23 research outputs found

    Highly accurate quadrature-based Scharfetter--Gummel schemes for charge transport in degenerate semiconductors

    Get PDF
    We introduce a family of two point flux expressions for charge carrier transport described by drift-diffusion problems in degenerate semiconductors with non-Boltzmann statistics which can be used in Vorono"i finite volume discretizations. In the case of Boltzmann statistics, Scharfetter and Gummel derived such fluxes by solving a linear two point boundary value problem yielding a closed form expression for the flux. Instead, a generalization of this approach to the nonlinear case yields a flux value given implicitly as the solution of a nonlinear integral equation. We examine the solution of this integral equation numerically via quadrature rules to approximate the integral as well as Newton's method to solve the resulting approximate integral equation. This approach results into a family of quadrature-based Scharfetter-Gummel flux approximations. We focus on four quadrature rules and compare the resulting schemes with respect to execution time and accuracy. A convergence study reveals that the solution of the approximate integral equation converges exponentially in terms of the number of quadrature points. With very few integration nodes they are already more accurate than a state-of-the-art reference flux, especially in the challenging physical scenario of high nonlinear diffusion. Finally, we show that thermodynamic consistency is practically guaranteed

    Highly accurate quadrature-based Scharfetter-Gummel schemes for charge transport in degenerate semiconductors

    Get PDF
    We introduce a family of two point flux expressions for charge carrier transport described by drift-diffusion problems in degenerate semiconductors with non-Boltzmann statistics which can be used in Voronoi finite volume discretizations. In the case of Boltzmann statistics, Scharfetter and Gummel derived such fluxes by solving a linear two point boundary value problem yielding a closed form expression for the flux. Instead, a generalization of this approach to the nonlinear case yields a flux value given implicitly as the solution of a nonlinear integral equation. We examine the solution of this integral equation numerically via quadrature rules to approximate the integral as well as Newtons method to solve the resulting approximate integral equation. This approach results into a family of quadrature-based Scharfetter-Gummel flux approximations. We focus on four quadrature rules and compare the resulting schemes with respect to execution time and accuracy. A convergence study reveals that the solution of the approximate integral equation converges exponentially in terms of the number of quadrature points. With very few integration nodes they are already more accurate than a state-of-the-art reference flux, especially in the challenging physical scenario of high nonlinear diffusion. Finally, we show that thermodynamic consistency is practically guaranteed

    Gauss-Jacobi-type quadrature rules for fractional directional integrals

    Get PDF
    Fractional directional integrals are the extensions of the Riemann–Liouville fractional integrals from one- to multi-dimensional spaces and play an important role in extending the fractional differentiation to diverse applications. In numerical evaluation of these integrals, the weakly singular kernels often fail the conventional quadrature rules such as Newton–Cotes and Gauss–Legendre rules. It is noted that these kernels after simple transforms can be taken as the Jacobi weight functions which are related to the weight factors of Gauss–Jacobi and Gauss–Jacobi–Lobatto rules. These rules can evaluate the fractional integrals at high accuracy. Comparisons with the three typical adaptive quadrature rules are presented to illustrate the efficacy of the Gauss–Jacobi-type rules in handling weakly singular kernels of different strengths. Potential applications of the proposed rules in formulating and benchmarking new numerical schemes for generalized fractional diffusion problems are briefly discussed in the final remarking section.postprin

    Quadrature Strategies for Constructing Polynomial Approximations

    Full text link
    Finding suitable points for multivariate polynomial interpolation and approximation is a challenging task. Yet, despite this challenge, there has been tremendous research dedicated to this singular cause. In this paper, we begin by reviewing classical methods for finding suitable quadrature points for polynomial approximation in both the univariate and multivariate setting. Then, we categorize recent advances into those that propose a new sampling approach and those centered on an optimization strategy. The sampling approaches yield a favorable discretization of the domain, while the optimization methods pick a subset of the discretized samples that minimize certain objectives. While not all strategies follow this two-stage approach, most do. Sampling techniques covered include subsampling quadratures, Christoffel, induced and Monte Carlo methods. Optimization methods discussed range from linear programming ideas and Newton's method to greedy procedures from numerical linear algebra. Our exposition is aided by examples that implement some of the aforementioned strategies

    Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants

    Full text link
    We present two new adaptive quadrature routines. Both routines differ from previously published algorithms in many aspects, most significantly in how they represent the integrand, how they treat non-numerical values of the integrand, how they deal with improper divergent integrals and how they estimate the integration error. The main focus of these improvements is to increase the reliability of the algorithms without significantly impacting their efficiency. Both algorithms are implemented in Matlab and tested using both the "families" suggested by Lyness and Kaganove and the battery test used by Gander and Gautschi and Kahaner. They are shown to be more reliable, albeit in some cases less efficient, than other commonly-used adaptive integrators.Comment: 32 pages, submitted to ACM Transactions on Mathematical Softwar

    FX Smile in the Heston Model

    Get PDF
    The Heston model stands out from the class of stochastic volatility (SV) models mainly for two reasons. Firstly, the process for the volatility is nonnegative and mean-reverting, which is what we observe in the markets. Secondly, there exists a fast and easily implemented semi-analytical solution for European options. In this article we adapt the original work of Heston (1993) to a foreign exchange (FX) setting. We discuss the computational aspects of using the semi-analytical formulas, performing Monte Carlo simulations, checking the Feller condition, and option pricing with FFT. In an empirical study we show that the smile of vanilla options can be reproduced by suitably calibrating three out of five model parameters.Heston model; vanilla option; stochastic volatility; Monte Carlo simulation; Feller condition; option pricing with FFT;

    7. Minisymposium on Gauss-type Quadrature Rules: Theory and Applications

    Get PDF

    Stability of step size control based on a posteriori error estimates

    Full text link
    A posteriori error estimates based on residuals can be used for reliable error control of numerical methods. Here, we consider them in the context of ordinary differential equations and Runge-Kutta methods. In particular, we take the approach of Dedner & Giesselmann (2016) and investigate it when used to select the time step size. We focus on step size control stability when combined with explicit Runge-Kutta methods and demonstrate that a standard I controller is unstable while more advanced PI and PID controllers can be designed to be stable. We compare the stability properties of residual-based estimators and classical error estimators based on an embedded Runge-Kutta method both analytically and in numerical experiments

    The algebraic method in quadrature for uncertainty quantification

    Get PDF
    A general method of quadrature for uncertainty quantification (UQ) is introduced based on the algebraic method in experimental design. This is a method based on the theory of zero-dimensional algebraic varieties. It allows quadrature of polynomials or polynomial approximands for quite general sets of quadrature points, here called “designs.” The method goes some way to explaining when quadrature weights are nonnegative and gives exact quadrature for monomials in the quotient ring defined by the algebraic method. The relationship to the classical methods based on zeros of orthogonal polynomials is discussed, and numerical comparisons are made with methods such as Gaussian quadrature and Smolyak grids. Application to UQ is examined in the context of polynomial chaos expansion and the probabilistic collocation method, where solution statistics are estimated
    corecore