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Abstract

With advances in location-acquisition technologies such as smart phones and watches

that have GPS sensors, Internet of Things, a massive amount of spatio-temporal data has

been collected. Mining such ambiguous data facilitates many applications, ranging from

transportation management and weather prediction to autonomous driving etc.

Predictive spatio-temporal modelling is a challenging task for the following reasons.

The first challenge is due to complex non-linear spatio-temporal dependencies. In

spatio-temporal systems, nearby locations have strong correlations; such correlations are

represented by sub-sequence time steps. Secondly, spatio-temporal data are collected at

spatially discrete locations at temporally discrete intervals, resulting in what is known as

data sparsity. Using sparse data to model continuous changes brings further challenges.

Thirdly, the real world is dynamic, stochastic and unpredictable, whereas, machine

learning methods assume the output is deterministic.

To model the complex non-liner spatio-temporal dependencies, we propose a Recur-

rent Neural Network based model called Spatio-Temporal GRU to succinctly model the

spatio-temporal relationships and correlations embedded in irregularly sampled spatio-

temporal trajectories. We propose a novel segmented convolutional weight mechanism to

capture short-term local spatial variations and correlations in trajectories, and introduce

an additional temporal gate to control the information flow for the temporal interval

information.

To solve the modelling difficulty caused by data sparsity, we propose a novel curricu-

lum learning based strategy called Temporal Progressive Growing Sampling to effectively

bridge the gap between training and inference phases for spatio-temporal sequence fore-

casting, by transforming the training process from a fully-supervised approach which

utilises all available previous ground-truth values to a less-supervised approach which

replaces some of the ground-truth context with generated predictions.



xiv

To solve the blurry prediction issue in spatio-temporal sequence prediction, we

introduce a Meteorological Predictive Learning GAN model (MPL-GAN) that utilises the

conditional GAN along with the predictive learning module to handle the uncertainty in

future frame prediction.

We conduct extensive experiments on several real-world datasets for various spatio-

temporal prediction tasks, such as travel mode classification, next-location prediction,

weather forecasting and meteorological imagery prediction. The results show our pro-

posed models consistently achieve exceptional improvements over state-of-the-art base-

lines.
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Chapter 1

Introduction

1.1 Background and Motivations

With advances of location-acquisition technologies such as smart phones and watches

that have GPS sensors, Internet of things (IOT), a massive amount of spatio-temporal

data has been collected. For example, the ‘DiDi’ platform currently processes an average

of 4875 TB+ data points, and receives 106 TB+ vehicle trajectory data points daily

[DiD]. Such humongous amounts of data carries interesting people movement patterns.

Mining patterns from such data facilitates many applications ranging from transportation

management and weather forecasting to autonomous driving etc.

A spatio-temporal dataset consists of both space and time aspects. Predictive spatio-

temporal modelling is used to model the space correlations between objects over time to

predict the future based on past observations. It is a challenging task to effectively model

space and time simultaneously, and previous approaches focus on extracting features

from raw data in order to apply machine learning techniques. In recent years, deep

learning has dominated in almost every field of machine learning in which it is capable of

learning representations from raw data. For example, deep learning gained huge success

in large scale image classification by learning complex representations directly from

image pixels [He et al., 2016, Krizhevsky et al., 2012]. Similarly, deep learning has also

been successful in various natural language processing tasks such as machine translation,

sentiment analysis, and question answering [Bordes et al., 2014, Collobert et al., 2011,

Devlin et al., 2018, Jean et al., 2014, Sutskever et al., 2014, Vaswani et al., 2017]. Despite

the success of deep learning in many fields, it is still a challenging task to adopt deep
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learning into predictive spatio-temporal modelling. In this thesis, we will address several

of the challenges of modelling spatio-temporal patterns using deep learning.

(x1, y1, t1)
(x2, y2, t2)

(x3-n, y3-n, t3-n)
(xn+1, yn+1, tn+1) ...

Stay Point
Stay Point

(a) A simulated irregular sampled movement trajectory

(b) Air temperatures across 10 weather stations from 2015/3/01 to 2016/6/01, data is sampled
every hour.

2015/05/19 06:482015/05/19 06:422015/05/19 06:36

(c) Radar echo imagery of Hong Kong sampled every 6 minutes.

Fig. 1.1 Three typical spatio-temporal datasets.

In order to introduce the research challenges of predictive spatio-temporal modelling,

we first introduce some typical types of spatio-temporal data and their applications.
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Firstly, one of the most common types of spatio-temporal data is spatio-temporal

trajectory data. Spatio-temporal trajectories consist of various GPS locations points

.hx1; y1; t1i; hx2; y2; t2i; : : : ; hxt ; yn; tni/, each point records the location hx; yi at time t

of a moving entity. Figure 1.1a shows a simulated irregularly sampled spatio-temporal

trajectory. As shown, a moving object constantly changes speed and direction, and may

even remain motionless at a location for a period of time. Irregular sampling, non-linear

movement patterns, and uncertainty in measurement makes modelling spatio-temporal

trajectories an extremely challenging task. Applications of trajectory modelling include

travel mode classification [Liu and Lee, 2017, Liu et al., 2019, Qin et al., 2019], travel time

estimation [Wang et al., 2018a, 2014], and next location prediction [Cheng et al., 2013,

Monreale et al., 2009, Ye et al., 2010].

Another common type of spatio-temporal data is weather data. Weather is important

to our everyday life, and a large number of weather stations are constantly monitoring

weather conditions such as temperature, wind speed, rainfall etc. Weather data is

normally regularly sampled, for example, Figure 1.1b shows a chart of air temperature

across 10 weather stations observed every hour. Therefore, unlike spatio-temporal

trajectory data, the time interval is often omitted when constructing the sequence,

and each time step of the sequence S is a vector containing measurements across all

coordinates. This is denoted as S D .x1; x2; : : : ; xn/, where x 2 Rn. Applications include

weather prediction [Wang et al., 2019a, ?] and wind / solar power prediction [Bacher

et al., 2009, Inman et al., 2013].

Last but not least are spatio-temporal sequences of grid-like coordinates. This is

very similar to a weather dataset, except each time step contains a densely observed

grid-like matrix instead of a sparsely observed vector. A spatio-temporal sequence is

denoted as S D .X1;X2; : : : ;Xn/, where X 2 Rb�c . For example, Figure 1.1c shows

a sequence of radar echo imagery sampled every six minutes. Each frame contains a

regular grid of pixels, each pixel represents the radar backscatter for that area on Hong

Kong. Applications include precipitation nowcasting [Shi et al., 2015, 2017], urban flow

prediction [Zhang et al., 2018] and video prediction [Brock et al., 2019, Karras et al.,

2018].
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1.2 Research Challenges

Fig. 1.2 3D simulations of surface air temperature based on observed data from weather
stations in Beijing (randomly chosen from two sequential hours). Note: the X-axis
represents latitude, the Y-axis represents longitude, and the Z-axis represents the air
temperature of the corresponding location (data has been smoothed and interpolated to
plot in a 3D graph).
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Modelling predictive spatio-temporal data is a challenging task; some of these chal-

lenges are shared by different types of spatio-temporal data, whereas, others might be

unique to a specific type of spatio-temporal data.

Non-linear spatio-temporal dependency. Let us take the weather data as an example.

In the real world, X constantly, rapidly and dynamically changes at each location over

time. For example, the surface air temperature at a location changes over time unceas-

ingly. Moreover, the changing pattern is not static, but dynamic and complicated, that is,

it is determined by numerous external factors such as sunshine duration, wind speed, al-

titude and many other non-obvious environmental factors. Furthermore, a measurement

at a location is related to its previous measurements as well as the measurements from

nearby locations. The first law of geography [Tobler, 1970] states, "Everything is related

to everything else, but near things are more related than distant things." However, both

the temporal and spatial correlations are non-linear. Figure 1.2 shows an example of how

surface air temperature changes non-linearly over the spatial and temporal axes.

Data sparsity. In real world applications, spatio-temporal data is often collected at a

limited number of locations at a regular time interval to capture the spatial and temporal

dynamics. That is, data is collected at spatially discrete locations at temporally discrete

intervals. For example, Zhang et al. [2018] sampled the city crowd flows into 32 � 32

grids every 30 minutes. In weather forecasting applications, spatio-temporal sequential

data is typically collected by the weather stations across the nation every hour [Ghaderi

et al., 2017, Yi et al., 2018]. The underlying reason is that it is practically impossible

and unnecessary to collect all the data across all locations in real time. However, data

sparsity creates further challenges for deep learning to learn from the raw data.

Uncertainty handling. The real world is dynamic, stochastic and unpredictable, how-

ever, machine learning methods assume the output is deterministic. For example,

Recurrent Neural Network (RNN) models minimise Euclidean losses such as Mean Abso-

lute Error (MAE) and Mean Square Error (MSE) across the whole sequence. These models

make assumptions that the output is deterministic and draw from Gaussian distribution,

resulting in blurriness in predicting densely grid-like sequence such as meteorological

prediction [Clark et al., 2019, Mathieu et al., 2016, Saito and Saito, 2018, Wang et al.,
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2018b]. Uncertainty handling is essential to match the input and prediction distribution

to overcome this drawback.

Irregularly sampled. Most spatio-temporal trajectories are irregular where GPS recep-

tion is unavailable due to inconsistent weather or environmental conditions, geographical

obstacles such as tunnels, device malfunctions, and limited battery issues. Current

deep learning models handle regularly sampled sequences such as speech and video

using RNN. It remains an unsolved challenge, however, to effectively model irregularly

sampled spatio-temporal trajectory in its raw data form [Rehfeld et al., 2011]. As stated

previously, spatio-temporal dependencies are non-linear, and non-stationary. Irregu-

larly sampled data creates an additional challenge to model such rapidly changing and

dynamic dependencies.

1.3 Thesis Outline

This thesis is organised into seven chapters. The background, motivation and preliminar-

ies are introduced in Chapters 1–3, along with a review of some of the related studies. The

methodologies used to address the challenges of predictive spatio-temporal modelling

are described in Chapters 4–6. Conclusions are drawn in Chapter 7. Detailed summaries

are as follows:

In Chapter 2, we introduce some preliminaries of Deep Learning (DL), including

Feed-forward Neural Networks (FNN), Convolution Neural Networks (CNN), Recurrent

Neural Networks (RNN), Seq2Seql Model and Scheduled Sampling.

In Chapter 3, we review some major relevant work of predictive spatio-temporal mod-

elling, such as travel mode classification, next-location prediction, and spatio-temporal

sequence forecasting etc.

In Chapter 4, we study the difficulty of modelling the spatial dimension and temporal

dimension simultaneously for spatio-temporal trajectory. More specifically, we focus on

modelling irregularly sampled GPS trajectories based on the travel mode. We propose an

RNN based model called Spatio-Temporal GRU to succinctly model the spatio-temporal

relationships and correlations embedded in irregularly sampled spatio-temporal trajecto-

ries.
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In Chapter 5, we study the difficulty of modelling spatial-temporal dependencies for

sequence forecasting, and the gap between training and inference phases. We propose a

novel curriculum learning based strategy called Temporal Progressive Growing Sampling

to effectively bridge the gap between training and inference for spatio-temporal sequence

forecasting.

In Chapter 6, we study the blurry predictions of current state-of-the-art deep learning

based approaches that optimise the MSE loss. We address this problem by introducing a

Meteorological Predictive Learning GAN model (MPL-GAN) that utilises the conditional

GAN along with the predictive learning module to handle the uncertainty in future frame

prediction.

In Chapter 7, we summarise the study’s contributions and limitations, as well as

propose some potential future work to address the limitations .

1.4 Contributions and Relative Publications

In this thesis, to address the challenges of predictive spatio-temporal modelling, we

make the following main contributions:

� In Chapter 4, we propose an RNN based model called Spatio-Temporal GRU to

succinctly model the spatio-temporal relationships and correlations embedded in

irregularly sampled spatio-temporal trajectories. We propose a novel segmented

convolutional weight mechanism to capture short-term local spatial variations

and correlations in trajectories, and introduce an additional temporal gate to

control the information flow for the temporal interval information. We present

experimental results that demonstrate the superior performance of our proposed

method against popular deep learning approaches proposed for spatio-temporal

trajectory modelling.

Relevant publications related to this chapter:

– Hong-Bin Liu, Ickjai Lee: "End-to-end Trajectory Transportation Mode Clas-

sification using Bi-LSTM Recurrent Neural Network". – 12th International

Conference on Intelligent Systems and Knowledge Engineering (ISKE), Nov

2017, Nanjing, China. (ERA Rank B)
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– Hong-Bin Liu, Hao Wu, Weiwei Sun, Ickjai Lee: "Spatio-Temporal GRU for

Trajectory Classification". – 19th IEEE International Conference on Data Mining

(ICDM), Nov 2019, Beijing, China. (ERA Rank A, Core Rank A*)

– Hong-Bin Liu, Ickjai Lee: "Irregular-sampled Trajectory Modelling with Spatio-

Temporal GRU". – Transactions on Intelligent Systems and Technology (TIST),

Submitted

� In Chapter 5, we propose a novel curriculum learning based strategy called Tempo-

ral Progressive Growing Sampling to effectively bridge the gap between training

and inference for spatio-temporal sequence forecasting, by transforming the train-

ing process from a fully-supervised approach which utilises all available previous

ground truth values to a less-supervised approach which replaces some of the

ground-truth context with generated predictions. To do that we sample the target

sequence from midway outputs from intermediate models trained with longer

timescales through a carefully designed decaying strategy. Experimental results

demonstrate that our proposed method better models long-term dependencies and

outperforms baseline approaches on two competitive datasets.

Relevant publication related to this chapter:

– Hong-Bin Liu, Ickjai Lee: "Bridging the Gap Between Training and Inference

for Spatio-Temporal Forecasting". – 24th European Conference on Artificial

Intelligence (ECAI), August 2020, Santiago de Compostela, Spain. (ERA Rank A,

Core Rank A)

� In Chapter 6, we introduce a Meteorological Predictive Learning GAN model (MPL-

GAN) that utilises the conditional GAN along with the predictive learning module

to handle the uncertainty in future frame prediction. Experiments on a real-

world dataset demonstrate the superior performance of our proposed model. Our

proposed model is able to map the blurry predictions produced by traditional MSE

loss based predictive learning methods back to their original data distributions,

hence, it is able to improve and sharpen the prediction. Specifically, our MPL-GAN

achieves an average sharpness of 52.82, which is 14% better than the baseline

method. Furthermore, our model correctly detects the meteorological movement

patterns that traditional unconditional GANs fail to do.
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Relevant publication related to this chapter:

– Hong-Bin Liu, Ickjai Lee: "MPL-GAN: Towards Realistic Meteorological Predic-

tive Learning Using Conditional GAN". – IEEE Access, vol. 8, pp. 93179-93186,

2020





Chapter 2

Preliminaries of Deep Learning

Deep learning uses multi-layer neural networks that can represent multi-layer abstraction

of data of a variety of forms, it has achieved state-of-the-art performance in various

areas such as speech recognition, image recognition, machine translation and many

other domains [Abdel-Hamid et al., 2014, Druzhkov and Kustikova, 2016, Graves et al.,

2013, Schmidhuber, 2015]. In this chapter we will review some of the basic building

blocks ranging from Feed-forward Neural Networks (FNN), Convolutional Neural Networks

(CNN), to Recurrent Neural Networks (RNN) etc. Along the way, we will introduce the

mathematical notations used throughout this thesis.

2.1 Feed-forward Neural Networks

Multi-layer Perceptron (MLP) is the simplest form of FNN that is inspired by neuroscience

[Rumelhart et al., 1986]. An MLP consists of an input layer, an output layer and one or

multiple hidden layers, each layer containing a variable number of neurons. Figure 2.1

shows an example of a two layer MLP where each layer is typically a vector of which

each scalar represents a neuron. Neurons have a pairwise connection between layers.

Mathematically, we denote the input of the i -th layer as h.i�1/ 2 Rc and the output as

h.i/ 2 Rp, then the transformation between layers is as follows:

h.i/ D �.Wh.i�1/ C b/; (2.1)

where W 2 Rc�p is the weight matrix and b is the bias term. � denotes the non-linear

function known as the activation function that adds non-linearity to the model; common
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Fig. 2.1 Illustration of a Multi-layer Perceptron (MLP) with two hidden layers.

choices of activation function are Sigmoid;Tanh; and ReLU . It has been proven by Hornik

et al. [1989] that a multi-layer perceptron with an adequate number of neurons is capable

of arbitrarily accurate approximation to any non-linear function.

MLPs had been used in various applications in the 1980s, such as hand-written

digit recognition and speech recognition [Khotanzad and Chung, 1998]. To improve

the robustness of the model, recent deep learning techniques have been used to try to

increase the depth of the layers and the number of parameters as well. However, simply

increasing the number of layers does not boost the performance, because the difficulty

of parameter tuning increases along with the increasing depth. Pure MLP architecture is

outdated in modern deep learning systems, but the concept of fully-connected networks

is still being widely used.

2.2 Convolutional Neural Network

A CNN is a type of FNN that was proposed by LeCun et al. [1989] to tackle image process-

ing problems and it achieved state-of-the-art results in handwritten digit recognition in

1989. The recent success of deep CNNs [He et al., 2016, Krizhevsky et al., 2012] reached

human’s limits on several tasks . Current CNN models typically consist of convolution

and pooling layers, followed by fully-connected layers at the end of the network.

Convolution layer. A convolution layer is a linear transformation that preserves spatial

information in the input image, defined as:
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H .i/
p D �

 X
p

Wp ˝H .i�1/
C b.i�1/p

!
;

where let H .i/;H .i�1/ 2 Rw�h�c , w and h represent the input width and height,

c represents the input channel number. Similarly, W 2 Rj�k�c�p is the learnable

convolution kernel weight, where j , and k represent the kernel width and height, and

p is the output channel number also known as the feature map number. � denotes the

non-liner activation function,˝ denotes the convolution operation, and b is the learnable

bias weight.

Pooling layer. Pooling layers are commonly known as max pooling or average pooling.

The pooling operation is simple, for each stride of pooling filters, compute the maximum

or average over the grid as the output. For instance, given a feature map of m � n, with a

common setting 2 � 2 filter with stride of 2, the output feature map is m
2
�
n
2
. Pooling

layers are often placed after convolution layers to reduce the feature map size and hence

reduce overfitting.

Use of pooling layers is one of the essential techniques that keeps neural networks

going deeper and deeper with greater modelling capacity. The others include dropout

[Srivastava et al., 2014], and residual connection [He et al., 2016] etc. Dropout randomly

drops connections between layers during training to prevent overfitting. Residual net-

works are the basis of the groundbreaking technique developed in 2016 that enables us

to train over 1000 layers. Residual connections or skip connections are used in residual

networks to form identity connections in order to skip over layers and allow gradients to

flow further through the network and hence, allow training of more layers to occur.

It is worth mentioning that convolution layers provide several benefits over fully-

connected layers for image processing. First, CNNs have significantly fewer parameters

than MLPs with the same model capacity which makes CNNs much easier to train. Second,

2D images need to be flattened to 1D vectors to feed them into an MLP, and during this

process, images lose their structure of spatial information. In contrast, CNNs preserve

the structure of spatial information that is crucial for image processing. Furthermore,

CNNs provide the benefit of so called shift invariance, that is the location of an object

on an image will not effect the detection result of the object. This is due to two main
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reasons. First, as mentioned above, CNNs preserve the structure of spatial information.

Second, each CNN kernel slides vertically and horizontally through the entire image to

extract features. This important aspect of CNNs inspires researchers to apply CNNs to

sequence modelling, the details of which will be provided in the next section.

2.2.1 1D-CNN for Sequence Modelling

convolve: (slide) over 
all time steps and 

compute dot products

feature 
map

1

2
3
4
5
6

...
t-2
t-1
t

1

2
3
4
5
6

...
t-2
t-1
t

...
...

Fig. 2.2 Illustration of a 1D-CNN over a sequence, the kernel size is 3, padding is 1.

While 2D-CNNs are widely used in image processing, 1D-CNNs have also gained

tremendous success in sequence modelling, especially in Natural Language Processing

(NLP), such as machine translation [Gehring et al., 2017] and sentence classification

[Kim, 2014]. Transition from a 2D-CNN to a 1D-CNN is simple, a 2D-CNN has a series

of two-dimension kernels that slide in both a horizontal and vertical direction, whereas

the kernels of a 1D-CNN are vectors and slide over the time dimension. By running

this sliding convolve operation over consequential time steps and computing their dot

products, the dot products catch the spatial relationship between consequential time
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steps. By stacking multiple layers, we can extend the CNN’s reception field to a larger

range, i.e. to model sequence dependencies of longer range.

2.3 Recurrent Neural Network

S St St+1St-127 0Unfold
W

W
V

U

V V V

U U U

W W

Fig. 2.3 Illustration of an RNN unfolding in time to forward computation.

Even though a 1D-CNN is capable of modelling sequences, it fails to handle variable

length sequences. An RNN is designed to handle sequence data of variable length, such

as speech and text. While a CNN shares parameters by kernel states, an RNN shares

parameters through time steps. An RNN feeds a sequence data forward through time

steps by the same shared parameters defined as follows:

St D f .UXt CWSt�1/C b;

Ot D VSt C c;

where, St denotes the hidden state at time step t , which is calculated by the previous

hidden state Sh�1 and the input Xt at time step t . f is the non-linearity function which

is usually tanh, and U, W, V, b, c are learnable shared parameters.

With this feed forward though time structure, the RNN naturally handles sequence

data of arbitrary length. However, due to gradient explosion and the gradient vanishing

problem experienced by vanilla RNN, it is hard to train such a network [Kolen and
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Kremer, 2001]. To solve this problem, Hochreiter and Schmidhuber [1997] proposed

Long Short-Term Memory (LSTM) by including a gating mechanism that controls gradient

flows. 8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

it D � .WxiXt CWhiht�1 CWcict�1 C bi/ ;

ft D �
�
WxfXt CWhf ht�1 CWcf ct�1 C bf

�
;

ct D ftct�1 C it tanh .WxcXt CWhcht�1 C bc/ ;

ot D � .WxoXt CWhoht�1 CWcoct C bo/ ;

ht D ot tanh .ct/ ;

where i , f , and o denote input, forget, and output gate, respectively, that control

gradient flow. c and h are the cell state vector and hidden vector, respectively. By

learning the parameters via training the network, it is possible to learn to forget input

information from a long range of time steps , or learn what information feeds forward to

the next hidden node. Using this gating mechanism, LSTM networks can catch long-term

dependencies of different time steps, which improves the significantly performance of

modelling sequence data .

Another popular variance is called the Gate Recurrent Unit (GRU) [Cho et al., 2014],

which is very similar to LSTM with fewer control gates. We will cover this is detail in

Chapter 4.

Vanilla RNN and its variants capture information from previous time steps which

means only previous information effects future time steps. However, in many applica-

tions, the prediction of Oyt may depend on future information as well, such as in speech

recognition and language modelling. In such tasks, due to the linguistic dependencies, a

word prediction may depend on the next few words. To solve such a problem, Schuster

and Paliwal [1997] proposed a Bidirectional Recurrent Neural Network (Bi-RNN). A Bi-RNN

combines two directional layers, the forward layer accesses the future context, whereas,

the backward layer accesses the previous context. Graves [2012] proved that Bi-RNN

significantly improves speech recognition performance .

2.3.1 Seq2Seq

The sequence to sequence model (Seq2Seq) was first introduced by Sutskever et al.

[2014] to solve Spatial-temporal Sequence Forecasting (STSF) tasks that traditional RNN
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approaches could not model due to diverse input lengths and output lengths. Seq2Seq

is also known as an encoder-decoder where the encoder encodes the original sequence

into a feature vector, then the decoder outputs a target sequence based on the feature

vector. Typically, both encoder and decoder are RNNs, and Seq2Seq has been used in

sequence modelling tasks like machine translation, speech recognition and recently used

for spatio-temporal sequence forecasting tasks [Li et al., 2018, Salinas et al., 2017, Yu

et al., 2017].

Despite the Seq2Seq model showing promising performance on spatio-temporal

sequence forecasting, the training phase of this model is hard to converge for two

reasons. First, Seq2Seq consists of two RNNs and they suffer from the gradient explosion

issue and vanish long-term dependencies during training [Pascanu et al., 2013]. LSTM

[Hochreiter and Schmidhuber, 1997] and GRU [Cho et al., 2014] have been proposed to

overcome such problems, however, RNNs still suffer from training difficulties [Gehring

et al., 2017, Pascanu et al., 2013]. Second, in the inference phase, the prediction output

OXt at time step t , depends on the prediction output at time step t � 1. Prediction errors

in earlier time steps can lead to bigger error gaps in the generated sequence of later

time steps. Bengio et al. [2015] proposed a curriculum learning based strategy called

Scheduled Sampling (SS) that closes the gap between the training phase and the inference

phase. We will introduce a scheduled sampling approach to overcome this problem in

the next section.

2.3.2 Scheduled Sampling

Before introducing SS, we formulate that the sequence prediction task to predict a

sequence of measurements is OP D
h
OXtC1; OXtC2; : : : OXtCk

i
, based on the observations

of S D ŒX1;X2; : : :Xt �. In the training phase, we cut a length-.t C k/ sequence into

a length-t sequence S and a length-k sequence P. We use observations S as feature

learning for the RNN encoder, and optimise our model based on the decoder output OP
and the ground-truth P. However, during the inference phase, the ground-truth P is not

available. Therefore, during the inference phase, prediction OXtCk relies on the previous

output OXtCk�1. There are two strategies to overcome the difference between the training

and inference stages:



18 Preliminaries of Deep Learning

t t+k t+k+1t+k-1...

 i1 

i

Fig. 2.4 Illustration of Scheduled Sampling: coin flip at each time step of probability �i to
use true sample or otherwise previous output of model itself.

1) During the training phase, use the ground-truth XtCk as input for the decoder to

generate the next prediction OXtCkC1. Then replace the ground-truth XtCk with OXtCk
during the inference phase;

2) Use the same setting during the training and testing phase, i.e. use model generated

samples instead of the ground-truth P as input to the decoder to generate predictions.

While the first strategy benefits the training convergence speed, as every time step

of the decoder has the ground-truth value to learn from, it suffers from poor inference

performance. Whereas, the second strategy yields better performance, yet suffers from

training difficulties as every time step is dependent on previous prediction values [Bengio

et al., 2015, 2009, Shi and Yeung, 2018]. To close the gap between the training and

inference phase, we adopt the Scheduled Sampling mechanism [Bengio et al., 2015] to

start training from strategy 1) and gradually transform to strategy 2). The transformation

process is described as follows:
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8 k; 1 � k � K;

OXtCk �M
�
Encoder.S/; QXtC1WtCkI �

�
;

�tCkC1 � Bernoulli .1; �i/;

QXtCkC1 D .1 � �tCkC1/ OXtCk C �tCkC1XtCk:

(2.2)

Here, M
�
Encoder.S/; QXtC1WtCkI �

�
denotes one step prediction based on the encoder

and the previous inputs QXtC1WtCk . �tCkC1 is a random variable generated by a coin flip

following the Bernoulli distribution, where �i is the probability of QXtCkC1 sampling

from the ground-truth XtCk , i.e. 1 � �i is the probability of sampling from the previous

prediction OXtCk . During training, when �i D 1, QXtCkC1 is always sampling from the

ground-truth XtCk which is strategy 1). When �i D 0, QXtCkC1 is always sampling from

the previous output OXtCk which is strategy 2). Therefore, by controlling �i gradually

decreasing it from 1 to 0, the training goes from strategy 1) to strategy 2) which balances

the training speed and inference performance. We will describe the decreasing strategy

in the next section.





Chapter 3

Literature Review

In this chapter, we will review some of the typical applications of predictive spatio-

temporal trajectory modelling. As mentioned in the introduction, there are three typical

types of spatio-temporal datasets. We will group them into two categories by types of

dataset: trajectory modelling and spatio-temporal sequence forecasting. Within each

category, we will introduce several applications and approaches of both traditional

machine learning and deep learning. For more comprehensive surveys, please refer to

these two papers, [Shi and Yeung, 2018] and [Wang et al., 2019b]

3.1 Predictive Spatio-Temporal Trajectory Modelling

Predictive spatio-temporal trajectory modelling has a wide range of applications and

we review two of the most common tasks: travel mode classification and next location

prediction.

3.1.1 Travel Mode Classification

Existing travel mode classification studies can be categorised into two groups: feature

based machine learning approaches [Reddy et al., 2010, Shah et al., 2014, Xiao et al.,

2017, Zheng et al., 2008a,b, 2010] and deep learning based approaches [Endo et al.,

2016a,b, Liu and Lee, 2017, Qin et al., 2019].

Pioneers, Zheng et al. [2008a,b, 2010], proposed several machine learning based

approaches to build a classifier based on features extracted from raw GPS logs. More

specifically, they extracted nine features such as distance, average velocity, speed,
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heading change rate etc. These features were then used to build machine learning based

classifiers such as SVM and Random forest. Endo et al. [2016a], Reddy et al. [2010]

proposed a Hidden Markov Model (HMM) based approach that works with GPS sensors as

well as accelerometer sensors; Shah et al. [2014] took it a step further and combined

GPS sensors and GIS information and motion accelerometer sensors; and Xiao et al.

[2017] proposed a tree-based ensemble classifier that combines the local and global

features extracted from raw trajectories. However, these approaches require heavy

feature engineering.

The recent success of deep learning in various applications inspired researchers to

apply deep learning AI technologies into this field. Endo et al. [2016a,b] used CNNs

to automate the feature extraction process, in particular, they converted raw trajectory

data into images and extracted higher-level features from these images by concatenating

features like distance and velocity etc. They also utilised deep learning’s remarkable

feature learning capacity; however, in such transformations from raw trajectory data

into images, it is difficult to capture temporal features. Liu and Lee [2017] and Qin

et al. [2019] utilised a similar approach to append temporal intervals to spatial aspects

directly.

3.1.2 Next Location Prediction

Next location prediction is another hot topic in trajectory modelling. As for travel mode

classification, the existing literature on next location prediction can be categorised into

two groups: machine learning based approaches [Ye et al., 2010, Yin et al., 2013, Zheng

et al., 2009] and deep learning based approaches [Cheng et al., 2013, Fernando et al.,

2018, Gao et al., 2015, Kong and Wu, 2018, Monreale et al., 2009, Zhao et al., 2019]. Like

travel mode classification, machine learning based methods require extensive feature

engineering. On the other hand, deep learning based methods automate the feature

extraction, however, they require manually designed architectures. Zhao et al. [2019]

proposed a ST RNN which consists of a distance gate and a time gate to model the ST

correlations of the next Point of Interest (POI) prediction task. Despite our proposed

model sharing a similar temporal gating mechanism, our work is completely different in

two ways. First, we introduce a segmented convolutional weight mechanism for spatial

modelling, whereas, they use a distance gate. Second, our temporal gate is designed for
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modelling various time interval information in trajectory classification, and we focus

on the next POI location prediction to evaluate the effectiveness of our proposed time

gating mechanism.

3.1.3 Deep Learning for Trajectory Modelling

There are many recent studies in the field of trajectory modelling that utilise deep

learning. In particular, several pioneering attempts have been proposed to model tra-

jectories with RNN approaches. Wu et al. [2017] and Gao et al. [2017] tried to model

trajectories with multi-layered LSTM. However, in their study, trajectories are modelled

by either a series of categorical POIs or a set of road segments which is similar to textual

data. Wang et al. [2018a] tried to predict travel time by learning the spatial correlations

with a GeoConv layer, but unlike their approach, our approach utilises a 1D-CNN for

spatial feature extraction at the cell level. In addition, Yang et al. [2018] proposed a

Recurrent-Censored Regression (RCR) model to predict a user’s future check-in time at

a specific location. Despite several of these attempts using RNN variants for trajectory

classification, none of them is particularly designed to handle both the spatial and the

temporal aspects of ST trajectories.

3.2 Spatio-temporal Sequence Forecasting

Spatio-temporal sequence forecasting is a well studied research topic, and it is a part

of the time series prediction topic. In the literature, traditional machine learning based

methods including Support Vector Machine (SVM) [Sapankevych and Sankar, 2009],

Gaussian Process (GP) [Flaxman, 2015] and Auto-Regressive Integrated Moving Average

(ARIMA) [Box and Jenkins, 1990] have been proposed to deal with this problem.

3.2.1 Deep Learning for a Grid-like Sequence

With recent advances in deep learning models in various domains, the research focus of

spatio-temporal sequence forecasting has been redirected to deep models. For example,

Shi and Yeung [2018] proposed a Convolutional LSTM Recurrent Neural Network (RNN)

for precipitation nowcasting. The main contribution of their work is that it models spatial
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Fig. 3.1 ST-ResNet architecture for Citywide Crowd Flow Prediction. [Zhang et al., 2018]

correlations between two neighbouring time steps by replacing the linear transformation

of LSTM with a 2D-CNN, which results in more compact spatial modelling and better

performance. Zhang et al. [2018] proposed deep spatio-temporal residual networks to

handle the citywide crowd flow prediction problem. Figure 3.1 shows that, temporal

closeness, period and trend properties of crowded traffic, as well as external factors such

as weather and events are considered and modelled by a fusion network. Similarly, Chen

et al. [2018] employed a 3D-CNN network to approach the problem. All of these studies

model the spatio-temporal data at a certain timestamp in an image-like format, where

each measurement at a location is treated as a pixel of an image. Therefore, modelling

a series of spatio-temporal data is the same as modelling videos (a series of images

with a regular time interval). Forecasting a spatio-temporal sequence is highly relevant

to the problem of video frame prediction. Wang et al. [2017] proposed PredRNN and

its followup work PredRNN++ [Wang et al., 2018c] to solve the video frame prediction

problem. Their work is based on Seq2Seq with a custom RNN cell called Casual LSTM

and a Gradient Highway Unit (GHU).
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3.2.2 Deep Learning for Vector-like Sequence

Modelling a spatio-temporal sequence as a grid-like format requires a rich collection of

data in a variety of coordinate locations, furthermore, coordinate locations must be in

a grid-like format to be compatible, as for city crowd flow prediction. However, not all

datasets satisfy these constraints. Another approach is to model spatio-temporal data

as a vector, where each measurement of a location is a scalar of a row or column. For

example, an LSTM-based model was proposed by Ghaderi et al. [2017] to predict wind

speed across 57 measurement locations. To predict weather for 10 weather stations

across Beijing City, Wang et al. [2019a] proposed a deep uncertainty Seq2Seq model.

Whereas, to predict air quality, Yi et al. [2018] proposed a DeepAir model which consists

of a spatial transformation component and a deep distributed fusion network. In another

study, Liang et al. [2018] proposed a multi-level attention Seq2Seq model called GeoMAN

to model the dynamics of spatio-temporal dependencies. All of these studies above

reveal that spatio-temporal correlations are difficult to model, but are crucial for spatial-

temporal predictions.

3.2.3 Curriculum Learning Strategy

Venkatraman et al. [2015] proposed a Data As Demonstrator (DAD) model to improve

multi-step prediction by feeding paired ground-truth and predicted words to the next

step. The gap between a single-step prediction error and a multi-step error in their

work is similar to the gap between training and inference in our work. Bengio et al.

[2015] further improved the idea by using a Curriculum Learning [Bengio et al., 2009]

based approach to close the gap between training and inference by sampling previous

ground-truth and previously predicted context, by changing the probability.

3.2.4 Uncertainty Handling for STSF

Last but not least, uncertainty handling is also crucial for spatio-temporal sequence

forecasting. Most existing STSF approaches assume that the real-world is deterministic,

thus these models generate blurry predictions due to the lack of uncertainty handling. A

few recent works have proposed solutions to handle such a problem. Fragkiadaki et al.

[2015] proposed a probabilistic forecaster that outputs the parameters of a Gaussian
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Mixture Model (GMM) in order to produce non-blurry predictions. Other approaches

utilised a Generative Adversarial Network [Goodfellow et al., 2014]. For example, Mathieu

et al. [2016] proposed a conditional GAN based uncertainty handling method to generate

sharp and realistic video. This approach has also been adopted in the following work

[Clark et al., 2019, Saito and Saito, 2018, Wang et al., 2018b]. Besides GAN based methods,

a Variational Auto-encoder (VAE) [Kingma and Welling, 2013] is another popular approach

for dealing with uncertainties in STSF.

3.2.5 Meteorological Predictive Learning

Optimal flow based methods [Brox et al., 2004, Cheung and Yeung, 2012] have a long

history in the meteorological predictive learning literature. With the recent advances in

deep learning, Shi et al. [2015] explored the possibility of applying RNNs, and proposed

a model called Convolutional LSTM (ConvLSTM) [Shi et al., 2015] and its improved version

TrajGRU [Shi et al., 2017] for radar echo imagery prediction. Both approaches tried

to optimise the MSE loss. Video frame prediction and traffic flow prediction can be

considered to be the same problem. To tackle this problem, PredRNN and its improved

version PredRNN++ were proposed by Wang et al. [2017]; these methods did optimise

the MSE loss but also shared the issue regarding the prediction getting more blurry over

time.

Beyond meteorological imagery predictive learning, neural network based methods

have also been used in numerical weather forecasting. For example, Wang et al. [2019a]

proposed a Seq2Seq LSTM to predict temperature, wind speed, and relative humidity. An

improvement on this method was proposed by Liu and Lee [2020] who introduced a tem-

poral progressive growing schedule sampling strategy. Nevertheless, these approaches

suffer from the same long-term prediction accuracy degradation.

3.2.6 GAN for Image and Video Generation

GAN [Goodfellow et al., 2014] has been the most popular generative model since it

was first released in 2014. Since then, GAN models have shown their superior abilities

especially in image generation, ranging from hand-written digit generation [Goodfellow

et al., 2014, Radford et al., 2016] to large scale image set generation [Brock et al., 2019,



3.3 Summary 27

Karras et al., 2018]. Recently, researchers tried to push the limits of GAN by generating

photo-realistic videos using unconditional GAN [Clark et al., 2019, Mathieu et al., 2016,

Saito and Saito, 2018, Tulyakov et al., 2018, Wang et al., 2018b]. Those video GANs aim

to produce photo-realistic and temporal coherent videos, and they are used to match

the high-dimensional data distribution between the two. Note that those models do not

take into account any other considerations, that is, for given initial frames, generated

frames do not need to consider the moving entities’ direction, speed and other moving

information. However, these moving properties play an important role in our study, and,

unlike traditional unconditional GANs, our GAN does take into account these properties.

3.3 Summary

We summarised the reviewed methods in the following table.
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Table 3.1 Summary of reviewed literature. (TM: Travel Mode Classification; NL: Next-location Prediction; CL: Curriculum
Learning; UH: Uncertainty Handling.)

Category Subcategory Methods TM NL
STSF
-Grid

STSF
-Vector

CL UH

Trajectory Modelling
Traditional

[Reddy et al., 2010, Shah et al., 2014, Xiao
et al., 2017, Zheng et al., 2008a,b, 2010]

p

[Ye et al., 2010, Yin et al., 2013, Zheng et al.,
2009]

p

DL
[Endo et al., 2016a,b, Liu and Lee, 2017, Qin

et al., 2019]

p

[Cheng et al., 2013, Fernando et al., 2018,
Gao et al., 2015, Kong and Wu, 2018,

Monreale et al., 2009, Zhao et al., 2019]

p

STSF

Traditional
[Box and Jenkins, 1990, Flaxman, 2015,

Sapankevych and Sankar, 2009]

p

DL

[Chen et al., 2018, Shi and Yeung, 2018,
Wang et al., 2017, 2018c]

p

[Ghaderi et al., 2017, Liang et al., 2018, Wang
et al., 2019a, Yi et al., 2018]

p

[Bengio et al., 2015, 2009, Venkatraman et al., 2015]
p p

[Clark et al., 2019, Fragkiadaki et al., 2015,
Kingma and Welling, 2013, Mathieu et al.,
2016, Saito and Saito, 2018, Wang et al.,

2018b]

p p
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3.4 Research Gap

Base on above comprehensive literature review and summary table of reviewed literature,

we are able to identify several research gaps in the current literature.

First, none of the existing deep learning models consider both spatial and temporal

dimensions simultaneously for the travel mode classification task. They either transform

the raw spatio-temporal data into other format such as image resulting missing temporal

information, or simply treat temporal as the same as spatial dimension. Furthermore,

none of the existing take the in-regularly sampled temporal into account, resulting

misleading spatio-temporal feature learning.

Second, researchers simply adapt the Curriculum Learning based approach name

scheduled sampling to close the gap between training and inference. Scheduled sampling

has been widely used in NLP and many other sequence modelling tasks, however, simply

adapt it to spatio-temporal modelling without considering the unique characteristics

of spatio-temporal data is not ideal. In other words, there should be some room of

improvements if we consider the characteristics of spatio-temporal data when adapting

scheduled sampling strategy.

Third, current state-of-the-art deep learning based predictive models mainly optimise

the mean square error loss, resulting in blurry spatio-temporal sequence predictions. This

is mainly due to the assumption that the data is drawn from the Gaussian distribution

which only works on a continuous portion of the image while ignoring isolated small

regional areas. Furthermore, current RNN approaches assume that all real-world scenario

is predictable. Both issues indicate that uncertainty handling is crucial for producing

non-blurry and realistic spatio-temporal sequence predictions.

To fulfil these research gaps, we will introduce several novel methods in the next three

chapters to effectively apply deep learning into predictive spatio-temporal modelling.





Chapter 4

Irregularly-sampled Trajectory Modelling

with Spatio-temporal GRU

Typically, spatio-temporal trajectories are irregularly sampled, and modelling spatio-

temporal trajectories is a hot research topic in geo-computation with many real-world

applications, in particular, travel mode classification. In recent years, with the advances

in deep learning techniques, many approaches have been proposed to address this

research area, in particular, using LSTM based networks for spatio-temporal sequence

modelling. Spatio-temporal trajectories have two dimensions, spatial and temporal;

however, recent approaches fail to take into account both the spatial dimension and

the temporal dimension simultaneously when modelling spatio-temporal trajectories.

They either consider the spatial dimension and leave out the temporal dimension, or vice

versa. It is crucial to consider both spatial and temporal dimensions for spatio-temporal

trajectory modelling to avoid missing any spatio-temporal patterns. In this chapter, we

propose an RNN based model called Spatio-Temporal GRU to succinctly model the spatio-

temporal relationships and correlations embedded in irregularly sampled spatio-temporal

trajectories.

4.1 Introduction

An ST trajectory represents a series of movements for an ST object, and modelling ST

trajectories is one of the core processes in trajectory data mining. It leads to diverse

real-world applications such as human behaviour analysis, travel mode classification,

itinerary recommendation, and animal mobility detection [Lee et al., 2008, Lei et al.,
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2011, Zheng, 2015]. As ST trajectories consist of spatial coordinates and corresponding

time stamps, the problem of ST trajectory modelling is of great interest in the data

mining community. An ST trajectory is a list of ST entries, .hx1; y1; t1i; hx2; y2; t2i; : : : ;

hxn; yn; tni/, where xi ; yi 2 R2 and ti 2 RC for 1 � i � n and t1 < t2 < : : : < tn. A

regular ST trajectory is when jtjC1 � tj j D jtkC1 � tkj for 8 j; k whilst an irregular ST

trajectory is when jtjC1� tj j ¤ jtkC1� tkj for 9 j; k where 1 � j ¤ k < n. Notably, most

ST trajectories are irregular due to inconsistent weather or environmental conditions,

geographical obstacles such as tunnels, device malfunctions, and limited battery issues

where GPS reception is unavailable [Bermingham and Lee, 2018], therefore, we focus on

irregular ST trajectories in this chapter. This unique property of irregular ST trajectories

creates many unique challenges for ST trajectory modelling.

Figure 4.1 illustrates two ST trajectories with different sampling rates. The top left

(black) depicts a walking trajectory with a sampling rate of 30 seconds, while the bottom

right (green) shows a driving trajectory with a sampling rate of 10 seconds. Grey dots

in the green trajectory represent missing points where data were not collected due to a

high-variance in the estimation of speed.

ST trajectory classification involves building a model that can classify ST trajectories

into various groups based on underlying features and characteristics. For example,

classification of transportation modes from ST trajectories is a popular current trajectory

classification problem [Liu et al., 2019, Xiao et al., 2017, Zheng et al., 2010]. Using

machine learning approaches, Zheng et al. [2010] aimed to classify human trajectories

into four categories based on their travel modes: driving, cycling, walking, and running.

Note that typical machine learning-based classification models require a set of features

to be extracted from the raw data; and in this study, they first extracted nine features

including speed, velocity, and direction, which were used in their machine learning based

classifier.

With the recent advances and developments in deep learning, several deep models

have been proposed that outperform traditional shallow machine learning models. One

of the unique advantages of deep neural networks is that they do not need to perform

the feature engineering process, but work well the with raw data. RNN models are the

most popular and have become state-of-the-art methods for sequence and time series

data among the many deep models. However, traditional RNN-based approaches are
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Fig. 4.1 Two trajectory segments with different sampling rates. Top left (black) is a
walking trajectory with a sampling rate of 30 seconds and bottom right (green) is a driving
trajectory with a sampling rate of 10 seconds. The grey dot represents a missing point
which may result in a high-variance in the estimation of speed. The green trajectory
shows a user stops at a restaurant after work, then goes home after after dinner; notice
that the time intervals between work to restaurant and restaurant to home are different.

designed to model sequence data with regular time intervals, and are not suitable for

irregular ST trajectories. For instance, in speech recognition, raw acoustic data are

split into equal sized signal frames assuming the same temporal interval, whilst in text

data mining, sentences are segmented into words without temporal information. In

this study, we consider ST trajectories that are irregularly sampled and have different

time intervals. This irregularity of ST trajectories makes them unique, and traditional

RNN-based approaches need to be modified to handle the irregularity of ST trajectories

as well as their spatiality and temporality.

Many deep neural modes have been proposed for ST trajectory classification tasks.

Shah and Romijnders [2016] investigated raw basketball trajectories using an LSTM

network to distinguish successful shots from unsuccessful shots. Similarly, Liu and

Lee [2017] utilised a bi-LSTM neural network to classify travel modes from raw human
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trajectories. Shah and Romijnders [2016] and Liu and Lee [2017] studied the same

problem by concatenating the timespan � to the .x; y/. Recently, Shi et al. [2015] realised

the importance of temporal interval information in ST trajectories, and Zhu et al. [2017]

proposed three Time-LSTM models specifically designed to handle the temporal interval

information. However, this approach was limited to the problem of recommendation,

and was not designed to be directly applicable to the ST trajectory classification task, as

it is not structured to capture local spatial variations. In summary, there have been some

studies that have modelled ST trajectories, however to the best of our knowledge, none

takes into consideration the unique characteristics of ST trajectories: the irregularity

of sampling, simultaneous modelling both the spatial and temporal dimensions, and

modelling of local spatial variations (correlations).

To overcome these common drawbacks of traditional approaches, we propose an

RNN-based model ST-GRU, specifically designed for irregularly sampled ST trajectory

data. The main contributions of this chapter are:

� We propose a segmented convolutional mechanism which improves the computa-

tions of a traditional GRU. The mechanism is designed to capture the short-term

local correlations of spatial information which is an important factor in ST trajec-

tory classification;

� We propose a temporal gate to the GRU which can better incorporate the temporal

interval information into trajectory classification. The temporal gate controls the

confidence of input information when faced with irregular inputs due to variances

in time intervals;

� We present extensive experiments on two real-world datasets and one synthetic

dataset to evaluate the performance of our proposed method. Experimental results

reveal that our approach achieves superior ST trajectory classification performance.

Ablation studies are also conducted to justify the applicability of our proposed ST

modifications.

� We further evaluate the effectiveness of the proposed temporal gate on the next

location prediction problem. Experimental results demonstrate significant improve-

ments compared to several compatible baseline methods.
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The rest of chapter is organised as follows. In Section 4.2 our proposed Spatio-

Temporal GRU model is introduced and the details of our model are discussed. Section 4.3

presents experimental results and the main findings are discussed.

4.2 Spatio-Temporal GRU

We first briefly review the original GRU model and then introduce the proposed Spatio-

Temporal GRU model.

4.2.1 Traditional GRU

The GRU model [Cho et al., 2014] is one of the variants of RNN used to solve the gradient

vanishing issue of long range dependencies. The computation formula of sequence

X1 ! X2 ! � � � ! Xn at step t can be formalised as follows:8̂̂̂̂
<̂̂
ˆ̂̂̂:
zt D � .WxzXt C Uhzht�1 C bz/ ;

rt D � .WxrXt C Uhrht�1 C br/ ;

h
0

t D f .WxhXt C rt ˇ Uhhht�1 C bh/ ;

ht D zt ˇ ht�1 C .1 � zt/ˇ h
0

t ;

where zt ; rt ; h
0

t , and ht represent the update gate, the reset gate, the memory state and

the output, respectively. Wx�, Uh� and b� are parameters of the GRU cell, ˇ denotes

the element-wise product, and � and f denote sigmoid and tanh activation functions,

respectively. It has been shown that the GRU model achieves similar results to LSTM in

many tasks with fewer parameters and less computational complexity [Cho et al., 2014].

4.2.2 Proposed Spatio-Temporal GRU

Spatial modelling

For ST trajectories, the shape of the trajectory and the local segments of several continu-

ous points usually have a key influence on trajectory classification. If we directly feed

one spatial point separately into the network, it will result in the spatial information

being sparse and disjoint across time steps. As a solution, we propose a segmented
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convolutional weight mechanism on all computations corresponding to the spatial infor-

mation in order to model the local spatial correlations and variations. Thus, instead of

using one feature vector Xt 2 RC as input at each step t , we feed a segment Xt 2 RL�C

which is composed of L consecutive feature vectors from the trajectory.

Recently, a 1D-CNN has been proven to be capable of handling sequence modelling

tasks such as machine translation [Gehring et al., 2017] and sentence classification [Kim,

2014], resulting in great advances in both computation efficiency and accuracy. The

key benefit of the 1D-convolution over the recurrent operations is that the convolution

operation explicitly captures the local correlations of the input sequence using filters

serving as the context window, while recurrent networks can only feed in one element at

a time and can model the correlations implicitly in the recurrent cell. Note that, for the

task of ST trajectory classification, the objective is usually related to a general attribute

of trajectories such as travel modes. Such general attributes are most likely related to

the local shape and correlations of a given trajectory. Thus, directly feeding each point

into a recurrent network at each time step can make it hard for the network to focus on

such local correlations, whereas, such prior knowledge can be naturally incorporated

via a 1D-CNN. In addition, traditional recurrent networks can only process input data

sequentially in one dimension and will miss two dimensional correlations, i.e. from left

to right or from right to left, but convolutions can capture the two dimensional spatial

information via a context window around the input, thus they are better suited to ST

trajectory mining.

Based on this observation, we use a 1D-convolution to replace all the linear transfor-

mation operations. Note that, the input of a recurrent cell is a segment consisting of

several contiguous points rather than a single point, and the 1D-convolution is adopted

to capture the local correlations for each time step computation. The computational

flow of our Spatio-Temporal GRU modified with the segmented convolutional weight

mechanism is formally described as follows:8̂̂̂̂
<̂̂
ˆ̂̂̂:
ZT D � .Wxz ˝ ŒXT ; HT�1�/ ;

RT D � .Wxr ˝ ŒXT ; HT�1�/ ;

H 0

T D f .Wxh ˝XT CRT ˇ .Uhh ˝HT�1// ;

HT D ZT ˇHT�1 C .1 � ZT /ˇH
0

T :

(4.1)
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Fig. 4.2 The computation flow of the proposed segmented convolutional weight mecha-
nism with respect to an entire sequence with M � L time steps. Each row represents
a length-L segment XT and the superscript (e.g. t in Xt

M ) represents the index of the
element in each segment.

For clarity, we use the subscript T to indicate the index of the segment and t as the

index of the basic step from the original sequence. Here, ˝ denotes the 1D-convolution

operation. Note that, the input informationXt now includes several steps of the sequence,

and the linear transformation becomes the 1D-convolution which preserves the step

dimension, i.e. L. This results in all gates (Zt , Rt ) becoming L �H matrices recording

L basic steps. The states Ht and H 0

t also become L�H matrices to be compatible with

the gate computation.

The segmented convolutional weight mechanism makes the gate and state computa-

tion of our Spatio-Temporal GRU become locally sensitive. Thus, for each computation,

information before and after the current basic step t can all be inferred during the

computation. In contrast to traditional recurrent networks, where there is only one

element as input and they tend to be sparse in information, the segmented convolutional

weight mechanism results in rich and useful information in each GRU step, as the input

is composed of several points. This maximises the sequential modelling power of our

Spatio-Temporal GRU. Although Reed et al. [2016] attempts to extract local sensitive
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features via a 1D-CNN, this is for images and the temporal interval information is ignored.

Our proposed segmented convolutional weight mechanism is different and more robust

to outliers.

Suppose a sequence can be divided into M segments with L basic time steps. The

computational flow is illustrated in Figure 4.2 with arrows indicating the dependencies

introduced by the 1D-convolution with a length-3 kernel. We construct L sub-trajectories

by sub-sampling the original trajectory with an interval L, i.e.
˚
X1
1 ! X1

2 ! X1
T

	
;˚

X2
1 ! X2

2 ! X2
T

	
; � � � ;

˚
XL
1 ! XL

2 ! XL
T

	
. The superscript indexes the element in

each segment, whilst the subscript indexes each segment. Then Eq. (4.1) can be regarded

as the computation of L sub-trajectories by referring context information in each time

step. For instance, the blue dashed box in Figure 4.2 represents the computation of the t -

th sub-trajectory T r t by referring context input features for each time step and generates

the output htM with respect to T r t . The red dashed box represents the sub-trajectory

T r tC1 output and the state htC1M . The state HM is seen as column-wise stacking the

states of all L sub-trajectories, i.e. HM D
�
h1M ; h

2
M ; � � � ; h

L
M

�
. The final prediction

can be produced by performing a global pooling process on these L sub-states. Thus,

encoding the whole trajectory can be regarded as encoding L sub-trajectories. Even

though some outliers lie in certain sub-trajectories, the final result will be averaged by

L predictions as a whole which makes the model more robust to outliers as well as

preserving the power to capture the local correlations and variations. We will conduct

experiments to demonstrate the superiority of our segmented convolutional weight

mechanism compared to the feature convolution strategy.

Temporal modelling

As studied in [Bermingham and Lee, 2018, Shi et al., 2015], the interval information

(the interval between two consecutive points in a trajectory) plays an important role as

it contains the temporal information. In this chapter, we regard the temporal interval

information of step t as the relative time interval between the time stamp at step t and

step t � 1, i.e. ��t D �t � �t�1. A straightforward way to incorporate the temporal

interval information is to directly treat the spatial and the temporal interval information

as a whole feature vector, i.e. Xt D .xt ; yt ; ��t/, and let the weights Wx� automatically

learn the correspondence between the spatial and temporal features. Such a strategy is
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Fig. 4.3 The computational graph of one step in a traditional GRU and a Spatio-Temporal
GRU.

simple but not optimal as the characteristics of spatial and temporal interval information

are totally different (and also measurement units are different) and, therefore, it is

inappropriate to use a linear transformation to combine the spatial and the temporal

interval information. Inspired by the time gate proposed in the Time-LSTM model [Zhu

et al., 2017], we extend the GRU model with a temporal gate GT with a segmented
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convolutional weight mechanism. The computation formulas are:8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

ZT D � .Wxz ˝ ŒST ; HT�1�/ ;

RT D � .Wxr ˝ ŒST ; HT�1�/ ;

GT D �
�
Wxg ˝ ŒST ; TT ; HT�1�

�
;

H 0

T D f .Wxh ˝ ST CRT ˇ .Uhh ˝HT�1//ˇ GT ;
HT D ZT ˇHT�1 C .1 � ZT /ˇH

0

T :

The temporal gate GT is decided by the current input spatial features, intervals as well

as the historical states Ht , and it is plugged into the input state H 0
T . The idea is that we

want the temporal gate to control the confidence on the input state of step T , i.e. H 0
T by

considering the temporal interval information corresponding to the current position and

previous position (which is recorded in HT�1). Take the travel mode classification task

as an example. Intuitively, we know the moving speed of the object determines the travel

mode. However, if the object stops at a crossroad or the interval suddenly becomes very

large, both cases will result in an inaccurate speed estimation. In the first case, the object

is actually not moving which will confuse the model as it should be regarded as noise

and be filtered out. Whereas, the second case suffers from a large variance in speed

estimation which should lower its information confidence for prediction. If the temporal

gate is introduced, the input information for the current step will be further controlled

by the temporal gate, which may be set to a low value to filter out the inputs that are

likely to confuse the decision. We will conduct an ablation study and visualisation to

justify the applicability of the proposed temporal gate.

4.2.3 Spatio-Temporal GRU Model for Trajectory Classification

Figure 4.3 illustrates computational graphs for one step in the traditional GRU and the

Spatio-Temporal GRU. In this section, we present the details of adopting the Spatio-

Temporal GRU model for the ST trajectory classification problem. Given a time interval

pre-processed trajectory T r D f.x1; y1; ��1/; .x2; y2; ��2/; � � � ; .xN ; yN ; ��N /g contain-

ing N points where ��t D �t � �t�1 for 1 � t � N and �0 D 0, we first break them

into M D bN=Lc length-L segments to be compatible as input to our ST-GRU model.

We denote S
0

T 2 R
L�2 as the spatial coordinates of T -th segment and TT 2 RL to be

the corresponding interval. Directly regarding the spatial coordinate S
0

T as a feature
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may not be an optimal solution as latitude and longitude will then be regarded as inde-

pendent features. This is not desirable as modelling the correlation between latitude

and longitude must be handled by the ST-GRU’s recurrent cell. The literature reveals

several attempts to adopt embedding techniques into trajectory modelling [Gao et al.,

2017, Wu et al., 2017]. However, trajectories are modelled by either a series of categorical

POI or road segments which are similar to textual data. As a solution, we perform

an additional feature transformation layer on the spatial coordinates to increase the

feature dimension before feeding them into our ST-GRU model which can be regarded as

a soft-embedding of the raw position. Formally, the spatial feature ST can be computed

by ST D ReLU.S
0

TWs C bs/ 2 RL�C where Ws 2 R2�C and the bias bs 2 RC , where C

denotes the input spatial feature dimension of ST-GRU.

For the ST-GRU cell, we stack two ST-GRU cells to enlarge the model’s capacity. Note

that the temporal interval information TT will be individually fed into two ST-GRU layers

and the states produced by the first layer will be the spatial feature of the second layer.

After the whole sequence is traversed, ST-GRU outputs the hidden states of the last

segment, i.e. HM 2 RL�H where H denotes the dimension of the hidden states. As

introduced in Section 4.2.2, HM is composed of the L predictions
�
h1M ; h

2
M ; � � � ; h

L
M

�
generated by L sub-trajectories. We adopt the average global pooling on these L states

to aggregate the L states to hM 2 RH . One fully connected layer with ReLU activation is

adopted that follows with a linear Softmax classifier.

4.2.4 Spatio-Temporal GRU Model for Next Location Prediction

To evaluate the effectiveness of the proposed time gating mechanism, we also conduct

experiments on the next POI location prediction. In this section, we present the details

of adopting the ST-GRU model for next location prediction. Given a time interval pre-

processed sequence S of POIs, S D f.p1; ��1/; .p2; ��2/; � � � ; .pN ; ��N /g containing N

POIs where��t D �t��t�1 for 1 � t � N and �0 D 0. Unlike in travel mode classification,

spatial information is not considered, instead, the embedding [Mikolov et al., 2013] of the

POI takes its place to feed into the ST-GRU cell. Irregular time intervals will be fed into the

model in the same manner as discussed in the previous section. However, irregular time

intervals here are for the purpose of modelling the long-term and short-term interests of

the user’s visits to POI locations , which has not been addressed previously.
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In regard to the network architecture, we adopt similar settings to those used for

travel mode classification. In addition to the spatial feature S
0

T , we also concatenate

embeddings of the user’s identification, the date, the day of week, and the POI category.

4.2.5 Implementation and Hyperparameters

In our implementation, the soft-embedding dimension C is set to 16, and the segment

length L is set to 10. In our ST-GRU model, all 1D-convolution operators have the kernel

size set to 3, and the output channel set to 32 which is the same as in the hidden state

dimension H . We train the model by optimising the cross-entropy loss function on the

labels with a learning rate of 1e�2. The model is optimised using the Adam optimiser

[Cho et al., 2014] for the first 30 epochs and we select the parameters with the highest

accuracy (the parameters are saved at every epoch). The selected parameters are further

optimised using the Stochastic Gradient Descent (SGD) optimiser for 50 epochs, with the

learning rate set to 1e�4.

Algorithm 1 depicts the details of our model training. It consists of two modules:

basic training with Adam and fine tuning with SGD. We implement our model using

Tensorflow 2.0, a well-known deep learning library developed by Google. Our model is

trained and evaluated on a server with an Nvidia V100 GPU and an IntelR XeonTM Gold

5118 CPU @ 2.30GHz (24 cores).

4.3 Experiments – Trajectory Classification

4.3.1 Datasets for Experiments

We evaluate our model using three ST trajectory datasets: the Geolife dataset, the

Shanghai taxi dataset, and a synthetically generated dataset. We pre-process all the

datasets to split them in a ratio of 7:1:2 to generate corresponding training, validation

and test datasets.

Geolife dataset This is a ST trajectory dataset widely used in the data mining commu-

nity which was collected by Microsoft Asia in 2011 [Zheng et al., 2011]. It has been used

for a variety of types of research such as human mobility prediction and travel mode
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Algorithm 1: Spatio-Temporal GRU training

Input: A set T of trajectories, and a set L of labels;
Output: A trained model M ;

Initialize the parameters � ;
// Train with Adam
for i 2 1; 2; 3:::EPOCH do

while batch < Nbatches do
Select a random batch .Tbatch;Lbatch/;
Feedforward the batch;
Get gradient and update weights � with Adam;

Output weights � of best performance;

// Fine tune with SGD
Load weights � ;
for i 2 1; 2; 3:::EPOCH_C do

while batch < Nbatches do
Select a random batch .Tbatch;Lbatch/;
Feedforward the batch;
Get gradient and update weights � with SGD;

Output weights � of best performance;

classification. This dataset contains 17,621 trajectories of which about 8,000 trajectories

contain travel mode labels (of four types: bike, walk, car and bus). The travel mode

classification task is run against this dataset.

Shanghai Taxi dataset This dataset comprises of taxi GPS traces in Shanghai city from

01 April to 17 April 17 2015 [Deng and Ji, 2011]. We segment the traces according to

the labels of occupied (when the taxi is occupied by a passenger, resulting in about 314

kB of data) and available (taxis without passengers, resulting in about 198 kB of data).

We conduct comparative experiments on a binary classification task, that is to correctly

classify trips into two categories: having or not having passengers, for this dataset.

Synthetic dataset To further evaluate our model, we generate a set of synthetic trajec-

tories with varying speeds, acceleration, and sampling rates. We generate trajectories

with four travel modes (the same as in the Geolife dataset). For car mode, we draw a

speed from 30 km/h to 60 km/h with acceleration of 3 m/s2. For bus mode, we set the

speed range to be the same as car mode, except acceleration is set to 1 m/s2. For bike
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mode, the speed range is 10 km/h � 15 km/h, and for walking mode the range is 2

km/h � 5 km/s. The sampling time interval is randomly drawn from f1s; 2s; 5sg. We also

randomly drop points to simulate GPS uncertainties. We generated 5,000 trajectories

for each travel mode, with each trajectory containing 1,000 points (before randomly

dropping points).

4.3.2 Overall Evaluation

First of all, we perform an evaluation on the ST trajectory classification task on three

datasets. We implement the following baselines for comparative analysis.

Baselines

SVM & Random forest: As proposed in [Zheng et al., 2010], nine features are extracted

from the raw trajectory data including speed, velocity, and direction. The extracted

features are fed into SVM [Cortes and Vapnik, 1995] and random forest Breiman [2001]

classifiers as suggested.

RNN: LSTM [Hochreiter and Schmidhuber, 1997] and GRU [Cho et al., 2014] are two

common variants of RNNs. As mentioned in Section 4.2.2, we extend the traditional

RNN by adopting an 1D-CNN directly onto the whole sequence to extract local sensitive

features [Reed et al., 2016]. This approach is denoted by a prefix FConv. We compare

all RNN models by feeding in the spatial information .x; y/ only and feeding in the ST

information .x; y;��/.

Conv-LSTM: A convolutional LSTM is proposed in [Shi et al., 2015] for spatial temporal

forecasting; Conv-LSTM replaces the matrix transition with a 2D convolution. We imple-

ment this by replacing the 2D-CNN with a 1D-CNN, then raw trajectories are fed into the

model as we do for the RNN models.

Time-LSTM: A Time-LSTM is proposed in [Zhu et al., 2017] to solve the irregularity of

time interval problem for recommendation tasks. We implement the first version of

Time-LSTM in their series for comparison.
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Table 4.1 Experimental results in terms of classification accuracy (%).

Geolife Shanghai Synthetic

SVM .x; y;��/ 86.11% 87.78% 86.90%
Random Forest .x; y;��/ 86.89% 88.03% 87.28%
CNN .x; y;��/ 87.08% 83.88% 81.47%

LSTM .x; y/ 71.86% 85.53% 69.45%
LSTM .x; y;��/ 88.39% 90.94% 88.50%
FConv-LSTM .x; y;��/ 88.44% 90.91% 88.61%

GRU .x; y/ 72.04% 85.78% 70.20%
GRU .x; y;��/ 89.76% 92.03% 91.49%
FConv-GRU .x; y;��/ 89.86% 91.98% 91.55%

Conv-LSTM .x; y;��/ 89.85% 91.52% 91.25%
Time-LSTM .x; y;��/ 83.92% 90.88% 88.78%

ST-GRU .x; y;��/ 91.25% 93.89% 93.21%

Performance Evaluation

We evaluate our Spatio-Temporal GRU against the baselines discussed above including

shallow machine learning based approaches and deep RNN based methods. Table 4.1

displays a summary of our experimental results. It clearly demonstrates that our Spatio-

Temporal GRU outperforms all baselines for each of the three ST trajectory datasets used

in the evaluation. Note that, we use an one-tail paired t -test as a test of significance in

the study, since it is commonly used in data mining and provides more power to detect

an effect [McCarroll, 2017].

First, as shown in Table 4.1, RNN based approaches exhibit superior performance

over machine learning based approaches, i.e. SVM and Random forest, as well as

CNN. This indicates that RNNs are capable of modelling ST sequential trajectory data.

Random forest .x; y;��/ seems to be the best performer among the machine learning

approaches we evaluated. RNN based approaches LSTM .x; y;��/ and GRU .x; y;��/

outperformed Random forest .x; y;��/ for all three datasets. The test of significance in

terms of accuracy shows that LSTM .x; y;��/ significantly improves the best machine

learning based approach under study, Random forest .x; y;��/ (p-value = 0.035) with

95% confidence, whilst GRU .x; y;��/ significantly improves Random forest .x; y;��/

(p-value = 0.008) with 99% confidence.
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Second, RNN based approaches with ST information exhibit higher accuracies than

those with spatial information, while ignoring the temporal interval information. Com-

parisons of LSTM/GRU (x; y) and LSTM/GRU (x; y;�� ) prove that the temporal interval

information �� plays a crucial role in ST trajectory classification. Disregarding ��

significantly decreases the overall performance. For example, , without the temporal in-

terval information, classification accuracies for LSTM drop 16.53% on the Geolife dataset,

5.41% on Shanghai dataset, and 19.05% on our synthetic dataset. The test of significance

shows that LSTM .x; y;��/ significantly improves LSTM .x; y) (p-value = 0.041), and

GRU .x; y;��/ significantly improves GRU .x; y/ (p-value = 0.040) with 95% confidence.

Third, performing 1-D convolutions on the sequence before loading it into the network

(i.e. the FConv version) appears to have a negligible effect. On one hand, the largest

improvement of 0.11% is observed for FConv-LSTM .x; y;��/ over LSTM .x; y;��/ for

our synthetic dataset, on the other hand, a small decrease is observed for the Shanghai

dataset. This justifies our claim that the convolution operation should be computed in

GRU cells for better modelling of the spatial correlations which separate the spatial and

temporal computations.

Fourth, Time-LSTM .x; y;��/ has a time gating mechanism for modelling the temporal

interval information. However, note that their custom time gating cell is specifically

designed to model long-term and short-term interests to recommend products that a

user might be interested in, which is not suitable for trajectory classification. Time-LSTM

achieves only 83.92% on the Geolife Dataset which is inferior to LSTM .x; y;��/, and

notably Time-LSTM .x; y;��/ is inferior to GRU .x; y;��/ for all three datasets. Conv-

LSTM .x; y;��/ performs better than Time-LSTM .x; y;��/. The test of significance

shows that Conv-LSTM .x; y;��/ significantly improves Time-LSTM .x; y;��/ (p-value

= 0.095) with 90% confidence. This implies that the spatial information plays a more

important role than the temporal interval information in trajectory classification.

Finally, ST-GRU performs the best for all three datasets. It performs 91.25% for Geolife

dataset, 93.89% for Shanghai dataset, and 93.21% for our synthetic dataset. The test

of significance shows that ST-GRU .x; y;��/ significantly improves the best performer

among all the others, Conv-LSTM .x; y;��/, (p-value = 0.01) with 99% confidence. This

clearly demonstrates the outstanding performance of our proposed model over all other

approaches under study.
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Table 4.2 Results for ablation study.

Geolife Shanghai Synthetic

GRU .x; y;��/ 89.76% 92.03% 91.49%

Spatial-GRU .x; y;��/ 90.03% 92.32% 91.87%

Temporal-GRU .x; y;��/ 90.59% 92.75% 92.34%

ST-GRU .x; y;��/ 91.25% 93.89% 93.21%

4.3.3 Ablation Study

To validate the proposed spatial modelling and temporal modelling strategies, we conduct

an ablation study on these components. We include two new competitors: Spatial-GRU

and Temporal-GRU. Spatial-GRU refers to a modification of GRU to use a segmented

convolutional weight mechanism which captures the spatial correlations, whilst Temporal-

GRU refers to a modification of GRU implemented with the addition of a temporal gate but

without the segmented convolutional weight mechanism. The results listed in Table 4.2

show a boost in performance when using Spatial-GRU or Temporal-GRU compared to the

original GRU. This indicates that either the proposed spatial modelling or the temporal

modelling modification proposed in this paper does improve performance. Moreover, by

combining both the temporal and spatial components, ST-GRU further improvements are

gained.

4.3.4 Visualisation of Temporal Gates
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Fig. 4.4 The speed and corresponding temporal gate value for 25 time steps in a trajectory.
Note that the temporal gate is a vector and we visualize it by its average value. The
example trajectory is from the Geolife dataset with the traffic mode ‘car’.

To further understand how the temporal gate works, we design a way to visualise

the temporal gate GT . For the travel mode classification task, speed is an important
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factor, therefore, we visualise the speed across all time steps. The temporal gate value is

decided by the current spatial position, the interval and the previous states containing

the previous position. Supposing the speed information could be related to the gate

value, we visualise this in Figure 4.4. We can observe that for the time steps, annotated

by red dashed boxes, the speed of the object becomes zero which may complicate the

prediction (if the prediction is based on the average speed). From the temporal gate

value, we can infer that the gate has learned to restrict the input information of these

steps. Interestingly, at step 20 (green box) the speed suddenly increases to a value which

seems abnormal compared to the previous speed. The gate detects this phenomenon

and tries to ignore this information. But if, after several steps, the speed remains at a

relatively high value, the model starts to trust the information and gradually increases

the gate value.

4.3.5 Importance of L

As stated earlier, trajectory data is fed into ST-GRU via a set of length L segments.

Performance will vary with different length L parameter settings. On one hand, the

shorter the value of L, the more difficult it is for the 1D-CNN to catch the spatial

correlations. In an extreme condition L D 1, ST-GRU becomes Temporal-GRU. On

the other hand, the larger the value of L, the shorter the segment sequence will be

which reduces the performance of the recurrent cell. We conduct experiments using

four parameter settings, L D f1; 5; 10; 15g to show the sensitivity of L in regard to

performance. Figure 4.5 supports the above-mentioned claim and shows that L D 10

achieves the best classification accuracy of 91.25% on the Geolife dataset.

4.4 Experiments – Next-Location Prediction

4.4.1 Data Preparation

To further evaluate the effectiveness of our proposed time gate mechanism, we conduct

next-location prediction experiments on two real-world datasets. Foursquare 1 allows

users to check-in their location POIs, and NYC and TKY are two openly available large

1https://developer.foursquare.com/docs
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Fig. 4.5 Performance comparison of varying L values.

POI datasets collected by Yang et al. [2015]. NYC contains 227,997 check-in locations

of 38,333 POIs in New York City, whereas, TKY contains 572,210 check-in locations of

61,858 POIs in Tokyo City. For each user, we segment each trajectory to the length of 10

POIs, then 80% are randomly selected for the training set, 5% for the validation set for

parameter tuning, and 15% for the testing set to evaluate the overall performance.

4.4.2 Overall Evaluation

Table 4.3 Experimental results of next-location prediction on NYC and TKY datasets.

NYC TKY

Acc@1 Acc@10 Acc@20 Acc@1 Acc@10 Acc@20

LSTM 13.78% 38.57% 43.61% 12.20% 37.63% 44.27%

GRU 14.69% 39.70% 44.68% 13.34% 37.88% 44.20%

ST-GRU 15.31% 39.78% 44.41% 13.59% 38.28% 44.55%

Evaluation Matrix and Baselines

We adopt the accuracy of the top K (Acc@K) matrix, where K is the number of the

candidates we select with the highest probabilities. We use K = 1, 10, 20 and report them

on both the NYC and TKY datasets. We compare the proposed ST-GRU to the original

LSTM and GRU baselines.
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Performance Evaluation

As shown in Table 4.3, both the original GRU and the proposed ST-GRU outperform LSTM,

which further indicates the GRU family is more suitable for trajectory modelling than

LSTM. Among the GRU family, the proposed ST GRU outperforms the original GRU in

all matrices excluding Acc@20 on the NYC dataset. ST-GRU performs extremely well

on the Acc@1 matrix on both datasets, which demonstrates the proposed time gating

mechanism successfully models both long-term and short-term user check-in interests.

Recall that time intervals between user check-ins are highly variable, and such interval

variance affects the user’s check-in interests. Modelling such long-term and short-term

interests caused by the time intervals is crucial for this kind of next POI prediction task.

Experiments on two real-world POI check-in datasets demonstrate the effectiveness of

the proposed ST-GRU for modelling such long-term and short-term interests, resulting in

a performance boost over the original GRU.

4.5 Summary

In this chapter, we studied the difficulties of modelling in-regularly sampled spatio-

temporal trajectory. To fulfil the research gap identified in Section 3.4, we proposed a

novel model called Spatio-Temporal GRU to effectively model the ST correlations and

variations for ST trajectory classification. We propose a novel segmented convolutional

weight mechanism to capture short-term local spatial variations and correlations in

trajectories, and introduce an additional temporal gate to control the information flow

for the temporal interval information. Experimental results that demonstrate the supe-

rior performance of our proposed method against popular deep learning approaches

proposed for spatio-temporal trajectory modelling.



Chapter 5

Bridging the Gap Between Training and

Inference for Spatio-temporal Forecasting

Spatio-temporal sequence forecasting is one of the fundamental tasks in spatio-temporal

data mining. It facilitates many real world applications such as precipitation nowcasting,

citywide crowd flow prediction and air pollution forecasting. Recently, a few Seq2Seq

based approaches have been proposed, but one of the drawbacks of Seq2Seq models is

that small errors can accumulate quickly along the generated sequence at the inference

stage due to the different distributions of training and inference phases. That is because

Seq2Seq models minimise single step errors only during training; however, the entire

sequence has to be generated during the inference phase which generates a discrepancy

between training and inference. In this chapter, we propose a novel curriculum learning

based strategy called Temporal Progressive Growing Sampling to effectively bridge

the gap between training and inference for spatio-temporal sequence forecasting, by

transforming the training process from a fully-supervised approach which utilises all

available previous ground-truth values to a less-supervised approach which replaces

some of the ground-truth context with generated predictions.

5.1 Introduction

STSF is one of the fundamental tasks in spatio-temporal data mining [Shi and Yeung,

2018]. It facilitates many real world applications such as precipitation nowcasting [Shi

et al., 2015], citywide crowd flow prediction [Chen et al., 2018, Zhang et al., 2018] and air
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pollution forecasting [Yi et al., 2018]. It is used to predict future values based on a series

of past observations. STSF is formally defined as:

Definition 1. Given a length-T matrix sequence S D ŒX1;X2; : : : ;XT �. Each matrix

Xt 2 S consists of measurements of coordinates at time-step t . STSF is used to predict a

sequence of corresponding measurements of the following k time-steps based on the

past observations of S, denoted as OP D
h
OXTC1; OXTC2; : : : ; OXTCk

i
.

From the recent advances in the Seq2Seq model [Sutskever et al., 2014] in sequence

modelling such as Neural Machine Translation (NMT) and speech recognition, researchers

have adapted Seq2Seq to model STSF as sequence modelling. In particular, both DCRNN

[Li et al., 2018] and PredRNN [Wang et al., 2017] have utilised an RNN-based encoder to

encode a source sequence S into a feature matrix which will then be decoded recursively

conditioned on previous contexts into the target sequence OP, with a separate RNN-

based decoder. During the training phase, the previous contexts become ground-truth

observations. However, during the inference phase, the previous contexts are drawn

from the model itself as no ground-truth observations are available for the decoder.

The cause of the discrepancy between the training and inference stages is referred

to as exposure bias [Ranzato et al., 2016]. Small errors caused by this bias quickly

accumulate to become a large error along the generated sequence at the inference stage.

One intuitive solution is to unify the training and inference phases by using previously

generated contexts instead of ground-truth values during training. However, this causes

the model more difficulties in the converging process or, at worst, the converging process

fails [Bengio et al., 2015, Venkatraman et al., 2015]. Bengio et al. [2015] introduced

Scheduled Sampling to overcome this problem by gradually transforming between these

two strategies, resulting in significant improvements, and this has been widely used in

NMT systems. DCRNN and PredRNN adapt Scheduled Sampling into STSF, producing

some improvements. However, we argue that simply adopting Scheduled Sampling from

NMT to STSF is not ideal even though they are both designed for sequence modelling.

This is due to two clear distinctions. First, an NMT system is ideal for the word level

classification problem that optimises the cross entropy loss conditioned on the source

sequence and previous contexts, whereas, STSF is ideal for the regression problem that

optimises a regression loss such as MSE and MAE. Second, two consecutive words in NMT

systems are semantically close to each other, and small errors caused by the training bias
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could result in a completely different translation. However, two measurements in two

consecutive time steps in STSF are geographically close and contiguous to each other,

and errors made by previous steps could confuse the local trend of prediction, leading

to a bigger gap in the long-term predictions.

Motivated by the above observations, we bridge the gap between training and infer-

ence for spatio-temporal forecasting by introducing a novel coarse-to-fine hierarchical

sampling method called TPG. The idea is to transform the training process from a

fully-supervised approach which utilises all available previous ground-truth to a less-

supervised approach which replaces some of the ground-truth contexts with generated

predictions. To do that, we also sample the target sequence from midway outputs

from intermediate models trained with longer timescales through a carefully designed

decaying strategy. By doing so, the model explores the differences between the training

and inference phases as well as the intermediate model in order to correct its exposure

bias. Experimental results demonstrate our model achieves superior performance as well

as faster convergence time on two spatio-temporal sequence forecasting datasets. Exper-

iments also show our proposed method is better at modelling long-term dependencies,

hence our method increases the long-term prediction accuracy.

The main contributions of this chapter are summarised as follows:

� We propose a novel temporal progressive growing sampling method to effectively

bridge the gap between training and inference for spatio-temporal forecasting. The

model is initially trained with a longer time gap, which gradually transforms into a

shorter time gap.

� We carefully design a decay strategy of sampling that takes the current index of

the sequence into account, which helps the convergence of the training and yields

better performance.

� We conduct extensive experiments on two real-world spatio-temporal datasets to

evaluate the performance of our proposed method. Experimental results reveal that

our approach achieves superior performance on sequence forecasting tasks, and

experimental results also show our approach achieves better long-term prediction

accuracy.
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The rest of this chapter is organised as follows. In Section 5.2 our proposed TPG

model is introduced and the details of the model are discussed. Section 5.3 and Sec-

tion 5.4 present the experimental results of weather prediction, against a Moving MNIST

dataset [Srivastava et al., 2015].

5.2 Temporal Progressive Growing Sampling

5.2.1 Seq2Seq and Scheduled Sampling

Seq2Seq [Sutskever et al., 2014] was first introduced to solve complex sequential problems

that traditional RNN approaches cannot model, such as diverse input and output lengths.

Seq2Seq is also known as an encoder-decoder where the encoder encodes the original

sequence into a feature vector, then the decoder outputs a target sequence based on the

feature vector and previous contexts. Typically, both encoder and decoder are RNNs, and

Seq2Seq has been used for sequence modelling tasks like NMT , speech recognition and

recently STSF tasks [Li et al., 2018, Salinas et al., 2017, Yu et al., 2017].

One of the main drawbacks of Seq2Seq models is that small errors can accumulate

quickly along the generated sequence at the inference stage due to the different distribu-

tions of training and inference phases. That is because RNN models minimise single step

errors only during training when all previous ground-truth contexts are available. How-

ever, the entire sequence has to be generated during the inference phase which causes

a discrepancy between training and inference. To close the gap between training and

inference for NMT, Bengio et al. [2009] proposed a sampling strategy called Scheduled

Sampling which is explained below.

8 k; 1 � k � K;

OXtCk �M
�
Encoder.S/; QXtC1WtCkI �

�
;

�tCkC1 � Bernoulli .1; �i/;

QXtCkC1 D .1 � �tCkC1/ OXtCk C �tCkC1XtCk:

(5.1)

Here, M
�
Encoder.S/; QXtC1WtCkI �

�
denotes one step prediction based on the encoder

and the previous inputs QXtC1WtCk . �tCkC1 is a random variable generated by a coin flip

following the Bernoulli distribution, where �i is the probability of QXtCkC1 sampling
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from the ground-truth XtCk , i.e. 1 � �i is the probability of sampling from the previous

prediction OXtCk . When �i D 1, QXtCkC1 is always sampling from the ground-truth XtCk .

When �i D 0, QXtCkC1 is always sampling from the previous output OXtCk . During training,

the probability �i is decreased from 1 to 0.

5.2.2 Bridging the Gap with TPG Sampling

While adopting Seq2Seq for NMT to STSF brings significant benefits, it also creates some

drawbacks. The discrepancy between training and inference creates a gap in both NMT

and STSF systems. In NMT systems, that gap might result in a completely different

translation, and in STSF systems, errors at previous steps in the STSF could generate

confusion in the local trends. Therefore, adopting the Scheduled Sampling strategy as is

to use for STSF is not an ideal solution. Furthermore, spatio-temporal dynamics can be

modelled using different sampling rates. For instance, if we assume that we sample data

every 1 hour, then we can train a model to estimate the prediction of every 2 hours by

feeding the odd index sequence and the even index sequence separately. The current

Scheduled Sampling method does not consider this unique characteristic of STSF.

Motivated by this, we propose a TPG sampling strategy to close the gap between

training and inference. First, we sub-sample the sequence into two sub-sequences by

separating the odd and even indexes (see Fig. 5.1, green represents the odd index

inputs and orange represents the even). The idea is to start training a simple model

M1.Encoder.SWW2/; �/ that takes as input the odd or even index sequence denoted as SWW2.
The benefit of this approach is that the sequence length is cut to half to the original

length, which is much easier for both the encoder and decoder to learn. Moreover, if

model M1 is trained with Scheduled Sampling as in Equation 5.1, then the decoder

input of model M1 is used as a sampling source for model M2 during the transition

phase. This brings another advantage in that the model is not only able to explore the

differences between training and inference but also the intermediate model trains with

data from a longer time period. The detailed transition process is described as follows:
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Fig. 5.1 Illustration of our proposed TPG sampling. Green circles represent odd index
inputs Xodd and outputs OXodd, orange circles represent even index inputs Xeven and
outputs OXeven. At the start of training model M1 (a) initially, each sequence is fed with a
sub-sequence of green and orange. During the transition to model M2 (b), the decoder
input QXtCk

2
WW2 of model M1 is used as a source for sampling.
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8 k; 1 � k � K;

OXtCk
2
WW2 �M1

�
Encoder1.SWW2/; QXtC1WtCk

2
WW2I �1

�
;

OXtCk �M2

�
Encoder2.S/; QXtC1WtCkI �2

�
;

�tCkC1 � Bernoulli .1; �i/;

QXtCkC1 D .1 � �tCkC1/ OXtCk C �tCkC1 QXtCk
2
WW2:

(5.2)

Here, XtCk
2
WW2 denotes decoder inputs from model M1 of the corresponding index of

model M2. Similar to Scheduled Sampling, �i is the probability that follows the Bernoulli

distribution that controls whether QXtCkC1 samples are from the previous output OXtCk
or QXtCk

2
WW2 of M1. When �i D 1, QXtCkC1 D OXtCk . During the transition from M1 to M2,

we decrease �i from 1 to 0. When �i D 0, then model M2 gets solely trained conditioned

on its previous output.

Although our proposed Temporal Progressive Growing (TPG) Sampling shares some

similarities with Scheduled Sampling, there are two key differences. First, TPG closes the

gap between training and inference not only from exploring the bias but also corrects

the errors caused by the bias by learning the intermediate model over a longer time scale.

Second, we careful design a decaying strategy to work with TPG which is introduced in

the next section, and our experiments show significant improvements.

5.2.3 Decay Strategy

Scheduled Sampling decreases �i during the transition period by the inverse sigmoid

function as follows:

�i D
�

�C exp.i=�/
; (5.3)

where i is the current global batch number, � is the parameter setting to control the

deceasing speed of �i and, therefore, the convergence speed. Here, the whole sequence

shares the same probability to replace the ground-truth with output generated by the

model itself, noted �i towards 0 the greater probability is. However, during our ex-

periment, we observed that STSF model converges from the beginning of the sequence.

Replacing ground-truth with the model generated output at the beginning of the se-

quence increases the convergence difficulty of the whole training process. Therefore, we
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propose a decay strategy that takes the current index of the sequence into account when

calculating the probability:

�vi D
�

�C exp.i � log.�/=�/
; (5.4)

where � is the current index of the sequence starting from 2. Therefore, later index input

has a higher probability where ground-truth values are replaced than the earlier input at

the beginning of the training process. This helps the convergence of the training phase

by keeping the previous input as ground truth. However, �vi from different indexes will

become smaller and eventually equal zero due to the exponential growth towards the

end of the training, which is desirable because we want all ground truth to be replaced

by model generated outputs when the training is complete.

5.3 Weather Forecasting Experiments

To evaluate our proposed TPG sampling strategy, we first conducted experiments based

on a weather forecasting task. Weather forecasting is a typical STSF task that brings

many benefits to people’s everyday life, as well as to agriculture and many other areas.

Experimental results show our method outperforms several baseline methods, as well as

the basic Seq2Seq using Scheduled Sampling.

5.3.1 Dataset

AI Challenger weather forecasting is an online competition 1, and the goal is to predict

air temperature at 2 metres (t2m), relative humidity at 2 metres (rh2m) and wind speed

at 10 metres (w10m) across 10 weather stations in Beijing city. This dataset contains

historic observations from 01 March 2015 to 30 October 2018. We use 01 March 2015 to

31 May 2018 for our training set, 01 June 2018 to 28 August 2018 for the test set, and

29 August 2018 to 30 October 2018 for validation purposes. Each node contains nine

measurements including t2m, rh2m, w10m and 6 others, as well as 37 other predictions

which are generated by Numerical Weather Prediction (NWP).

1https://challenger.ai/competition/wf2018
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t2m rh2m w10m

RMSE MAE RMSE MAE RMSE MAE

NWP 2.939 2.249 18.322 13.211 1.813 1.327
ARIMA 3.453 2.564 18.887 14.163 2.436 1.675
Seq2Seq 180 without sampling 3.149 2.393 16.230 11.712 1.437 1.032
Seq2Seq 90 + Scheduled Sampling 2.828 2.173 16.023 11.428 1.380 0.962
Seq2Seq 180 + Scheduled Sampling 3.080 2.334 14.180 10.254 1.417 1.035
TPG M1

3.006 2.379 16.639 12.197 2.211 1.360
TPG 2.611 1.984 14.994 10.623 1.328 0.914

Table 5.1 Experimental results based on the test set from 01 June 2018 to 28 August
2018. Smaller numbers indicates smaller prediction errors.
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Fig. 5.2 Test set loss comparison during training.

5.3.2 Implementation

Seq2Seq

As mentioned previously, the data is from 10 weather stations, where each station records

observations of nine different measurements.The challenge is to model correlations

between stations as well as correlations between different measurements. For example,

wind speed and air temperature have strong correlations. In fact, every measurement

could have some impact on every other measurement; it may be non-obvious but highly

dynamic. As stated in the previous section, our approach is based on Seq2Seq which is

capable of modelling such correlations with its encoder and decoder architecture. First,

we use an LSTM encoder taking an input S 2 RT�10�9 which produces a feature vector



60 TPG for Bridging the Gap Between Training and Inference

h 2 RC . Here, T is a hyper-parameter to specify the sequence length we use for feature

encoding, 10 is the total number of stations, and 9 means we use all 9 measurements

for feature learning. This process is called feature extraction or feature learning. During

the computation of the LSTM encoder for each time step, the linear transformation

operation takes into account of nine measurements from 10 stations. The overall feature

of time steps will then be encoded into one vector space h. Then feature vector h will be

decoded by an LSTM decoder to produce an output OS 2 R37�10�9 which is the following 37

hours prediction of the nine measurements. Note that we are predicting only t2m, rh2m

and w10m. Therefore, we follow a fully-connected layer to output the final prediction

OP 2 R37�10�3 D OSWs C bs .

TPG

Loss Function

We divide the loss function into three parts:

L D MSEt2m CMSErh2m CMSEw10m; (5.5)

where MSE denotes mean squared error : MSE D 1
n

Pn
iD1

�
Xi � OXi

�2
. During training, L

is optimised jointly by BPTT [Werbos, 1990] with an Adam optimiser [Kingma and Ba,

2014].

Parameter Settings

For encoder and decoder, we choose a dimension C D 90 for LSTM, whilst for the

encoder, T is set to 96 which means we use 4 days made up of 96 hours of historic

observations to predict the next 37 hours. For TPG, � D 3000 for weather forecasting

and � D 1000 for Moving MNIST++. The learning rate for Adam is set to 1e�2.

Experiment Environment

We implement our model using Tensorflow 1.12, a well known deep learning library

developed by Google. Our model is trained and evaluated on a server with a Nvidia V100

GPU and an Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz (24 cores).
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Fig. 5.3 Prediction visualisations (based on 30 August 2018) of air temperature (t2m),
relative humidity (rh2m) and wind speed (w10m). TPG predictions have fewer outliers
and have more accurate long term predictions.
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5.3.3 Overall Evaluation

Evaluation Matrix

We report experimental results on each measurement for the test set using Root Mean

Squared Error (RMSE) and Mean Absolute Error (MAE):

RMSE D

vuut1

n

nX
iD1

�
Xi � OXi

�2
: (5.6)

MAE D
1

n

nX
iD1

ˇ̌
Xi � OXi

ˇ̌
: (5.7)

Here, n is the number of prediction time steps times the number of locations.

Baselines

NWP: Numerical Weather Prediction [Lynch, 2008] uses mathematical models of the

atmosphere and oceans to predict the weather based on current weather conditions.

ARIMA: Auto-Regressive Integrated Moving Average is the most common baseline method

for time series predictions [Box and Jenkins, 1990]. The model is trained individually by

each station.

Seq2Seq 180 without sampling: The basic Seq2Seq model with the LSTM dimension is set

to 180. Other parameters are set the same as for the TPG model.

Seq2Seq 90 + Scheduled Sampling: The basic Seq2Seq model with Scheduled Sampling

of the LSTM dimension is set to 90. Other parameters are set the same as for theTPG

model.

Seq2Seq 180 + Scheduled Sampling: The basic Seq2Seq model with Scheduled Sampling

of the LSTM dimension is set to 180. Other parameters are set the same as for the TPG

model.

TPG M1
: Proposed TPG model with � is set to 500, results reported based on the

intermediate model M1.
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TPG: Proposed TPG model with � is set to 500, results reported based on the final model

M2.

Note that all deep learning based models are trained with the same parameter settings,

or otherwise stated above. Models are trained with a training dataset, then, the best

models are chosen which demonstrate the best performance based on the validation

dataset, and experimental results are reported based on the test dataset.

Performance Evaluation

We compare our TPG model to the baselines listed above including the tradition mathe-

matical model NWP, and machine learning based approaches. Table 5.1 shows a summary

of experimental results based on two evaluation matrices. It clearly demonstrates that

our TPG model outperforms all baselines for the three measurements under study.

First, Seq2Seq based models outperform traditional approaches including NWP and

ARIMA. Seq2Seq based models utilise the LSTM encoder and decoder which effectively

model the spatio-temporal dynamics. Seq2Seq 90 performs better than Seq2Seq 180

overall, but in particular for t2m and w10m.

Second, Table 5.1 also shows the Seq2Seq model trained with Scheduled Sampling

performs better than Seq2Seq without sampling which shows that Scheduled Sampling

improves STSF. Our proposed TPG sampling continues to improve the effectiveness of

bridging the gap between training and inference.

Third, our proposed TPG model outperforms base Seq2Seq models. The test of

significance in terms of both accuracy measures shows that TPG significantly improves

Seq2Seq 90. As shown in Fig. 5.2, our proposed TPG model converges significantly faster

than the basic Seq2Seq model. The red line represents the test loss of the Seq2Seq model,

whilst the light blue line represents the test loss of model M1, and the dark blue line

represents the test loss of model M2. Benefiting from shorter sequence lengths, model

M1 quickly converges compared to the original Seq2Seq. The resulting the second stage

of the training model M2, shows faster convergence as well as a better final performance.

To sum up, our proposed TPG model achieves the best overall performance. Specif-

ically, the TPG model converges much faster during training due to the progressive

growing training mechanism. Prediction examples also show that TPG model predictions
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are more reliable for the outlier predictions and the long range predictions than the

baseline approaches and Scheduled Sampling.

5.4 Moving MNIST Experiments

The performance of our proposed TPG model against the weather forecasting dataset

shows that our model outperforms other models on a vector-like dataset. To further

evaluate the usability and applicability of our proposed method on image-like spatio-

temporal sequential datasets, we conduct further experiments on the Moving MNIST

dataset [Srivastava et al., 2015].

5.4.1 Dataset

The Moving MNIST dataset was originally created for evaluating video (a series of se-

quential images) prediction performance; it has since become one of the most common

spatio-temporal sequence prediction benchmarks [Shi et al., 2015, Wang et al., 2017,

2018c]. We generate a series of image sequences containing two moving handwritten

digits, moving at a different speed and velocity. In addition to the typical setup, we

extend the sequence length to 60, that is, 30 for the input sequence and 30 for prediction.

We generate 10,000 sequences for training, 3,000 for validation and 5,000 for testing.

Experimental results are reported based on the test dataset.

5.4.2 Implementation

Seq2Seq

We use open source code2 provided by PredRNN++ [Wang et al., 2018c] for our base

Seq2Seq model for images. PredRNN++ is a strong baseline for video frame prediction

which is based on Seq2Seq with a custom RNN cell, called Casual LSTM and a GHU unit.

TPG

Then we extend the baseline Seq2Seq model with our proposed TPG model. We set

� D 3; 000 and we train the model for 50,000 iterations.

2https://github.com/Yunbo426/predrnn-pp
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5.4.3 Overall Evaluation
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(a) Moving MNIST prediction visualisations during training.
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(b) Test set loss during training

Fig. 5.4 A visualisation of training progress: (5.4b) shows our proposed TPG converges
faster during training; (5.4a) shows our proposed TPG trains long range predictions faster
and provides more accurate long range predictions.
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SSIM " MSE #

ConvLSTM [Shi et al., 2015] 0.597 156.2
TrajGRU [Shi et al., 2017] 0.588 163.0
CDNA [Finn et al., 2016] 0.609 142.3

DFN [De Brabandere et al., 2016] 0.601 149.5
VPN [Kalchbrenner et al., 2017] 0.620 129.6

PredRNN [Wang et al., 2017] 0.645 112.2

PredRNN++ without sampling 0.733 91.10
PredRNN++ with SS [Wang et al., 2018c] 0.769 87.74

TPG 0.811 85.41

Table 5.2 Experimental results of 30 time step predictions: results reported per frame.
Baselines reported as in PredRNN++ [Wang et al., 2018c].

Evaluation Matrix

We report results based on two matrices: per-frame Structural Similarity Index Measure

(SSIM) [Wang et al., 2004] and MSE. The larger SSIM matrix scores indicate greater

similarities between the ground-truth and prediction whilst the smaller MSE matrix

values indicate smaller prediction errors.

Baselines

We compare the performance of our approach against several baseline methods as in

PredRNN++ [Wang et al., 2018c] including ConvLSTM [Shi et al., 2015], TrajGRU [Shi et al.,

2017], CDNA [Finn et al., 2016], DFN [De Brabandere et al., 2016], VPN [Kalchbrenner

et al., 2017] and PredRNN [Wang et al., 2017].

Performance Evaluation

Table 5.2 shows a summary of experimental results in regard to the two evaluation

matrices. It clearly demonstrates that our TPG model outperforms all baselines reported

in PredRNN++ [Wang et al., 2018c]. Specifically, TPG achieves the best SSIM score of

0.811 and MSE score of 85.41 per frame. Moreover, Fig. 5.4 shows the training progress.

From Fig. 5.4b, we can see our proposed TPG converges much faster and more smoothly

than other baselines. Also from the prediction visualisations of Fig. 5.4a we can see our

proposed TPG model provides more accurate long term predictions. Specifically, at batch
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20,000, moving hand-written digits start to be recognisable at time step 41, whereas,

predictions via PredRNN++ are still blurry. This could be because with the curriculum

of model M1, M2 can learn longer ranges as well as higher order dynamics, whereas,

with the regular Seq2Seq model, a later time step has to wait for the earlier time step to

converge, due to the nature of RNNs.

5.5 Summary

In this chapter, we studied the discrepancy between the training and inference of RNN

models, and the problems of adapting scheduled sampling to close the gap between

training and inference for STSF. We propose a novel sampling strategy called TPG that

sample the target sequence from midway outputs from intermediate models trained

with longer timescales through a carefully designed decaying strategy. Experimental

results demonstrate that our proposed method better models long term dependencies

and outperforms baseline approaches on two different datasets.





Chapter 6

MPL-GAN: Towards Realistic

Meteorological Predictive Learning Using

Conditional GAN

Meteorological imagery prediction is an important and challenging problem for weather

forecasting. It can also be seen as a video frame prediction problem that estimates future

frames based on observed meteorological imagery. Despite it being a widely-investigated

problem, it is still far from being solved. Current state-of-the-art deep learning based

approaches mainly optimise the mean square error loss, resulting in blurry predictions.

In this chapter, we address this problem by introducing a MPL-GAN model that utilises

the conditional GAN along with the predictive learning module to handle the uncertainty

in future frame prediction. Experiments on a real-world dataset demonstrate the superior

performance of our proposed model. Our proposed model is able to map the blurry

predictions produced by traditional mean square error loss based predictive learning

methods back to their original data distributions, hence, it is able to improve and sharpen

the prediction. In particular, our MPL-GAN model achieves an average sharpness of 52.82,

which is 14% better than the baseline method. Furthermore, our model correctly detects

the meteorological movement patterns that traditional unconditional GANs fail to do.

6.1 Introduction

Weather forecasting is one of the main applications of meteorological prediction. It is

important for our daily life as well as industrial and agricultural production. Common
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uses include precipitation nowcasting [Shi et al., 2015, 2017], streamflow prediction [Fu

et al., 2020, Hadi et al., 2019, Yaseen et al., 2018, 2019a,b], wind speed simulation [Bokde

et al., 2019], radiation estimation [Hai et al., 2020], and temperature forecasting [Liu

and Lee, 2020, Wang et al., 2019a]. Numerous techniques have been proposed to more

accurately predict weather measurements including Numerical Weather Prediction (NWP),

radar map based methods, and satellite imagery based methods.

Recently, with the advances of deep learning techniques, researchers have adopted

RNN based methods to improve the traditional approaches to address this challenging

problem. For example, Shi et al. [2015] formulated the precipitation nowcasting problem

into a spatio-temporal sequence forecasting model, and proposed an LSTM-based model

called ConvLSTM for radar echo map prediction. A Seq2Seq-LSTM based model [Wang

et al., 2019a] was proposed to improve NWP performance through historical observations.

A study by Rüttgers et al. [2019] proposed an adversarial model to predict cyclone

trajectories from satellite imagery. These studies reveal that radar and satellite imagery

play more and more important roles in meteorological prediction, not only because

they are more robust, but they also provide end-users with more sequential information

and better visualisations of the history from the current to the predicted atmosphere.

However, these approaches share some common drawbacks: they do not generalise well

in real-world meteorological datasets, especially for long-term predictions. To be more

specific, the pioneering work, ConvLSTM, produces blurry radar image predictions which

get worse as the time step moves forward. These meteorological images do not appear to

be realistic but are blurry, resulting in unpleasant visualisations. These drawbacks are

mainly due to two reasons. First, these models optimise Euclidean losses such as MAE

and MSE across the overall length of sequential meteorological images. A few studies

introduced various models with MAE and MSE, but produced blurry images [Mathieu

et al., 2016, Pathak et al., 2016]. This is mainly due to the assumption that the data

is drawn from the Gaussian distribution which only works on a continuous portion of

the image while ignoring isolated small regional areas. Second, due to the nature of

RNN architecture, small errors quickly accumulate to become large errors along the

generated sequence, because of the gap between training and inference [Bengio et al.,

2015, Venkatraman et al., 2015]. These two issues indicate that it is crucial to include an

uncertainty handling procedure in order to generate realistic meteorological predictions.



6.1 Introduction 71

Meanwhile, the video frame prediction can be modelled as a spatio-temporal sequence

forecasting problem. For instance, Wang et al. [2017] extracted a sequence of images from

video frames, and proposed an encoder-decoder RNN based model called PredRNN [Wang

et al., 2017] and its improved version PredRNN++ [Wang et al., 2018c]. However, these

models suffer from the same drawback as ConvLSTM and produce blurry predictions.

Recently, Generative Adversarial Network (GAN) [Goodfellow et al., 2014] was used to

handle uncertainties in video frame prediction [Clark et al., 2019, Mathieu et al., 2016,

Saito and Saito, 2018, Wang et al., 2018b]. GAN models match two distributions using one

generator and one discriminator playing the minmax game, where the generator learns

to generate samples to fool the discriminator and the discriminator learns to distinguish

these fake samples. These unconditional GAN based models are able to produce realistic

looking videos by learning a high dimensional distribution of complex datasets. However,

these models are not suitable for meteorological predictive learning even though they are

able to produce realistic looking and temporally coherent video frames. This is because

these generated video frames do not model the real-world meteorological changes given

by the source of meteorological image frames. Note that meteorological prediction

needs to consider the moving entities’ (pixel wise) direction, speed, rotation acceleration

and other relevant information.

To sum up, on one hand RNN based meteorological predictive models with MAE

and MSE produce blurry predictions. On the other hand, GAN based models are able to

generate realistic looking video frames but fail to catch the actual atmospheric movement

as they miss local variations and patterns. In this work, we propose a Conditional

GAN based model called Meteorological Predictive Learning GAN (in short MPL-GAN)

that optimises both the regression loss and GAN loss, and aims to generate realistic

meteorological predictions. By optimising regression loss, we aim to model real-world

atmosphere imagery movement which is crucial for weather forecasting. The GAN loss is

used to estimate the data distribution to deal with the uncertainty to produce non-blurry

predictions.

Our main contributions are summarised as follows:

� To the best of our knowledge, this is the first model that combines regression loss

with GAN loss to generate realistic meteorological predictions that provide better

visualisations than existing models.
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� We conduct extensive experiments on a real-world radar imagery dataset. Experi-

mental results demonstrate our model generates non-blurry predictions even in

the long term, while it catches real-world atmosphere changes.

� We provide an extensive experiment analysis to show that the pure GAN model

without the predictive learning module fails to catch the actual atmospheric move-

ment, which demonstrates the effectiveness of our proposed MPL-GAN model in

detecting meteorological changes.

The rest of the chapter is organised as follows. Our proposed Meteorological Predic-

tive Learning GAN model is introduced in Section 6.2 and the details of our model are

discussed, whilst Section 6.3 presents experimental results and the main findings are

discussed.

6.2 Proposed MPL-GAN

In this section, we will describe our proposed MPL-GAN model that aims to produce

realistic looking meteorological imagery. Figure 6.1 shows the overall architecture of our

proposed model that contains a predictive learning model to generate predictions and a

Conditional GAN module to map those predictions back to photo-realistic distributions.

First, we define meteorological predictive learning as follows:

Definition 2. Given a length-k matrix sequence Mk
1 � ŒX1;X2; : : : ;Xk�, where each

matrix Xt 2 M represents the meteorological imagery at time-step t . Meteorologi-

cal predictive learning is used to predict a sequence of corresponding meteorologi-

cal imagery of following K time-steps based on the past frames of M, denoted as

OPK1 �
h
OX1; OX2; : : : ; OXK

i
.

Note, meteorological imagery carries important weather information such as rainfall,

temperature, and wind speed etc.

6.2.1 Predictive Learning

To model meteorological changes, we adopt encoder-decoder ConvLSTM [Shi et al., 2015]

as a predictive learning module. As investigated by previous studies [Shi et al., 2015,
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Fig. 6.1 Architecture of our proposed model MPL-GAN. The orange boxes indicates the
predictive learning modules that model the real-world meteorological movement patterns.
We use ConvLSTM for evaluation purposes, but that can be replaced by other predictive
learning approaches if needed. The blue box concludes the Conditional GAN module
which consists of the conditional generator and two discriminators DFr and DFl.

2017], predictive learning aims to capture the local spatio-temporal pattern movement

such as rotation and scaling. As mentioned earlier, none of the existing GAN-based

next frame prediction models are suitable for meteorological predictive learning as

these models do not capture the real-world meteorological changes. Furthermore, these

GAN models without a predictive learning module are not able to produce long-term

predictions. For example, a study by [Mathieu et al., 2016] could only produce a maximum

of two frames for future video predictions. In contrast, our MPL-GAN model generates the

next prediction conditional on previous ground-truth and current predictive output with

conditional GAN. With the help of a predictive learning module we managed to generate

more than 10 frames of non-blurry and realistic meteorological imagery predictions,

and yet still model the real-world atmospheric changes. This demonstrates that the

predictive learning module is crucial for modelling meteorological changes. Note that, we

use ConvLSTM for evaluation purposes in this study, but it can be replaced by any other

advanced model such as TrajGRU [Shi et al., 2017] and PredRNN++ [Wang et al., 2018c].
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On one hand, the predictive learning module is required for modelling meteorological

changes, but on the other hand, naive predictive learning models suffer from the blurry

image issue and they need to be specially refined for meteorological change analysis.

In the next section, we will introduce the Conditional GAN model to solve the blurry

problem caused by the traditional naive predictive learning module.

6.2.2 Conditional GAN

A GAN [Goodfellow et al., 2014] attempts to learn a mapping function G to map a random

noise vector z to an image X, G W z ! X. In our settings, we aim to map the blurry

prediction produced by ConvLSTM to the original non-blurry distribution. Let OPK1 denote

the generated sequence of ConvLSTM, MK
1 denote the observed ground-truth frames,

and our goal is to train a conditional Generator G W fz; OPK1 g !MK
1 .

Conditional Generator

As the prediction sequence is generated recursively by the ConvLSTM, we train the

Conditional Generator G W fz; OXtg ! Xt per frame along with the ConvLSTM time steps,

instead of taking the whole generated sequence to train the GAN generator, where OXt
denotes the ConvLSTM output at time t and Xt is the ground-truth frame at time t .

However, when the ConvLSTM prediction gets more blurry in the later time steps, it is

harder for the Conditional GAN to map the conditional distributions between the two.

To solve this problem, we train the generator along with conditioning the previous frame

Xt�1, i.e. G W fz;Xt�1; OXtg ! Xt . Ideally, we should train the generator conditioning

on the current ground-truth frame Xt and current ConvLSTM prediction frame OXt . We

use the previous frame instead of the current frame based on the observation that two

consecutive meteorological frames are very similar in terms of data distribution. They

even look very similar since the atmosphere normally changes gradually and slowly.

Moreover, during the inference stage, none of the previous and current ground-truth

frames would be available. Then, we can replace the previous ground-truth frame Xt�1
with the generator output of the previous time step during the inference phase, i.e. QXt D
G.z; QXt�1; OXt/. We can also think the other way around, since the ground-truth frames

are not available during the inference phase. However, we make an assumption that the

output distribution of our generator perfectly matches the actual data distribution, then
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the data distribution can be carried forward recursively from the last known ground-truth

frame to the predicting frame. Therefore, we use the ground-truth frame Xt�1 instead of

QXt�1 during the training phase for training stability, then replace Xt�1 with QXt�1 during

the inference phase.

Frame Discriminator

We randomly select N frames from amongst the K time steps to train the frame discrim-

inator DFr. The DbFr outputs 1 for the true frame Xt and outputs 0 for the fake frame

QXt . Then, we train the frame discriminator by optimising the minmax game defined in

the original GAN. We use Hinge Loss [Lim and Ye, 2017] for LDFr defined as follows:

LDFr D EŒmax.0; 1 �DFr.Xt//

C EŒmax.0; 1CDFr. QXt//�:
(6.1)

Flow Discriminator

A frame discriminator aims to ensure the generator produces samples matching the

actual data distribution, i.e. to ensure the samples produced look realistic. In addition,

similar to the video discriminator proposed by [Clark et al., 2019], we propose a flow

discriminator DFl to ensure the generator produces temporal coherent frames. Similarly,

DFl outputs 1 for the real sequence MK
1 and outputs 0 for the generator sequence

.Mk
1 I
QPK
k
/, then we concatenate the initial source sequence Mk

1 and the conditional

generated sequence QPK
k

. LDFl is defined as follows:

LDFl D EŒmax.0; 1 �DFl.MK
1 //

C EŒmax.0; 1CDFl..Mk
1 ; QPKk ///�:

(6.2)

6.2.3 Training

Again, a predictive learning module is essential for modelling the real-world meteorologi-

cal movement patterns, and the conditional GAN is used to map the blurry predictions

generated by predictive learning back to non-blurry image distributions. Therefore, we

divide the training process into two stages. First, we start training the predictive learning

module, and when that is almost stable, then we start the training of the GAN module.
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Predictive Learning Training

Based on the settings of ConvLSTM [Shi et al., 2015] and TrajGRU [Wang et al., 2017],

we train our Predictive Learning (PL) module by minimising the balance of MSE and

MAE losses (B-MSE-MAE) with Stochastic Gradient Descent (SGD) and Back-propagation

Through Time (BPTT) [Werbos, 1990]. We train the B-MSE-MAE loss until it becomes

stable before we start training the Conditional GAN, so that the Conditional GAN learns

the stable data distribution. However, we continue to train the PL module along with the

GAN module even if the loss does not decrease. The logic behind this is to give the GAN

variances of distribution to make the GAN more robust.

Conditional GAN Training

Training GAN models requires training both the generator and discriminator by opti-

mising the minimax game [Goodfellow et al., 2014], to the point where the generator

learns to fool the discriminator with generated fake samples and the discriminator

learns to identify true and fake samples. We follow in the same spirit and extend this to

training one conditional generator and two separate discriminators. The losses of Frame

Discriminator DFr and Flow Discriminator are defined in Equation 6.1 and Equation 6.2.

Now we define the loss function for conditional generator as follows:

LG D �EŒDFr.G.z;Xt�1; OXt//CDFl.G�.z;Xt�1; OXt//�; (6.3)

where � denotes a process of applying the generator recursively with the ConvLSTM time

steps to generate a sequence flow of frames. Therefore, our overall optimisation goal is to

minimise LDFr and LDFl which maximises the probability of the discriminators identifying

fake frames and fake sequences; and minimises LG to maximise the probability of the

generator producing samples that the discriminators think are true.

min
G

max
DFr

LDFr .G;DFr/Cmin
G

max
DFl

LDFl .G;DFl/ : (6.4)

Note, N random frames will be selected for training DFr N times for each training

batch b, whereas DFl will be trained once for each b. Moreover, the gradient of G will

be back-propagated multiple times recursively with operation � when training G with

DFl. This makes it extremely difficult to train the GAN. Following the principle of [Wang



6.3 Experiment 77

et al., 2018b] and [Karras et al., 2018], we down-sample each frame of the sequence to

overcome the training difficulties.

6.3 Experiment

In this section, we briefly describe the dataset used and provide experimental results.

6.3.1 Dataset

We use the HKO-7 [Shi et al., 2015, 2017] radar echo imagery dataset to evaluate our

proposed MPL-GAN model. The radar echo imagery is recorded every 6 minutes, therefore,

there are 240 frames per day. Each frame contains 480 � 480 pixels that cover a 512 km

� 512 km area. We sample data into sequences of the length of 15 frames by a sliding

window, 5 for the encoder and 10 for the decoder. From the total number of 993 days

of data, we randomly select 80% for the training set, 5% for the validation set, and 15%

for the testing set. Unlike the original experimental settings of ConvLSTM and TrajGRU,

where they try to predict the pixel value and report the precipitation prediction based on

that, we focus on imagery frame prediction that is realistic for better visualisation.

6.3.2 Implementation and Parameters

Predictive Learning

We use ConvLSTM as the predictive learning module. We implement a three layer

ConvLSTM encoder-decoder with the following parameters for each layer: [3� 3� 64; 3�

3 � 192; 3 � 3 � 192].

Conditional GAN

Training the GAN is challenging, thus we carefully choose our architecture for the

generator and discriminators. For the generator, our architecture is somewhat similar to

the PG-GAN [Karras et al., 2018]. To match the resolution of the generated samples, we

up-sample the original resolution from 480�480 to 512�512. We randomly select N D 2

frames to train the Frame DiscriminatorDFr. The 3D-Conv of Flow Discriminator consists

of three layers set to the following parameters: [3�3�3�64; 3�3�3�16; 3�3�3�1].
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We implement our model using PyTorch 1.4, a well known deep learning library

developed by Facebook. Our model is trained and evaluated on a server with a Nvidia

V100 32GB GPU and an Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz (24 cores). We train

our model using the Adam optimiser [Kingma and Ba, 2014] with a learning rate of 1e�4

for the ConvLSTM and 1e�3 for the generator and discriminators. Batch size is set to 2

due to the resource consumption of the conditional GAN model. For all models including

baseline methods, we train 100,000 batches and select the best model based on the

minimum MSE against the validation set. For the MPL-GAN model, we train the PL module

for 10,000 batches before training the conditional GAN. All experimental results are

reported based on the test dataset.

6.3.3 Overall Evaluation

Baselines

To evaluate the effectiveness of our proposed model, we compare our model to two

baseline methods:

� PL with MSE. To show that the PL with MSE produces blurry predictions, we compare

our model to the pure ConvLSTM without the conditional GAN module [Shi et al.,

2015].

� PG-GAN. We extend the PG-GAN [Karras et al., 2018] from image generation to

sequence generation with the same architecture of our conditional GAN module

which has a Frame discriminator and a Flow discriminator. This is also very similar

to the DVD-GAN [Clark et al., 2019].

Model Sharpness "

PL with MSE [Shi et al., 2015] 46.48

PG-GAN [Karras et al., 2018] 51.27

MPL-GAN (ours) 52.82

Table 6.1 Experimental results based on the test data, averaged by 10 prediction time
steps (a larger number indicates sharper prediction imagery).
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Fig. 6.2 Sharpness of 10 prediction time steps based on the test dataset.

Fig. 6.3 Future meteorological prediction samples. Left: ground truth. Middle: PL with
MSE. Right: MPL-GAN (ours). Click to view the animations with Adobe Acrobat Reader.

Evaluation Matrix

We use the sharpness measure based on the gradient of two images defined in [Mathieu

et al., 2016] as follows:

Sharp.D10 log10
max2

QX
1
N

�P
i

P
j

ˇ̌�
riXCrjX

�
�
�
ri QXCrj QX

�ˇ̌� ; (6.5)

where, X is the ground-truth frame and QX is the output frame; riX D
ˇ̌
Xi;j �Xi�1;j

ˇ̌
and rjX D

ˇ̌
Xi;j �Xi;j�1

ˇ̌
; max QX is the maximum possible value of the image intensities.

We report the average sharpness of the test dataset across K frames in the table as well

as the individual frame evaluations as a line chart as shown in Figure 6.2.
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Fig. 6.4 Meteorological prediction movement of our MPL-GAN and PG-GAN. Left: ground
truth. Middle: MPL-GAN (ours). Right: PG-GAN. Click to view the animations with Adobe
Acrobat Reader.

Experiment Analysis

We conduct both quantitative and qualitative evaluations against two baseline approaches.

As shown in Table 6.1, our proposed MPL-GAN model achieves an overall average

sharpness of 52.82; PG-GAN achieves a similar result of 51.27; whereas PL with MSE

achieves only 46.48. This shows that GAN based models are able to generate sharper

meteorological imagery predictions compared to PL with MSE. This is because GAN

models can handle uncertainties of future frames. A per frame quantitative comparison

in Figure 6.2 indicates that GAN based models not only beat PL with MSE in the average

score but also in the long-term predictions. MPL-GAN and PG-GAN achieve a similar score

in the first frame, however, PG-GAN drops performance quickly in the long term.

Besides quantitative evaluation, we visualise a sample prediction sequence in Figure

6.3 (please view the animation by clicking the figure using Adobe Acrobat Reader). As

shown in the animation, both PL with MSE and MPL-GAN catch the real-world meteoro-

logical movement patterns. However, PL with MSE generates blurry predictions which

continue to get more blurry over time, especially in the long term. Whereas, our pro-

posed MPL-GAN model continues to generate realistic looking and sharp predictions.

Furthermore, if we look at small regions of the prediction frames, PL with MSE tends to

omit small areas as a result of MSE loss, whereas, our model has more regional details

due to the incorporation of uncertainty handling in the GAN.
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Furthermore, the whole experiment aims to find out whether the GAN model is able

to solve the blurry prediction problem caused by PL with MSE. In fact, we can see our

proposed model as PL with MSE plus the advanced version of PG-GAN that has two

discriminator heads. As stated previously, GAN based models are able to produce

sharper predictions compared to PL with MSE. However, as samples in Figure 6.4 show,

PG-GAN is not able to model the meteorological movements. More specifically, the first

generated frame of PG-GAN looks very similar to the first generated frame of our model

MPL-GAN, but the later frames are just an expansion of the first frame which is obviously

not the real-world scenario. On the other hand, with the constraint of the predictive

learning module, our proposed model MPL-GAN continues to generate realistic looking

and diverse meteorological frames that catch the real-world meteorological movement

pattern. We summarise the findings above in Table 6.2.

Model Sharpness
Learns

Met. Patt.

PL with MSE Blurry
p

PG-GAN Sharp �

MPL-GAN (ours) Sharp
p

Table 6.2 Performance comparison.

In summary, the quality of meteorological imagery prediction is of crucial importance

in weather forecasting, and in monitoring climate change. Figure 6.3 clearly depicts

that MPL-GAN produces a quality prediction result identifying both global trends and

local variations, whilst the imagery produced by PL with MSE is too blurry and coarse

and missing local variations and details. Hence, PL with MSE is less useful in practice

since it misses many localised patterns, and results in inaccurate predictions, however,

MPL-GAN is practically useful for forecasting weather and monitoring local and global

climate change as evidenced in Figure 6.3 and Figure 6.4.
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6.4 Summary

In this chapter, we studied the blurry problem of meteorological imagery prediction, and

proposed a novel GAN based model called MPL-GAN to deal with the blurry problem. Our

model utilised a conditional GAN to map the blurry predictions back to their original

non-blurry data distributions. Both quantitive and qualitative analysis demonstrate

that our model is able to produce sharper and more realistic-looking meteorological

imagery predictions than baseline methods. Quantitive visualisations also showed that

our proposed model is able to catch the real-world meteorological movement patterns

with the constraint of the predictive learning module.



Chapter 7

Conclusion

7.1 Summary of Contribution

In this thesis, we studied the difficulties of predictive spatio-temporal modelling and

proposed several models to overcome these challenges.

The main contributions are summarised as follows:

� First, we introduced a Spatio-Temporal GRU to model ST correlations and variations

for ST trajectory classification. We introduced a novel approach using a 1D-CNN

in the segmented convolutional weight mechanism to model short-term spatial

correlations between neighbouring locations, along with the time gating mechanism

for ST correlations within RNN cells. The experimental results demonstrated the

effectiveness of the Spatio-Temporal GRU for ST correlations, and proved the supe-

rior performance of our proposed model over existing state-of-the-art approaches.

We also provided ablation studies to demonstrate the applicability and flexibility

of the Spatio-Temporal GRU, and presented a visualisation of ‘car’ transportation

mode from the Geolife dataset to illustrate the ability of the proposed temporal

gate. The temporal gate is able to filter out some input information which could

confuse or complicate the model. Last but not least, we conducted next-location

experiments on two real-world user check-in datasets. These experiments demon-

strated the effectiveness of the proposed ST-GRU with time-gating mechanism to

model long-term and short-term check-in interests.

� Second, we proposed Temporal Progressive Growing Sampling to bridge the gap

between training and inference phases for Seq2Seq based STSF systems. This was
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achieved by transforming the training process from a fully-supervised approach

which utilises all available previous ground-truth to a less-supervised approach

which replaces the ground-truth contexts with generated predictions. We also

sampled the target sequence from midway outputs from the intermediate model

trained with longer timescales with a carefully designed decaying strategy. The

experiments on two datasets demonstrated that our proposed method achieves

superior performance compared to all baseline methods, and also exhibits fast

convergence speed as well as better long-term accuracy. Two different types of

datasets used in experiments prove the novelty and applicability of our proposed

method.

� Third, we proposed the MPL-GAN model to solve the blurry prediction problem of

predictive learning methods such as ConvLSTM and TrajGRU. We utilised a condi-

tional GAN to handle this problem by mapping the blurry predictions generated by

predictive learning methods back to their original non-blurry data distributions. To

do that, we recursively applied a conditional generator conditioning on the previous

output of itself and the current output of the predictive learning module. Through

the novel design of Frame Discriminator and Flow Discriminator, the generator

learns to produce temporally coherent and realistic frames. The experiments on a

real-world radar echo dataset demonstrated that our proposed MPL-GAN model

not only produces sharp and realistic looking meteorological predictions, but also

models the real-world meteorological movement patterns with the constraint of

the predictive learning module.

7.2 Future work

7.2.1 Continuation of the Work of this Thesis

Even though we have achieved some positive results, there are still some limitations

we have not yet explored due to the time limitation. We summarise some potential

directions to extend the current work.

� ST-GRU. Three possible directions for future studies are as follows. First, an exten-

sive ablation study along with a hyper-parameter optimisation study is required
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to further validate the applicability and utility of the Spatio-Temporal GRU model.

Second, experimental tests with a variety of spatio-temporal trajectories for di-

verse classification problems are required to fully verify the effectiveness of the

Spatio-Temporal GRU. model Third, an investigation into different convolutions, to

systematically model both spatial proximity and temporal proximity, would further

enhance the current Spatio-Temporal GRU model.

� TPG. Two possible directions for future studies are as follows. First, an extensive

ablation study along with a hyper-parameter optimisation study is required to

further validate the applicability and utility of the TPG model. Second, we can

extend the progressive idea to spatial and temporal dimensions simultaneously for

spatio-temporal sequence predictive learning.

� MPL-GAN. Although our model is able to generate non-blurry predictions, there is

room to improve the prediction accuracy. Since the GAN model brings uncertainties,

improving the sharpness of prediction, but with deteriorating accuracy, our future

work will investigate this problem, and evaluate our proposed model using various

real-world datasets.

7.2.2 Unsupervised Pre-training

BERT is the most successful language representation model that pushes the limits of

several natural language tasks including question answering and language inference

[Devlin et al., 2018]. The magic happens in the Transformer architecture and the powerful

unsupervised pre-training technique. There is a lot of unlabelled text data all over the

internet, and the BERT model takes advantage of these unlabelled data to build deep

bidirectional representations using unsupervised tasks like Masked LM or Next Sentence

Prediction (NSP). As mentioned in the introduction, a humongous amount of spatio-

temporal data is being captured and stored everyday. Most of the captured data is

unlabelled due to technical limitations or privacy restriction. If an unsupervised pre-

training technique like BERT can take take advantage of such huge amounts of unlabelled

data to build up the underlying representation of the data, and then fine-tune the model

for supervised predictive tasks would gain significant benefit.
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