585 research outputs found

    Toward bio-inspired information processing with networks of nano-scale switching elements

    Full text link
    Unconventional computing explores multi-scale platforms connecting molecular-scale devices into networks for the development of scalable neuromorphic architectures, often based on new materials and components with new functionalities. We review some work investigating the functionalities of locally connected networks of different types of switching elements as computational substrates. In particular, we discuss reservoir computing with networks of nonlinear nanoscale components. In usual neuromorphic paradigms, the network synaptic weights are adjusted as a result of a training/learning process. In reservoir computing, the non-linear network acts as a dynamical system mixing and spreading the input signals over a large state space, and only a readout layer is trained. We illustrate the most important concepts with a few examples, featuring memristor networks with time-dependent and history dependent resistances

    Predictive spatio-temporal modelling with neural networks

    Get PDF
    Hongbin Liu studied the predictive spatio-temporal modelling using Neural Networks. Predictive spatio-temporal modelling is a challenge task due to the complex non-linear spatio-temporal dependencies, data sparsity and uncertainty. Hongbin Liu investigated the modelling difficulties and proposed three novel models to tackle the difficulties for three common spatio-temporal datasets. He also conducted extensive experiments on several real-world datasets for various spatio-temporal prediction tasks, such as travel mode classification, next-location prediction, weather forecasting and meteorological imagery prediction. The results show our proposed models consistently achieve exceptional improvements over state-of-the-art baselines
    • …
    corecore