284 research outputs found

    Analyzing Hidden Representations in End-to-End Automatic Speech Recognition Systems

    Full text link
    Neural models have become ubiquitous in automatic speech recognition systems. While neural networks are typically used as acoustic models in more complex systems, recent studies have explored end-to-end speech recognition systems based on neural networks, which can be trained to directly predict text from input acoustic features. Although such systems are conceptually elegant and simpler than traditional systems, it is less obvious how to interpret the trained models. In this work, we analyze the speech representations learned by a deep end-to-end model that is based on convolutional and recurrent layers, and trained with a connectionist temporal classification (CTC) loss. We use a pre-trained model to generate frame-level features which are given to a classifier that is trained on frame classification into phones. We evaluate representations from different layers of the deep model and compare their quality for predicting phone labels. Our experiments shed light on important aspects of the end-to-end model such as layer depth, model complexity, and other design choices.Comment: NIPS 201

    Investigating gated recurrent neural networks for speech synthesis

    Get PDF
    Recently, recurrent neural networks (RNNs) as powerful sequence models have re-emerged as a potential acoustic model for statistical parametric speech synthesis (SPSS). The long short-term memory (LSTM) architecture is particularly attractive because it addresses the vanishing gradient problem in standard RNNs, making them easier to train. Although recent studies have demonstrated that LSTMs can achieve significantly better performance on SPSS than deep feed-forward neural networks, little is known about why. Here we attempt to answer two questions: a) why do LSTMs work well as a sequence model for SPSS; b) which component (e.g., input gate, output gate, forget gate) is most important. We present a visual analysis alongside a series of experiments, resulting in a proposal for a simplified architecture. The simplified architecture has significantly fewer parameters than an LSTM, thus reducing generation complexity considerably without degrading quality.Comment: Accepted by ICASSP 201

    Self-Supervised Contrastive Learning for Unsupervised Phoneme Segmentation

    Full text link
    We propose a self-supervised representation learning model for the task of unsupervised phoneme boundary detection. The model is a convolutional neural network that operates directly on the raw waveform. It is optimized to identify spectral changes in the signal using the Noise-Contrastive Estimation principle. At test time, a peak detection algorithm is applied over the model outputs to produce the final boundaries. As such, the proposed model is trained in a fully unsupervised manner with no manual annotations in the form of target boundaries nor phonetic transcriptions. We compare the proposed approach to several unsupervised baselines using both TIMIT and Buckeye corpora. Results suggest that our approach surpasses the baseline models and reaches state-of-the-art performance on both data sets. Furthermore, we experimented with expanding the training set with additional examples from the Librispeech corpus. We evaluated the resulting model on distributions and languages that were not seen during the training phase (English, Hebrew and German) and showed that utilizing additional untranscribed data is beneficial for model performance.Comment: Interspeech 2020 pape
    • …
    corecore