199,715 research outputs found
Analysis of landfill gas migration by use of autonomous gas monitoring platforms
Autonomous gas sensing platforms have been developed to facilitate the long-term continuous monitoring of landfill gas concentrations. The analysis of a municipal landfill site in Ireland forms part of an on-going collaboration with the Environmental Protection Agency in monitoring the migration of greenhouse gases, i.e. methane and carbon dioxide, emanating from the landfill site. Target gas concentrations were automatically recorded via infrared gas sensors calibrated for the respective gases, with this data being logged remotely every six hours to a central base-station. The autonomous platform with its web-based portal interface provides a flexible alternative to the existing labor-intensive, manual monitoring routines. Frequent occurrences of 70% v/v methane and 6% v/v carbon dioxide were substantially in breach of the regulatory limits of 1.5% v/v and 1.0% v/v, respectively. These excessive levels of gas migration were analyzed with respect to SCADA flare data, on-site measurements and meteorological data
Autonomous greenhouse gas measurement system for analysis of gas migration on landfill sites
This paper describes the design, development and
validation of an autonomous gas sensing platform
prototype for monitoring of the greenhouse gases, methane
(CH4) and carbon dioxide (CO2). The deployment
undertaken for validation of the developed prototype
monitored landfill gas migration to perimeter borehole
wells on a landfill site. Target gas concentrations were
captured via infrared gas sensors tuned for each target gas
and data reported to an offsite data collection point at 12
hour intervals. This bespoke platform and the
accompanying data recording and interface software
provide a flexible alternative to the presently employed
labor intensive, manual monitoring routines. This
successful trial brought about a change in the management
of the trial sites gas extraction system
Measurement of representative landfill gas migration samples at landfill perimeters: a case study
This paper describes the development of a fully integrated autonomous system based on existing infrared sensing technology capable of monitoring landfill gas migration (specifically carbon dioxide and methane) at landfill sites. Sampling using the described system was validated against the industry standard, GA2000 Plus hand held device, manufactured by Geotechnical Instruments Inc. As a consequence of repeated sampling during validation experiments, fluctuations in the gas mixtures became apparent. This initiated a parallel study into what constitutes a representative sample of landfill gas migration as reported to the Environmental Protection Agency. The work described in this paper shows that gas mixture concentrations change with depth of extraction from the borehole well, but with evidence of a steady state after a time
Monitoring of gas emissions at landfill sites using autonomous gas sensors
Executive Summary
This report details the work carried out during the Smart
Plant project (2005-AIC-MS-43-M4). As part of this
research, an autonomous platform for monitoring
greenhouse gases (methane (CH4), carbon dioxide
(CO2)) has been developed, prototyped and field
validated. The modular design employed means that the
platform can be readily adapted for a variety of
applications involving these and other target gases such
as hydrogen sulfide (H2S), ammonia (NH3) and carbon
monoxide (CO) and the authors are in the process of
completing several short demonstrator projects to
illustrate the potential of the platform for some of these
applications. The field validation for the greenhouse gas
monitoring platform was carried out at two landfill sites in
Ireland. The unit was used to monitor the concentration of
CO2 and CH4 gas at perimeter borehole wells. The final
prototype was deployed for over 4 months and
successfully extracted samples from the assigned
perimeter borehole well headspace, measured them and
sent the data to a database via a global system for mobile
(GSM) communications. The data were represented via
an updating graph in a web interface. Sampling was
carried out twice per day, giving a 60-fold increase on
current monitoring procedures which provide one gas
concentration measurement per month.
From additional work described in this report, a
number of conclusions were drawn regarding lateral
landfill gas migration on a landfill site and the
management of this migration to the site’s perimeter.
To provide frequent, reliable monitoring of landfill gas
migration to perimeter borehole wells, the unit needs
to:
• Be fully autonomous;
• Be capable of extracting a gas sample from a
borehole well independently of personnel;
• Be able to relay the data in near real time to a base
station; and
• Have sensors with a range capable of adequately
monitoring gas events accurately at all times.
The authors believe that a unit capable of such
monitoring has been developed and validated. This
unit provides a powerful tool for effective management
of landfill site gases. The effectiveness of this unit has
been recognised by the site management team at the
long-term deployment trial site, and the data gathered
have been used to improve the day-to-day operations
and gas management system on-site.
The authors make the following recommendations:
1. The dynamics of the landfill gas management
system cannot be captured by taking
measurements once per month; thus, a minimum
sampling rate of once per day is advised.
2. The sampling protocol should be changed:
(i) Borehole well samples should not be taken
from the top of the well but should be
extracted at a depth within the headspace
(0.5–1.0 m). The measurement depth will be
dependent on the water table and headspace
depth within the borehole well.
(ii) The sampling time should be increased to 3
min to obtain a steady-state measurement
from the headspace and to take a
representative sample; and
(iii) For continuous monitoring on-site, the
extracted sample should be recycled back
into the borehole well. However, for
compliance monitoring, the sample should
not be returned to the borehole well.
3. Devices should be placed at all borehole wells so
the balance on the site can be maintained through
the gas management system and extraction
issues can be quickly recognised and addressed
before there are events of high gas migration to
the perimeter.
4. A pilot study should be carried out by the EPA
using 10 of these autonomous devices over three
to five sites to show the need and value for this
type of sampling on Irish landfill sites
Recommended from our members
CO2 plume evolution in a depleted natural gas reservoir: Modeling of conformance uncertainty reduction over time
Uncertainty in the long-term fate of CO2 injected for geologic carbon sequestration (GCS) is a significant barrier to the adoption of GCS as a greenhouse-gas emission-mitigation for industry and regulatory agencies alike. We present a modeling study that demonstrates that the uncertainty in forecasts of GCS site performance decreases over time as monitoring data are used to update operational models. We consider a case study of GCS in a depleted natural gas reservoir, with CO2 injection occurring over 20 years, with a 50-year post-injection site care period. We constructed a detailed model to generate the actual model output, which is considered synthetic observation data. A series of simpler operational models based on limited data and assumptions about how an operator would model such a site are then run and compared against actual model output at specific monitoring points after one year, two years, etc. The operational model is updated and improved using the synthetic observation data from the actual model at the same time intervals. Model parameter values and model features needed to be updated over time to improve matches to the actual model. These kinds of model adjustments would be a normal part of reservoir engineering and site management at GCS sites. Uncertainty in two key measures related to site performance decreases with time: extent of the CO2 plume up-dip migration, and radial extent of the pressure pulse. This conclusion should help allay the concerns of industry and regulators about uncertainty in long-term fate of CO2 at GCS sites
Recommended from our members
Carbon Dioxide Plume Evolution Following Injection into a Depleted Natural Gas Reservoir: Modeling of Conformance Uncertainty Reduction Over Time
The uncertainty in the long-term fate of CO2 injected for geologic carbon sequestration (GCS) is a significant barrier to the adoption of GCS as a greenhouse gas emission mitigation approach for industry and regulatory agencies alike. Here we present a modeling study that demonstrates that the uncertainty in forecasts of GCS site performance decreases over time as monitoring data are used to inform and update operational models. The approach we take is to consider a case study consisting of a depleted natural gas reservoir that is used for GCS with CO2 injection occurring over 20 years, with a 50-year post-injection site care (PISC) period. We constructed a detailed model of the system and ran this model out to 200 years to generate the actual site data. A series of simpler operational models based on limited data and assumptions about how an actual operator would model such a site are then run and compared against the actual model output at various specific monitoring points after one year, two years, etc. The operational model is then updated and improved using the observations (synthetic data from the actual model) at the same time intervals. We found that both model parameter values and model features needed to be added over time to improve matches to the actual system. These kinds of model adjustments are expected to be a normal part of reservoir engineering and site management at GCS sites. We found that the uncertainty in two key measures related to site performance at various locations decreases with time. This overall conclusion should help allay the concerns of industry and regulators about the uncertainty in GCS operations
Investigation on gas migration in saturated materials with low permeability
International audienceInvestigation of the hydro-mechanical effects on gas migration in saturated materials with low permeabilityis of great theoretical and practical significances in many engineering fields. The conventional two-phaseflow (visco-capillary flow) theory, which regards the capillary pressure as the only controlling factor in gasmigration processes, is commonly adopted to describe the gas flow in geo-materials. However, formaterialswith lowpermeability, the conventional two-phase flow theory cannot properly describe the gasmigration.In this work, hydro-mechanical coupled gas injection tests were conducted. The volumetric variation of theliquid for applying the confining pressure in the specimen cell and the gas flow rate were monitored. Testresults indicate that gas migration is influenced by the capillary pressure and the mechanical stress simultaneously.The two key parameters of the gas entry pressure Pentry and the gas induced-dilatancy pressurePdilatancy are introduced for description of gas migration with respect to the capillary pressure and the mechanicalstress effects, respectively. When the gas injection pressure is smaller than the Pentry and thePdilatancy, the balance between the gas injection pressure and the confining pressure will lead to an intermittentgas flow. Sudden increase of gas flow rate could be observed once the gas injection pressure approachesthe Pentry or the Pdilatancy. For higher gas injection pressures, the mechanical stress effects on gas migrationcould not be neglected. The sudden increase of gas flux under high gas injection pressures could be causedby the mechanical induced-dilatancy of channels, capillary pressure induced-continuous flow pathways, aswell as the failure of sealing-efficiency. The failure of sealing-efficiency is closely related to the differencebetween the gas injection pressure and the confining pressure rather than the properties of the materialtested. Monitoring the volume of liquid for applying confining pressure is helpful for detecting the failureof sealing efficiency and the mechanism of gas breakthrough
Enabling onshore CO2 storage in Europe: fostering international cooperation around pilot and test sites
To meet the ambitious EC target of an 80% reduction in greenhouse gas emissions by 2050, CO2 Capture and Storage (CCS) needs to move rapidly towards full scale implementation with geological storage solutions both on and offshore. Onshore storage offers increased flexibility and reduced infrastructure and monitoring costs. Enabling onshore storage will support management of decarbonisation strategies at territory level while enhancing security of energy supply and local economic activities, and securing jobs across Europe. However, successful onshore storage also requires overcoming some unique technical and societal challenges. ENOS will provide crucial advances to help foster onshore CO2 storage across Europe through:
1. Developing, testing and demonstrating in the field, under "real-life conditions", key technologies specifically adapted to onshore storage.
2. Contributing to the creation of a favourable environment for onshore storage across Europe.
The ENOS site portfolio will provide a great opportunity for demonstration of technologies for safe and environmentally sound storage at relevant scale. Best practices will be developed using experience gained from the field experiments with the participation of local stakeholders and the lay public. This will produce improved integrated research outcomes and increase stakeholder understanding and confidence in CO2 storage. In this improved framework, ENOS will catalyse new onshore pilot and demonstration projects in new locations and geological settings across Europe, taking into account the site-specific and local socio-economic context. By developing technologies from TRL4/5 to TRL6 across the storage lifecycle, feeding the resultant knowledge and experience into training and education and cooperating at the pan-European and global level, ENOS will have a decisive impact on innovation and build the confidence needed for enabling onshore CO2 storage in Europe.
ENOS is initiating strong international collaboration between European researchers and their counterparts from the USA, Canada, South Korea, Australia and South Africa for sharing experience worldwide based on real-life onshore pilots and field experiments. Fostering experience-sharing and research alignment between existing sites is key to maximise the investment made at individual sites and to support the efficient large scale deployment of CCS. ENOS is striving to promote collaboration between sites in the world through a programme of site twinning, focus groups centered around operative issues and the creation of a leakage simulation alliance
Recommended from our members
Comparing carbon sequestration in an oil reservoir to sequestration in a brine formation-field study
Geologic sequestration of CO2 in an oil reservoir is generally considered a different class than sequestration in
formations which contain only brine. In this paper, the significance and validity of this conceptualization is
examined by comparing the performance of CO2 injected into a depleted oil reservoir with the performance of
similar injection into non-oil bearing sandstones using a field test at Cranfield Field, Mississippi as a case study. The
differences considered are:
(1)Residual oil in the reservoir slightly reduces the CO2 breakthrough time and rate of pressure build up as
compared to a reservoir containing only brine, because under miscible conditions, more CO2 dissolves into oil
than in to brine.
(2)Dense wells provide improved assessment of the oil reservoir quality leading to improved prediction as well as
verification of CO2 movement in this reservoir as compared to the sparsely characterized brine leg. The value of
this information exceeds the risk of leakage.
Assessment of the difference made by the presence of residual oil requires a good understanding reservoir properties
to predict oil and gas distribution. Stratal slicing, attribute analysis and petrographic analyses are used to define the
reservoir architecture. Real-time pressure response at a dedicated observation well and episodic pressure mapping
has been conducted in the reservoir under flood since mid-2008; comparison measurements are planned for 2009 in
down-dip environments lacking hydrocarbons. Model results using GEM compositional simulator compare well in
general to measured reservoir response under CO2 flood; imperfections in model match of flood history document
uncertainties Time laps RST logging is underway to validate fluid composition and migration models. Monitoring
assessing the performance of the wells during the injection of CO2 suggests that the value of wells to provide field
data for characterization exceeds the risk of leakage.Bureau of Economic Geolog
Landfill aeration for emission control before and during landfill mining
The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area
- …
