51,445 research outputs found

    Smoothed Complexity Theory

    Get PDF
    Smoothed analysis is a new way of analyzing algorithms introduced by Spielman and Teng (J. ACM, 2004). Classical methods like worst-case or average-case analysis have accompanying complexity classes, like P and AvgP, respectively. While worst-case or average-case analysis give us a means to talk about the running time of a particular algorithm, complexity classes allows us to talk about the inherent difficulty of problems. Smoothed analysis is a hybrid of worst-case and average-case analysis and compensates some of their drawbacks. Despite its success for the analysis of single algorithms and problems, there is no embedding of smoothed analysis into computational complexity theory, which is necessary to classify problems according to their intrinsic difficulty. We propose a framework for smoothed complexity theory, define the relevant classes, and prove some first hardness results (of bounded halting and tiling) and tractability results (binary optimization problems, graph coloring, satisfiability). Furthermore, we discuss extensions and shortcomings of our model and relate it to semi-random models.Comment: to be presented at MFCS 201

    One-Tape Turing Machine Variants and Language Recognition

    Full text link
    We present two restricted versions of one-tape Turing machines. Both characterize the class of context-free languages. In the first version, proposed by Hibbard in 1967 and called limited automata, each tape cell can be rewritten only in the first dd visits, for a fixed constant d≥2d\geq 2. Furthermore, for d=2d=2 deterministic limited automata are equivalent to deterministic pushdown automata, namely they characterize deterministic context-free languages. Further restricting the possible operations, we consider strongly limited automata. These models still characterize context-free languages. However, the deterministic version is less powerful than the deterministic version of limited automata. In fact, there exist deterministic context-free languages that are not accepted by any deterministic strongly limited automaton.Comment: 20 pages. This article will appear in the Complexity Theory Column of the September 2015 issue of SIGACT New

    Different Approaches to Proof Systems

    Get PDF
    The classical approach to proof complexity perceives proof systems as deterministic, uniform, surjective, polynomial-time computable functions that map strings to (propositional) tautologies. This approach has been intensively studied since the late 70’s and a lot of progress has been made. During the last years research was started investigating alternative notions of proof systems. There are interesting results stemming from dropping the uniformity requirement, allowing oracle access, using quantum computations, or employing probabilism. These lead to different notions of proof systems for which we survey recent results in this paper
    • …
    corecore