8,784 research outputs found

    Drift Correction Methods for gas Chemical Sensors in Artificial Olfaction Systems: Techniques and Challenges

    Get PDF
    In this chapter the authors introduce the main challenges faced when developing drift correction techniques and will propose a deep overview of state-of-the-art methodologies that have been proposed in the scientific literature trying to underlying pros and cons of these techniques and focusing on challenges still open and waiting for solution

    Design Issues and Challenges of File Systems for Flash Memories

    Get PDF
    This chapter discusses how to properly address the issues of using NAND flash memories as mass-memory devices from the native file system standpoint. We hope that the ideas and the solutions proposed in this chapter will be a valuable starting point for designers of NAND flash-based mass-memory devices

    Exploiting Evolution for an Adaptive Drift-Robust Classifier in Chemical Sensing

    Get PDF
    Gas chemical sensors are strongly affected by drift, i.e., changes in sensors' response with time, that may turn statistical models commonly used for classification completely useless after a period of time. This paper presents a new classifier that embeds an adaptive stage able to reduce drift effects. The proposed system exploits a state-of-the-art evolutionary strategy to iteratively tweak the coefficients of a linear transformation able to transparently transform raw measures in order to mitigate the negative effects of the drift. The system operates continuously. The optimal correction strategy is learnt without a-priori models or other hypothesis on the behavior of physical-chemical sensors. Experimental results demonstrate the efficacy of the approach on a real problem

    Increasing pattern recognition accuracy for chemical sensing by evolutionary based drift compensation

    Get PDF
    Artificial olfaction systems, which mimic human olfaction by using arrays of gas chemical sensors combined with pattern recognition methods, represent a potentially low-cost tool in many areas of industry such as perfumery, food and drink production, clinical diagnosis, health and safety, environmental monitoring and process control. However, successful applications of these systems are still largely limited to specialized laboratories. Sensor drift, i.e., the lack of a sensor's stability over time, still limits real in dustrial setups. This paper presents and discusses an evolutionary based adaptive drift-correction method designed to work with state-of-the-art classification systems. The proposed approach exploits a cutting-edge evolutionary strategy to iteratively tweak the coefficients of a linear transformation which can transparently correct raw sensors' measures thus mitigating the negative effects of the drift. The method learns the optimal correction strategy without the use of models or other hypotheses on the behavior of the physical chemical sensors

    Consistency Index-Based Sensor Fault Detection System for Nuclear Power Plant Emergency Situations Using an LSTM Network

    Get PDF
    A nuclear power plant (NPP) consists of an enormous number of components with complex interconnections. Various techniques to detect sensor errors have been developed to monitor the state of the sensors during normal NPP operation, but not for emergency situations. In an emergency situation with a reactor trip, all the plant parameters undergo drastic changes following the sudden decrease in core reactivity. In this paper, a machine learning model adopting a consistency index is suggested for sensor error detection during NPP emergency situations. The proposed consistency index refers to the soundness of the sensors based on their measurement accuracy. The application of consistency index labeling makes it possible to detect sensor error immediately and specify the particular sensor where the error occurred. From a compact nuclear simulator, selected plant parameters were extracted during typical emergency situations, and artificial sensor errors were injected into the raw data. The trained system successfully generated output that gave both sensor error states and error-free states

    Self-Calibration Methods for Uncontrolled Environments in Sensor Networks: A Reference Survey

    Get PDF
    Growing progress in sensor technology has constantly expanded the number and range of low-cost, small, and portable sensors on the market, increasing the number and type of physical phenomena that can be measured with wirelessly connected sensors. Large-scale deployments of wireless sensor networks (WSN) involving hundreds or thousands of devices and limited budgets often constrain the choice of sensing hardware, which generally has reduced accuracy, precision, and reliability. Therefore, it is challenging to achieve good data quality and maintain error-free measurements during the whole system lifetime. Self-calibration or recalibration in ad hoc sensor networks to preserve data quality is essential, yet challenging, for several reasons, such as the existence of random noise and the absence of suitable general models. Calibration performed in the field, without accurate and controlled instrumentation, is said to be in an uncontrolled environment. This paper provides current and fundamental self-calibration approaches and models for wireless sensor networks in uncontrolled environments

    Drift in a Popular Metal Oxide Sensor Dataset Reveals Limitations for Gas Classification Benchmarks

    Get PDF
    Funding Information: We thank A. J. Lilienthal, M. Psarrou and S. Sutton for fruitful discussions on multiple occasions, which led to valuable insights. MS was funded by the NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation Networks for Neuroscience Program (NSF award no. 2014217 , MRC award no. MR/T046759/1 ), and the EU Flagship Human Brain Project SGA3 (H2020 award no. 945539 ). JF acknowledges the Spanish Ministry of Economy and Competitiveness DPI2017-89827-R , Networking Biomedical Research Centre in the subject area of Bioengineering, Biomaterials and Nanomedicine, initiatives of Instituto de Investigación Carlos III, Share4Rare Project (Grant agreement 780262 ), and ACCIÓ (Innotec A CE014/20/000018 ). JF also acknowledges the CERCA Programme/Generalitat de Catalunya and the Serra Húnter Program . B2SLab is certified as 2017 SGR 952. Funding Information: We thank A. J. Lilienthal, M. Psarrou and S. Sutton for fruitful discussions on multiple occasions, which led to valuable insights. MS was funded by the NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation Networks for Neuroscience Program (NSF award no. 2014217, MRC award no. MR/T046759/1), and the EU Flagship Human Brain Project SGA3 (H2020 award no. 945539). JF acknowledges the Spanish Ministry of Economy and Competitiveness DPI2017-89827-R, Networking Biomedical Research Centre in the subject area of Bioengineering, Biomaterials and Nanomedicine, initiatives of Instituto de Investigaci?n Carlos III, Share4Rare Project (Grant agreement 780262), and ACCI? (Innotec ACE014/20/000018). JF also acknowledges the CERCA Programme/Generalitat de Catalunya and the Serra H?nter Program. B2SLab is certified as 2017 SGR 952. Publisher Copyright: © 2022Metal oxide (MOx) gas sensors are a popular choice for many applications, due to their tunable sensitivity, space efficiency and low cost. Publicly available sensor datasets are particularly valuable for the research community as they accelerate the development and evaluation of novel algorithms for gas sensor data analysis. A dataset published in 2013 by Vergara and colleagues contains recordings from MOx gas sensor arrays in a wind tunnel. It has since become a standard benchmark in the field. Here we report a latent property of this dataset that limits its suitability for gas classification studies. Measurement timestamps show that gases were recorded in separate, temporally clustered batches. Sensor baseline response before gas exposure were strongly correlated with the recording batch, to the extent that baseline response was largely sufficient to infer the gas used in a given trial. Zero-offset baseline compensation did not resolve the issue, since residual short-term drift still contained enough information for gas/trial identification using a machine learning classifier. A subset of the data recorded within a short period of time was minimally affected by drift and suitable for gas classification benchmarking after offset-compensation, but with much reduced classification performance compared to the full dataset. We found 18 publications where this dataset was used without precautions against the circumstances we describe, thus potentially overestimating the accuracy of gas classification algorithms. These observations highlight potential pitfalls in using previously recorded gas sensor data, which may have distorted widely reported results.Peer reviewe
    corecore