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ABSTRACT

Recently, recurrent neural networks (RNNs) as powerful se-
quence models have re-emerged as a potential acoustic model
for statistical parametric speech synthesis (SPSS). The long
short-term memory (LSTM) architecture is particularly at-
tractive because it addresses the vanishing gradient problem
in standard RNNs, making them easier to train. Although
recent studies have demonstrated that LSTMs can achieve
significantly better performance on SPSS than deep feed-
forward neural networks, little is known about why. Here we
attempt to answer two questions: a) why do LSTMs work
well as a sequence model for SPSS; b) which component
(e.g., input gate, output gate, forget gate) is most important.
We present a visual analysis alongside a series of experi-
ments, resulting in a proposal for a simplified architecture.
The simplified architecture has significantly fewer param-
eters than an LSTM, thus reducing generation complexity
considerably without degrading quality.

Index Terms— Speech synthesis, acoustic modelling, re-
current network network, gated recurrent network, long short-
term memory

1. INTRODUCTION

Statistical parametric speech synthesis (SPSS) has quite
steadily advanced in naturalness in the past decade, as wit-
nessed by the series of Blizzard Challenges [1]. However,
the quality of synthetic speech produced by SPSS is still far
below that of the natural human speech, and cannot com-
pete with the best unit selection systems, which concatenate
waveforms [2]. As suggested in [3], acoustic modelling,
which captures the complex relationship between linguistic
and acoustic representations, is a key limiting factor and is
the focus of this work.

1.1. Relation to prior work

Neural networks have re-emerged as a potential powerful
acoustic model for SPSS. In [4, 5, 6, 7, 8], feed-forward neu-
ral networks are employed to map a linguistic representation
derived from input text directly to acoustic features. In [9], a
deep belief network (DBN) was used to model the relation-
ship between linguistic and acoustic representations jointly.

In [10] and [11], mixture density networks (MDNs) and real-
valued neural autoregressive density estimators (RNADESs)
were proposed, respectively, to predict acoustic feature dis-
tributions given input linguistic features. These various im-
plementations can be viewed as a replacement of the decision
tree in HMM-based speech synthesis; they map linguistic
features to acoustic features frame by frame through multi-
ple hidden layers. However, the temporal sequence nature of
speech is not explicitly modelled in the network architectures.

To include temporal constraints, we proposed to include
contextual information by stacking low-dimensional bottle-
neck features from multiple consecutive frames [12]. Still in
the DNN framework, minimum trajectory error training [13]
or sequence error training criterion [14] have been proposed
to minimise the utterance-level trajectory error rather than the
frame-by-frame error. On the other hand, recurrent neural net-
works (RNNs) directly and elegantly include temporal infor-
mation in the network architecture, making them attractive
for modelling speech parameter trajectories. In [15], a stan-
dard RNN was employed to predict prosodic information for
speech synthesis. In [16], two variants on standard RNNs,
the ElIman RNN and clockwork RNN, were investigated for
speech synthesis.

The most widely used recurrent network in speech pro-
cessing applications is the long short-term memory (LSTM)
architecture. Because the LSTM addresses the vanishing
gradient problem of the standard RNN, it is easier to train.
In [17], an LSTM was employed to model the FO contour.
In [18], a bidirectional LSTM was employed to map a se-
quence of linguistic features to the corresponding sequence
of acoustic features. In [19], an LSTM with a recurrent
output layer was proposed to perform sequence mapping
from linguistic to acoustic representations. These studies all
formulate SPSS as sequence-to-sequence mapping and all
demonstrate the effectiveness of LSTMs. However, LSTM
architecture seems rather ad-hoc and it is not obvious what its
various components are actually contributing to performance.

This raises at least two questions that have not been an-
swered in previous studies: a) how exactly does the LSTM ar-
chitecture model a speech parameter sequence; b) which com-
ponents of the LSTM architecture are important, and which
could be discarded. Answers to these questions may suggest
better and perhaps simpler recurrent network architectures.



1.2. The novelty of this work

We attempt to reach a better understanding of the “black-box”
LSTM architecture and our findings lead us to propose a sim-
plified architecture for speech modelling.

First, we give an analysis of the forget gate and memory
cell in the LSTM architecture. Specifically, we visualise the
activation of the forget gate to understand when the forget gate
resets the memory cell state, and how the forget gate relates
to speech structure. We analyse how the cell state correlates
with the trajectory to be predicted. These visualisations en-
able us to understand how LSTMs model the temporal struc-
ture in speech synthesis. 7o the best of our knowledge, this is
the first attempt to visually analyse the LSTM architecture in
predicting a speech parameter sequence.

Second, we analyse the importance of each LSTM com-
ponent for speech synthesis and propose a simplified archi-
tecture. The analysis is done empirically with several vari-
ants of the LSTM. Each removes a different component of
the vanilla LSTM. The analysis was inspired by the studies
in [20, 21], and we focus on the speech synthesis application.
Based on this analysis, we present a simplified architecture,
which only has the forget gate. The simplified architecture
has significantly fewer parameters than the vanilla LSTM, and
so reduces the computational cost of generation considerably
without degrading the quality of the synthesised speech.

2. LONG SHORT-TERM MEMORY

Standard RNNs are hard to train due to the well-known van-
ishing or exploding gradient problems [22, 23]. To address
the vanishing gradient problem, the LSTM architecture was
proposed, the basic idea of which was presented in [24]. The
most commonly used architecture was described in [25], and
is formulated as,

iy = 6(Wix; + Rhy—1 +p' O cimg +b)
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In these formulations, i;, f;, c;, 04, and h; are the input gate,
forget gate, cell state, output gate and block output at time
instance t, respectively; 0(-) and g(-) are the sigmoid and
tangent activation functions, respectively; x; is the input at
time t; W*, and R* are the weight matrices applied on input
and recurrent hidden units, respectively; p* and b* are the
peep-hole connections and biases, respectively; and ® means
element-wise product. We will call this the vanilla LSTM.
The central idea of the LSTM is the so-called memory
cell ¢ which maintains its state over time, and the gating units
which are used to regulate the information flow into and out
of the memory cell [20]. More specifically, the input gate can
allow the input signal to adjust the cell state or prevent that

(e.g., setting the input gate to zero); the output gate can al-
low the cell state to affect other neurons or block that; and the
forget gate enables the cell to remember or forget its previ-
ous state. However, as discussed in [20, 21], the architecture
might not be optimal for all the tasks, and the relative impor-
tance of each component is not at all clear.

3. GATED RECURRENT NEURAL NETWORKS

In this section, we present several variants of the LSTM and
propose a simplified version that only has the forget gate; it
therefore has significantly fewer parameters and lower com-
putational cost. As these variants all share with the LSTM the
concept of a memory cell with gates, we will call them gated
recurrent neural networks.

3.1. Four variants on the LSTM

To assess the importance of each component, we start with
four variants of the LSTM architecture. Each removes one
component from the LSTM architecture, so we can under-
stand how much each component contributes to performance.
The differences with the vanilla LSTM are:

e No Peep-holes (NPH): Set p', p', p° to zero

e No input gate (NIG): i; =1

e No forget gate (NFG): f; =1

e No output gate (NOG): 0, =1
In the NFG variant, the past cell state will still contribute to
the current cell state but without any controlling or scaling by
the forget gate. Note that, when removing the input, forget or
output gates, the number of parameters is reduced.

3.2. Gated Recurrent Unit (GRU)

As an alternative to the LSTM, the Gated Recurrent Unit
(GRU) architecture was proposed in [26]. In [27], the GRU
was found to achieve better performance than the LSTM on
some tasks. The GRU is formulated as:
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From these formulae, we can observed that the GRU architec-
ture is similar to LSTM but without a separate memory cell.
The GRU does not use peep-hole connections and output acti-
vation functions, and combines the input and forget gates into
an update gate z, to balance between previous activation h;_
and the candidate activation h,. The reset gate r; allows it to
forget the previous state.

3.3. Simplified LSTM (S-LSTM)

As we will see in the experiments reported in the next sec-
tion, the input gate, output gate and peep-hole connections
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Fig. 1. Averaged activations of all 256 forget gates as a func-
tion of time (in frames) are shown by the solid red line, with
phoneme boundaries marked as dashed vertical blue lines.

can be removed without degrading speech synthesis perfor-
mance significantly. Hence, we can propose an even simpler
variant, that removes output gates and peep-hole connections,
and replaces the input gate by the forget gate in the form of
1 — f;. In this way, only the forget gate is retained. This
simplest variant can be written as:

f, = 6(Wix, + Rth,_; 4+ bf)
Ct = ft ©Ci—1 + (1 — ft) O] g(WCXt + Rcht,1 + bc)
h; = g(cy)

The simplified architecture is similar to the GRU, except that
it uses a memory cell state. The cell state is controlled by
the forget gate only, which trades off between past cell state
and current block input. When the activation of forget gate
is small, the cell state will mainly depend on the block input,
otherwise it will mainly copy the past cell state.

4. EXPERIMENTS
4.1. Experimental setup

A corpus from a British male speaker was employed in our
experiments, divided into three subsets: training, develop-
ment and testing (2400, 70 and 72 utterances). The sampling
rate was 48 kHz, and we used the STRAIGHT vocoder [28]
to extract 60-dimensional Mel-Cepstral Coefficients (MCCs),
25 band aperiodicities (BAPs), and fundamental frequency
(Fp) on log-scale, all at 5-ms frame step. All systems used
the same acoustic features. Fy was linearly interpolated be-
fore modelling and a binary voiced/unvoiced feature was used
to record voicing information. Dynamic features for MCCs,
BAPs and F{y were also computed. The acoustic features were
mean-variance normalised before modelling, and the mean
and variance was restored at the generation time. At gener-
ation time, maximum likelihood parameter generation algo-
rithm [29] was applied to smooth parameter trajectories.

All systems used the same input linguistic features com-
prising 601 features. 592 of these are binary features derived
from linguistic context, such as quin-phone identities, part-
of-speech, positional information of phoneme, syllable, word
and phrase, and the number of syllables, words and phrases,
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Fig. 2. Comparison between the first MCC trajectory and the
120" cell state (vertically offset for clarity).

etc. The remaining 9 numerical features capture frame po-
sition information, e.g., frame position in HMM state and
phoneme. Linguistic features were normalised to [0.01 0.99]
before modelling.

In all RNNs, we employed a three-layer feed-forward
neural network at the bottom. On top of the feed-forward lay-
ers, we used the gated recurrent neural networks. The bottom
feed-forward layers were intended to act as feature extraction
layers, with 512 hidden units using tangent activation func-
tion in each layer. All RNN implementations used 256 units
(e.g., LSTM blocks) in the recurrent layer. Hyperparameters
for each system were optimised on the development set. We
fixed the momentum, and only tuned learning rates.

4.2. Analysis of LSTM

We first visualised the forget gate and cell state, which are
thought to be the two most important components in mod-
elling long-term temporal structure. The averaged activations
(over the 256 units) of the forget gate as a function of the
frame index is presented in Fig. 1. The red solid line is the
forget gates averaged activations; blue dashed lines show
phoneme boundaries. It is clear that the peaks of the forget
gate activation trajectory have a strong correspondence with
the phoneme boundaries; within a phoneme, the contribution
of past cell state decays linearly. The forget gate is cap-
turing some important temporal structure of speech; this is
not surprising, since the phoneme boundaries are explicitly
represented in the input linguistic features.

The memory cell should maintains its state over time [20]
and so could store the trend of the trajectory to be predicted.
To analyse the relationship between the cell states and the
MCC trajectories, we computed the correlation between the
cell states and the first MCC trajectory, and found that the
120" cell state has the highest correlation with the first MCC
trajectory. The correlation is as high as 0.9. A comparison
between them is presented in Fig. 2, which shows that the cell
state tracks the shape of the MCC trajectory.

4.3. Objective results

Even though objective measures might not always correlate
with human perception, they offer a way to tune the systems



Table 1. Subjective preference scores (%). p < 0.01 indicates significant difference between the two systems.

[ [LSTM NIG NOG NFG NPH GRU S-LSTM  Neutral [ p-value |
1 46.7 423 - - - 11.0 0.1582
2 40.7 - 47.8 - - 11.5 0.0649
3 743 - - 20.3 - - 54 <1078
4 44.0 - - - 453 - - 10.7 0.7820
5 47.8 - - 427 - 9.5 0.1086
6 46.5 - - 45.3 8.2 0.7948
7 46.0 - 46.8 7.2 0.8305
8 - 48.0 - 443 7.7 0.3828
9 - - 51.7 40.5 7.8 0.0018
10 - - 48.0 45.0 7.0 0.4703

Table 2. Objective measures. MCD: Mel-Cepstral Distor-
tion. BAP: distortion of band aperiodicities. FO RMSE is
calculated on a linear scale. V/UV: voiced/unvoiced error.
Note that the number of parameters listed is for the recurrent
layer only and does not include the bottom three feed-forward
layers, which are the same size across all systems. The gener-
ation time is to generate all the 142 utterances in both devel-
opment and testing sets.

MCD BAP FORMSE  V/UV | #parameters  generation
’ ‘ (dB) (dB) (Hz) (%) time (s)
LSTM 4.14 1.95 8.96 4.15 788, 224 214
NIG 4.18 1.95 9.10 4.15 591, 104 180
NOG 4.14 1.94 8.84 429 591, 104 167
NFG 4.68 1.99 9.69 4.41 591, 104 174
NPH 4.14 1.95 9.02 4.20 787, 456 180
GRU 4.17 1.95 9.00 422 590, 592 159
S-LSTM 4.19 1.95 8.87 4.14 393, 728 154

and roughly predict model performance. The objective results
are in Table 2. Compared to LSTM, NIG, NOG and NPH all
achieve similar objective distortion, with considerably fewer
parameters and lower generation time: the input gate, output
gate and peep-hole connections are not necessary. The NFG
system increases distortion considerably: the forget gate is
important. This finding is consistent with [20].

The GRU system achieves similar performance to the
LSTM system: even though it has even fewer parameters, it
performs as well as NIG, NOG or NPH. This is also consis-
tent with studies on other tasks [27, 21]. Although S-LSTM
slightly increases MCD distortion from 4.14 dB to 4.19 dB
compared to LSTM, it achieves similar performance on the
other measures. The S-LSTM has about half the number of
parameters in its recurrent layer compared to the LSTM, and
reduces generation time from 214 seconds to 154 seconds.
The generation time is the total time to generate all the 142
utterances in both development and testing sets.

In summary, the S-LSTM has the smallest number of pa-
rameters and achieves the fastest generation, whilst achieving
similar objective results to the LSTM and GRU architectures.

4.4. Subjective results

Subjective preference tests were conducted using 30 paid na-
tive English speakers. Each listener was asked to listen 20
pairs of synthesised utterances. The sentence was the same

in both items within a pair, and was randomly selected from
the 72 test sentences!. For each pair, the listener was asked
to decide which one sounded more natural; a “neutral” option
was allowed if the listener had no preference.

Preference results are in Table 1. Comparing against the
LSTM system, all the systems except NFG show no signifi-
cant difference in preference.

The NFG system achieves only a 20.3% preference score
when paired against the LSTM which is preferred 74.3% of
the time. As with the objective results in Table 2, we con-
clude that the forget gate is the only critical component in the
LSTM architecture; the input gate, output gate and peep-hole
connections can be omitted.

We also compares the proposed S-LSTM system against
with all other systems (except NFG, since it is worse than
LSTM). Consistent with the objective results, the subjective
results also demonstrate that S-LSTM is as good as any other
systems.

5. CONCLUSIONS

We have analysed the forget gate and cell state of the LSTM
architecture, and examined the performance of several vari-
ants of LSTM. We conclude that:

e The forget gate can learn the temporal structure of
speech; its activations have a high correspondence with
phone boundaries.

e The memory cell maintains a state over time, which
matched the shape of the trajectory to be predicted.

e For this task, the forget gate is the only critical com-
ponent of the LSTM; other components can be omitted
with no reduction in naturalness.

From these results, we propose a simplified LSTM archi-
tecture that only uses the critical forget gate. The simpli-
fied LSTM has significantly fewer parameters than the vanilla
LSTM, but achieves similar performance in both objective
and subjective evaluations.
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