4 research outputs found

    Gamma-hydroxybutyrate increases brain resting-state functional connectivity of the salience network and dorsal nexus in humans

    Full text link
    According to the triple network hypothesis the brain is equipped with three core neurocognitive networks: the default mode (DMN), the salience (SN), and the central executive (CEN) network. Moreover, the so called dorsal nexus, has met growing interest as it is a hub region connecting these three networks. Assessment of resting-state functional connectivity (rsFC) of these networks enables the elucidation of drug-induced brain alterations. Gamma-hydroxybutyrate (GHB) is a GHB/GABA-B receptor agonist that induces a paradoxical state of mixed stimulation and sedation at moderate doses, which makes it a valuable tool to investigate neural signatures of subjective drug effects. Employing a placebo-controlled, double-blind, randomized, cross-over design, we assessed the effects of GHB (35 mg/kg p. o.) in 19 healthy male subjects on DMN-, SN-, CEN-, and dorsal nexus-rsFC measured by functional magnet resonance imaging and applying independent component as well as seed-based analyses, while subjective drug effects were investigated using visual analog scales (VAS). Subjectively, GHB increased VAS ratings of a general drug effect, stimulation, and sedation. Intrinsic DMN-, and CEN-rsFC remained largely unchanged under GHB, but the drug increased SN-DMN-rsFC and SN-dorsal nexus-rsFC, while dorsal nexus-rsFC was reciprocally increased to both the SN (right anterior insula) and to the CEN (right middle frontal gyrus). Increased sedation significantly predicted the observed SN-dorsal nexus-rsFC. In conclusion, GHB generates a unique stimulant/sedative subjective state that is paralleled by a complex pattern of increased functional connectivity encompassing all three core neurocognitive networks of the brain, while increased SN-dorsal nexus-rsFC was demonstrated to be a potential signature of the sedative component of the drug effect

    A Review of the Potential Mechanisms of Action of Baclofen in Alcohol Use Disorder

    Get PDF
    Baclofen, a GABA-B receptor agonist, is a promising treatment for alcohol use disorder (AUD). Its mechanism of action in this condition is unknown. GABA-B receptors interact with many biological systems potentially involved in AUD, including transduction pathways and neurotransmitter systems. Preclinical studies have shown that GABA-B receptors are involved in memory storage and retrieval, reward, motivation, mood and anxiety; neuroimaging studies in humans show that baclofen produces region-specific alterations in cerebral activity; GABA-B receptor activation may have neuroprotective effects; baclofen also has anti-inflammatory properties that may be of interest in the context of addiction. However, none of these biological effects fully explain the mechanism of action of baclofen in AUD. Data from clinical studies have provided a certain number of elements which may be useful for the comprehension of its mechanism of action: baclofen typically induces a state of indifference toward alcohol; the effective dose of baclofen in AUD is extremely variable from one patient to another; higher treatment doses correlate with the severity of the addiction; many of the side effects of baclofen resemble those of alcohol, raising the possibility that baclofen acts as a substitution drug; usually, however, there is no tolerance to the effects of baclofen during long-term AUD treatment. In the present article, the biological effects of baclofen are reviewed in the light of its clinical effects in AUD, assuming that, in many instances, clinical effects can be reliable indicators of underlying biological processes. In conclusion, it is proposed that baclofen may suppress the Pavlovian association between cues and rewards through an action in a critical part of the dopaminergic network (the amygdala), thereby normalizing the functional connectivity in the reward network. It is also proposed that this action of baclofen is made possible by the fact that baclofen and alcohol act on similar brain systems in certain regions of the brain

    Gamma-hydroxybutyrate increases brain resting-state functional connectivity of the salience network and dorsal nexus in humans

    No full text
    According to the triple network hypothesis the brain is equipped with three core neurocognitive networks: the default mode (DMN), the salience (SN), and the central executive (CEN) network. Moreover, the so called dorsal nexus, has met growing interest as it is a hub region connecting these three networks. Assessment of resting-state functional connectivity (rsFC) of these networks enables the elucidation of drug-induced brain alterations. Gamma-hydroxybutyrate (GHB) is a GHB/GABA-B receptor agonist that induces a paradoxical state of mixed stimulation and sedation at moderate doses, which makes it a valuable tool to investigate neural signatures of subjective drug effects. Employing a placebo-controlled, double-blind, randomized, cross-over design, we assessed the effects of GHB (35 mg/kg p. o.) in 19 healthy male subjects on DMN-, SN-, CEN-, and dorsal nexus-rsFC measured by functional magnet resonance imaging and applying independent component as well as seed-based analyses, while subjective drug effects were investigated using visual analog scales (VAS). Subjectively, GHB increased VAS ratings of a general drug effect, stimulation, and sedation. Intrinsic DMN-, and CEN-rsFC remained largely unchanged under GHB, but the drug increased SN-DMN-rsFC and SN-dorsal nexus-rsFC, while dorsal nexus-rsFC was reciprocally increased to both the SN (right anterior insula) and to the CEN (right middle frontal gyrus). Increased sedation significantly predicted the observed SN-dorsal nexus-rsFC. In conclusion, GHB generates a unique stimulant/sedative subjective state that is paralleled by a complex pattern of increased functional connectivity encompassing all three core neurocognitive networks of the brain, while increased SN-dorsal nexus-rsFC was demonstrated to be a potential signature of the sedative component of the drug effect

    Gamma-hydroxybutyrate increases brain resting-state functional connectivity of the salience network and dorsal nexus in humans

    No full text
    According to the triple network hypothesis the brain is equipped with three core neurocognitive networks: the default mode (DMN), the salience (SN), and the central executive (CEN) network. Moreover, the so called dorsal nexus, has met growing interest as it is a hub region connecting these three networks. Assessment of resting-state functional connectivity (rsFC) of these networks enables the elucidation of drug-induced brain alterations. Gamma-hydroxybutyrate (GHB) is a GHB/GABA-B receptor agonist that induces a paradoxical state of mixed stimulation and sedation at moderate doses, which makes it a valuable tool to investigate neural signatures of subjective drug effects. Employing a placebo-controlled, double-blind, randomized, cross-over design, we assessed the effects of GHB (35 mg/kg p. o.) in 19 healthy male subjects on DMN-, SN-, CEN-, and dorsal nexus-rsFC measured by functional magnet resonance imaging and applying independent component as well as seed-based analyses, while subjective drug effects were investigated using visual analog scales (VAS). Subjectively, GHB increased VAS ratings of a general drug effect, stimulation, and sedation. Intrinsic DMN-, and CEN-rsFC remained largely unchanged under GHB, but the drug increased SN-DMN-rsFC and SN-dorsal nexus-rsFC, while dorsal nexus-rsFC was reciprocally increased to both the SN (right anterior insula) and to the CEN (right middle frontal gyrus). Increased sedation significantly predicted the observed SN-dorsal nexus-rsFC. In conclusion, GHB generates a unique stimulant/sedative subjective state that is paralleled by a complex pattern of increased functional connectivity encompassing all three core neurocognitive networks of the brain, while increased SN-dorsal nexus-rsFC was demonstrated to be a potential signature of the sedative component of the drug effect
    corecore