1,384 research outputs found

    Towards Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions

    Get PDF
    The ever-increasing number of resource-constrained Machine-Type Communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as eMBB, mMTC and URLLC, mMTC brings the unique technical challenge of supporting a huge number of MTC devices, which is the main focus of this paper. The related challenges include QoS provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead and Radio Access Network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy Random Access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and NB-IoT. Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions towards addressing RAN congestion problem, and then identify potential advantages, challenges and use cases for the applications of emerging Machine Learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity Q-learning approach in the mMTC scenarios. Finally, we discuss some open research challenges and promising future research directions.Comment: 37 pages, 8 figures, 7 tables, submitted for a possible future publication in IEEE Communications Surveys and Tutorial

    Adaptive Geolocation of IoT devices for Active and Assisted Living

    Get PDF
    Recent developments in IoT devices and communication systems, have brought to light new solutions capable of offering advanced sensing of the surrounding environments. On the other hand, during the last decades, the average life expectancy has increased, which translates into a considerable rise in the number of elderly people. Consequently, in view of all these factors, there is currently a constant demand for solutions to support an Active and Assisted Living (AAL) of such people. The presented thesis intends to propose a solution to help to know the location of IoT devices that may be assisting people. The proposed solution should take into consideration the risk factors of the target group at each moment, as well as the technical constraints of the device, such as its available power energy and means of communications. Thus, ultimately, a profile-based decision should autonomously be made by the device or its integrated system, in order to ensure the usage of the best geolocation technology for each situation.Desenvolvimentos recentes em dispositivos IoT e em sistemas de comunicação, trouxeram consigo novas soluções capazes de oferecer uma deteção avançada dos ambientes circundantes. Por outro lado, no decorrer das últimas décadas, a esperança média de vida aumentou, o que se traduz também num considerável aumento do número de pessoas idosas. Por conseguinte, perante o conjunto destes factores, existe actualmente uma procura constante de soluções de suporte a uma Active and Assisted Living desse grupo de pessoas. A presente tese tenciona propor uma solução que ajude a conhecer a localização dos dispositivos IoT que possam estar a ajudar pessoas. A solução proposta deve ter em consideração os fatores de risco do grupo-alvo em cada momento e também as restrições técnicas do dispositivo, como a energia disponível e os meios de comunicação. Deste modo, em última instância, uma decisão baseada num perfil deve ser tomada autonomamente pelo dispositivo ou pelo seu sistema, para garantir a utilização da tecnologia de geolocalização mais adequada em cada situação

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Networking Solutions for Integrated Heterogeneous Wireless Ecosystem

    Get PDF
    As wireless communications technology is steadily evolving to improve the offered connectivity levels, additional research on emerging network architectures is becoming timely to understand the applicability of both traditional and novel networking solutions. This chapter concentrates on the utilization of cloud computing techniques to construct feasible system prototypes and demonstrators within the rapidly maturing heterogeneous wireless ecosystem. Our first solution facilitates cooperative radio resource management in heterogeneous networks. The second solution enables assisted direct connectivity between proximate users. The contents of the chapter outline our corresponding research and development efforts as well as summarize the major experiences and lessons learned

    Techno-economic analysis of a 5G network in Spain

    Get PDF
    Information society and mobile society are two concepts that are both linked and undeniable. The first one refers to the necessity of high amount of information to develop most aspects of our lives, while the second one is related to the importance of mobile devices to get, analyse and use that information. In other words, every mobile device (that embraces not only mobile phones but also many other gadgets) has become a tool that shall interact with information. In order to fulfil those needs, technology has evolved, resulting into faster, more secure and more reliable networks. Needless to say, mobile networks are playing an indispensable role, as long as the society is evolving to a more and more mobile one, as above mentioned. Furthermore, new applications that had not been even imagined years ago must be fulfilled as well (i.e. smart cities). There are many industries that carry the weight of this progress. Companies of various sectors of our economy must develop each piece of the puzzle to ensure that the jigsaw is solved. Another important player should not be forgotten. The regulatory institutions and frameworks must coordinate all this investigations and progress in order to assure the universality, integrity and reachability of itself. The purpose of this document is to consider what the mobile communications needs of today’s society are, what they will be on a short, mid and long run, and how can they be solved. To face this task, the two main actors above mentioned will be taken into account. From the regulatory perspective, the proposals and law measures (i.e. IMT-2020 and new frequency allocations) must be considered, as well as the technical requirements for 5G generation, whether to be considered the subsequent evolution of LTE network or a new network, or even both. From the mobile companies’ point of view, a dense analysis on technical solutions to reach the above mentioned requirements will be followed by an economic analysis to discuss the profitability of the deployment of a 5G network. It must be understood that this study contemplates several scenarios, due to the different possibilities in terms of the spectrum policies and demand evolution in the forthcoming years. To this end, the several scenarios combined with the different cases of use must be taken into account, as well as many other KPIs. The coherent combination and analysis of all this parameters will reveal the requirements’ feasibility amongst varying scenarios.Ingeniería en Tecnologías de Telecomunicació
    corecore