29,164 research outputs found

    Metaphors of London fog, smoke and mist in Victorian and Edwardian Art and Literature

    Get PDF
    Julian Wolfreys has argued that after 1850 writers employed stock images of the city without allowing them to transform their texts. This thesis argues, on the contrary, that metaphorical uses of London fog were complex and subtle during the Victorian and Edwardian periods, at least until 1914. Fog represented, in particular, formlessness and the dissolution of boundaries. Examining the idea of fog in literature, verse, newspaper accounts and journal articles, as well as in the visual arts, as part of a common discourse about London and the state of its inhabitants, this thesis charts how the metaphorical appropriation of this idea changed over time. Four of Dickens's novels are used to track his use of fog as part of a discourse of the natural and unnatural in individual and society, identifying it with London in progressively more negative terms. Visual representations of fog by Constable, Turner, Whistler, Monet, Markino, O'Connor, Roberts and Wyllie and Coburn showed an increasing readiness to engage with this discourse. Social tensions in the city in the 1880s were articulated in art as well as in fiction. Authors like Hay and Barr showed the destruction of London by its fog because of its inhabitants' supposed degeneracy. As the social threat receded, apocalyptic scenarios gave way to a more optimistic view in the work of Owen and others. Henry James used fog as a metaphorical representation of the boundaries of gendered behaviour in public, and the problems faced by women who crossed them. The dissertation also examines fog and individual transgression, in novels and short stories by Lowndes, Stevenson, Conan Doyle and Joseph Conrad. After 1914, fog was no more than a crude signifier of Victorian London in literature, film and, later, television, deployed as a cliche instead of the subtle metaphorical idea discussed in this thesis

    3D numerical simulation of slope-flexible system interaction using a mixed FEM-SPH model

    Get PDF
    Flexible membranes are light structures anchored to the ground that protect infrastructures or dwellings from rock or soil sliding. One alternative to design these structures is by using numerical simulations. However, very few models were found until date and most of them are in 2D and do not include all their components. This paper presents the development of a numerical model combining Finite Element Modelling (FEM) with Smooth Particle Hydrodynamics (SPH) formulation. Both cylindrical and spherical failure of the slope were simulated. One reference geometry of the slope was designed and a total of 21 slip circles were calculated considering different soil parameters, phreatic level position and drainage solutions. Four case studies were extracted from these scenarios and simulated using different dimensions of the components of the system. As a validation model, an experimental test that imitates the soil detachment and its retention by the steel membrane was successfully reproduced

    Structure and adsorption properties of gas-ionic liquid interfaces

    Get PDF
    Supported ionic liquids are a diverse class of materials that have been considered as a promising approach to design new surface properties within solids for gas adsorption and separation applications. In these materials, the surface morphology and composition of a porous solid are modified by depositing ionic liquid. The resulting materials exhibit a unique combination of structural and gas adsorption properties arising from both components, the support, and the liquid. Naturally, theoretical and experimental studies devoted to understanding the underlying principles of exhibited interfacial properties have been an intense area of research. However, a complete understanding of the interplay between interfacial gas-liquid and liquid-solid interactions as well as molecular details of these processes remains elusive. The proposed problem is challenging and in this thesis, it is approached from two different perspectives applying computational and experimental techniques. In particular, molecular dynamics simulations are used to model gas adsorption in films of ionic liquids on a molecular level. A detailed description of the modeled systems is possible if the interfacial and bulk properties of ionic liquid films are separated. In this study, we use a unique method that recognizes the interfacial and bulk structures of ionic liquids and distinguishes gas adsorption from gas solubility. By combining classical nitrogen sorption experiments with a mean-field theory, we study how liquid-solid interactions influence the adsorption of ionic liquids on the surface of the porous support. The developed approach was applied to a range of ionic liquids that feature different interaction behavior with gas and porous support. Using molecular simulations with interfacial analysis, it was discovered that gas adsorption capacity can be directly related to gas solubility data, allowing the development of a predictive model for the gas adsorption performance of ionic liquid films. Furthermore, it was found that this CO2 adsorption on the surface of ionic liquid films is determined by the specific arrangement of cations and anions on the surface. A particularly important result is that, for the first time, a quantitative relation between these structural and adsorption properties of different ionic liquid films has been established. This link between two types of properties determines design principles for supported ionic liquids. However, the proposed predictive model and design principles rely on the assumption that the ionic liquid is uniformly distributed on the surface of the porous support. To test how ionic liquids behave under confinement, nitrogen physisorption experiments were conducted for micro‐ and mesopore analysis of supported ionic liquid materials. In conjunction with mean-field density functional theory applied to the lattice gas and pore models, we revealed different scenarios for the pore-filling mechanism depending on the strength of the liquid-solid interactions. In this thesis, a combination of computational and experimental studies provides a framework for the characterization of complex interfacial gas-liquid and liquid-solid processes. It is shown that interfacial analysis is a powerful tool for studying molecular-level interactions between different phases. Finally, nitrogen sorption experiments were effectively used to obtain information on the structure of supported ionic liquids

    Probing the Intergalactic medium properties using X-ray absorption from multiple tracers

    Get PDF
    Based on the Lambda Cold Dark Matter concordance cosmological model (ΛCDM), the majority of baryons exist in the Intergalactic medium (IGM). It is extremely challenging to observationally trace the IGM, especially at higher temperatures and low densities. Post reionisation, the vast majority of hydrogen and helium is ionized in the IGM and therefore, the observation of metals is essential for parametrising the IGM properties. My hypothesis is that there is significant absorption in the diffuse highly ionisied IGM and that this IGM column density increases with redshift. I use X-ray absorption in multiple tracers which yields information on the total absorbing column density of the matter between the observer and the source. Clear IGM detections require tracer sources that are bright, distant, and common enough to provide a good statistical sample of IGM lines of sight (LOS). To more accurately isolate any IGM contribution to spectral absorption, I examine each tracer host type to realistically model it, in addition to using appropriate intrinsic continuum curvature models. I test the robustness of the result from a number of perspectives. I examine the impact of the key underlying assumptions that affect the column density calculations including metallicity, ionisation and location of absorption. I look for any evidence of evolution in the parameters. In Chapters 2, 3, 4 and 5, I use gamma-ray bursts (GRBs), blazars and quasars (QSOs) to estimate IGM baryon column densities, metallicity, temperature, ionisation parameters and redshift distributions. My results for each tracer are presented in each of the respective chapters and collectively in Chapter 5 which includes comparative analysis. In conclusion, through the work in this thesis I demonstrate a consistent case for strong X-ray absorption in the IGM on the LOS to three different tracer types and that it is related to redshift. The results are consistent with the ΛCDM model for density, temperature and metallicity. Given these results, I would recommend that studies of distant objects should not follow the convention of assuming all X-ray absorption in excess of our Galaxy is attributed to the host galaxy, that the host is neutral and has solar metallicity. Instead, particularly at higher redshift, absorption in the IGM should be accounted for to give more accurate results for the tracer host properties

    Innovation systems’ response to changes in the institutional impulse: Analysis of the evolution of the European energy innovation system from FP7 to H2020

    Get PDF
    This study addresses how the institutional impulse developed by the European Union influenced the evolution of the European energy innovation system. Considering the contributing role of innovation systems in the development of new knowledge and technology, it can be stated that the institutional impulse achieved by the European Union through the research framework programmes creates a network of relations between entities and projects. This enables the exchange of information and expertise, which is considered a key element for innovation development. Previous studies have attempted to determine whether institutional impulse is an essential element in understanding the efficiency of innovation systems and their related research policies. However, their investigations have yielded inconclusive results. Using the CORDIS database of the European Commission, this study aims to fill this gap by assessing the European energy innovation system for two periods (2007–2013 and 2014–2020) through two of its research funding programmes—FP7 and H2020—thereby contributing to the literature in the innovation systems field. Social network analysis has been conducted to examine how changes in the institutional impulse, reflected in the new objectives in the research funding programmes, are associated with changes in the structural and topological properties of the innovation systems’ underlying networks. The first contribution indicates that the innovation system responds to changes in the goals of funding programmes, as the taxonomy, topology, and structural properties of their underlying networks underwent modifications due to the newly proposed objectives. The second contribution shows that network properties (cohesion and centrality metrics) can explain the efficiency and effectiveness of innovation systems, drawing useful conclusions for policymakers and individual entities. This last contribution also has important policymaking implications, as it provides the basis for understanding how innovation policy goals can be achieved by changing the institutional impulse to direct the innovation system towards these objectives

    Metabolic phenotyping of opioid and psychostimulant addiction: A novel approach for biomarker discovery and biochemical understanding of the disorder.

    Get PDF
    Despite the progress in characterising the pharmacological profile of drugs of abuse, their precise biochemical impact remains unclear. The metabolome reflects the multifaceted biochemical processes occurring within a biological system. This includes those encoded in the genome but also those arising from environmental/exogenous exposures and interactions between the two. Using metabolomics, the biochemical derangements associated with substance abuse can be determined as the individual transitions from recreational drug to chronic use (dependence). By understanding the biomolecular perturbations along this time course and how they vary across individuals, metabolomics can elucidate biochemical mechanisms of the addiction cycle (dependence/withdrawal/relapse) and predict prognosis (recovery/relapse). In this review, we summarise human and animal metabolomic studies in the field of opioid and psychostimulant addiction. We highlight the importance of metabolomics as a powerful approach for biomarker discovery and its potential to guide personalised pharmacotherapeutic strategies for addiction targeted towards the individual's metabolome
    • 

    corecore