5 research outputs found

    Rendezvous on a Line by Location-Aware Robots Despite the Presence of Byzantine Faults

    Full text link
    A set of mobile robots is placed at points of an infinite line. The robots are equipped with GPS devices and they may communicate their positions on the line to a central authority. The collection contains an unknown subset of "spies", i.e., byzantine robots, which are indistinguishable from the non-faulty ones. The set of the non-faulty robots need to rendezvous in the shortest possible time in order to perform some task, while the byzantine robots may try to delay their rendezvous for as long as possible. The problem facing a central authority is to determine trajectories for all robots so as to minimize the time until the non-faulty robots have rendezvoused. The trajectories must be determined without knowledge of which robots are faulty. Our goal is to minimize the competitive ratio between the time required to achieve the first rendezvous of the non-faulty robots and the time required for such a rendezvous to occur under the assumption that the faulty robots are known at the start. We provide a bounded competitive ratio algorithm, where the central authority is informed only of the set of initial robot positions, without knowing which ones or how many of them are faulty. When an upper bound on the number of byzantine robots is known to the central authority, we provide algorithms with better competitive ratios. In some instances we are able to show these algorithms are optimal

    When Patrolmen Become Corrupted: Monitoring a Graph using Faulty Mobile Robots

    Get PDF
    International audienceA team of k mobile robots is deployed on a weighted graph whose edge weights represent distances. The robots perpetually move along the domain, represented by all points belonging to the graph edges, not exceeding their maximal speed. The robots need to patrol the graph by regularly visiting all points of the domain. In this paper, we consider a team of robots (patrolmen), at most f of which may be unreliable, i.e. they fail to comply with their patrolling duties. What algorithm should be followed so as to minimize the maximum time between successive visits of every edge point by a reliable patrolmen? The corresponding measure of efficiency of patrolling called idleness has been widely accepted in the robotics literature. We extend it to the case of untrusted patrolmen; we denote by Ifk (G) the maximum time that a point of the domain may remain unvisited by reliable patrolmen. The objective is to find patrolling strategies minimizing Ifk (G). We investigate this problem for various classes of graphs. We design optimal algorithms for line segments, which turn out to be surprisingly different from strategies for related patrolling problems proposed in the literature. We then use these results to study the case of general graphs. For Eulerian graphs G, we give an optimal patrolling strategy with idleness Ifk (G) = (f + 1)|E|/k, where |E| is the sum of the lengths of the edges of G. Further, we show the hardness of the problem of computing the idle time for three robots, at most one of which is faulty, by reduction from 3-edge-coloring of cubic graphs — a known NP-hard problem. A byproduct of our proof is the investigation of classes of graphs minimizing idle time (with respect to the total length of edges); an example of such a class is known in the literature under the name of Kotzig graphs

    Gathering of Mobile Robots in Anonymous Trees

    Get PDF
    Gathering problem of mobile robots is a class of graph problem that has a lot of relevance in everyday life. The problem requires a set of mobile robots, initially located at different nodes of a graph, to gather at the same location in the graph, which is not decided before. This report considers the gathering problem of mobile robots in anonymous trees. The robots considered here are identical, do not communicate directly with other robots and also, all the robots execute the same algorithm to achieve gathering. Robots are assumed to have minimal capabilities with respect to the memory associated with them as well as their visibility capability. In this report, three models have been proposed for solving gathering problem under three different scenarios. Possible solutions in each of these models have been described. The current work that has already happened and the future work that can be done in each model have also been mentioned

    Distributed Systems and Mobile Computing

    Get PDF
    The book is about Distributed Systems and Mobile Computing. This is a branch of Computer Science devoted to the study of systems whose components are in different physical locations and have limited communication capabilities. Such components may be static, often organized in a network, or may be able to move in a discrete or continuous environment. The theoretical study of such systems has applications ranging from swarms of mobile robots (e.g., drones) to sensor networks, autonomous intelligent vehicles, the Internet of Things, and crawlers on the Web. The book includes five articles. Two of them are about networks: the first one studies the formation of networks by agents that interact randomly and have the ability to form connections; the second one is a study of clustering models and algorithms. The three remaining articles are concerned with autonomous mobile robots operating in continuous space. One article studies the classical gathering problem, where all robots have to reach a common location, and proposes a fast algorithm for robots that are endowed with a compass but have limited visibility. The last two articles deal with the evacuations problem, where two robots have to locate an exit point and evacuate a region in the shortest possible time
    corecore