ at the multivariate normal distribution. Σ̂n fulfills
condition C1 with h ≡ 1, and we have the following asymptotic result.

Proposition 2 If X1, ...,Xn are i.i.d. with distribution F ∈ Ep(µ, αΣ), α > 0, and
E||X − µ||4 <∞, then Σ̂n fulfills C2 with η = α−1, σ1 = 1 + κ/3 and σ2 = κ/3, where κ is
the kurtosis excess of the first (or any other) component of X1.

The Tyler scatter estimator T̂n = T̂n(Xn) is defined as the solution of

p

n

n∑
i=1

(X i −Xn)(X i −Xn)T

(X i −Xn)T T̂−1
n (X i −Xn)

= T̂n (4)

which satisfies tr(T̂n) = p. It is regarded as the most robust M-estimator. Existence,
uniqueness and asymptotic properties are treated in [7]. Apparently T̂n satisfies

T̂n(XnA
T + 1bT ) =

p

tr(AT̂n(Xn)AT )
AT̂n(Xn)AT
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for b ∈ Rp and any full rank A ∈ Rp×p, but not condition C1. As a consequence the
asymptotic variance of T̂n has a slightly different form than W in condition C2. Nonetheless
the corresponding partial correlation estimator P̂ (T )

n = (T̂−1
n )

− 1
2

D T̂−1
n (T̂−1

n )
− 1

2
D satisfies (3).

This is simply because, by choosing a suitable alternative normalization instead of setting
the trace to p, one can obtain an estimator satisfying C1, which leads to the same partial
correlation estimator P̂ (T )

n . Precisely, we have the following result.

Proposition 3 If X1, ...,Xn are i.i.d. with distribution F ∈ Ep(µ, αΣ), α > 0, and
E||X − µ||2 <∞ and E||X − µ||− 3

2 <∞, then P̂ (T )
n fulfills (3) with σ1 = 1 + 2

p
.

Thus the scalar σ1 is constant for the Tyler matrix, irrespective of the function g, i.e.
the Tyler matrix (and hence the resulting partial correlation estimator) is distribution-free
within the elliptical model. Moreover, it is more efficient than Σ̂n at distributions with
large (positive) kurtosis, i.e. heavy-tailed distributions. For instance, this holds true for the
tν,p-distribution if ν < p+ 4.

Final remark. Both moment conditions in Proposition 3 are only due to the location
estimation in (4). Location estimators other than the mean are also possible and, in view of
robustness, might be more appropriate, most notably the Hettmansperger-Randles median,
cf. [3]. However, the inverse moment condition E||X − µ||− 3

2 < ∞ can generally not be
avoided by choosing a different location estimator, cf. [7]. But this is a fairly mild condition:
for p ≥ 2 it is fulfilled if g has no singularity at 0, thus including normal and tν,p-distributions.
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