23 research outputs found

    An Exploratory Overview of Teaching Computer Game Development

    Get PDF
    The computer game industry has exploded reaching sales of several billion dollars a year and, consequently, a majority of college students are familiar with the gaming environment. In fact, videogame development has been cited as one way to motivate students to explore the world of Computer Science. However, most videogames are extremely complex computer programs created by a team of developers including programmers and graphic artists and represent thousands of hours of work. Fortunately there are software tools available that provide a way for simple computer games to be created fairly easily using a building block approach. This paper discusses the successes and challenges of teaching a videogame design and development summer program using the software development tool, Game Maker, and from this experience examines how videogame development might be incorporated into a Computer Science curriculum. The first section provides an overview of the Game Maker program and outlines the material taught in the program. Observations of the most successful teaching methods and approaches utilized are also explored. We conclude with a discussion of where videogame design might best be suited in a Computer Science curriculum citing its attractiveness to non-Computer Science majors, its use as a way to introduce introductory programming concepts and as a way to help students learn to read code. While Game Maker is not sophisticated nor is it a substitute for teaching a standard programming language, it can be easily integrated into introductory Computer Science courses

    Increasing Student Performance Through the Use of Web Services in Introductory Programming Classrooms: Results from a Series of Quasi-Experiments

    Get PDF
    An introduction to programming course can be a challenge for both students and instructors. This paper describes a study that introduced Web services (WS) and Service-Oriented Architecture in Information Systems 1 (IS 1) and Computer Science 1 (CS 1) programming courses over a two-year period. WS were used as an instruction tool based on their increased use in industry as well as their ability to provide a real world feel to student programming activities. The paper includes an example WS teaching module and a proposed implementation model for future studies based on lessons learned from the current experiment. The study was successful in showing a significant increase in student test performance for WS-taught courses over standard-taught courses

    Creative Computation for CS1 and K9-12

    Get PDF
    We present the design and development of a new approach to teaching the introductory computing course (CS1), at both the college-level as well as K9-12, using the context of digital art and creative computation. Creative computation is a highly interdisciplinary area combining theory and methodology from computer science and engineering with aesthetic principles and creative practices from the arts. Using the Processing programming language, students create a portfolio of aesthetic visual designs that employ basic programming constructs and structures typically taught in traditional CS1 courses. The goal of this approach is to bring the excitement, creativity, and innovation fostered by the context of creative coding. We have developed a web portal containing an extensive set of resources for adoption by others. A comprehensive textbook has also been published in 2013 [Greenberg et al 2013]. We present results from a comparative study involving multiple offerings of the new course at the two lead institutions as well as several other partner institutions. We also describe the success of bringing creative computation via Processing into two very different high schools that span the range of possibilities of grades 9-12 in American education. We report on how contextualized computing that supports integration of media arts, design, and computer science can successfully motivate students to learn foundations of programming and come back for more. The work of two high school teachers with divergent pedagogical styles is presented. They successfully adapted a college-level creative computation curriculum to their individual school cultures providing a catalyst for significant increases in enrollment and female participation in high school computer science

    Creative Computation for CS1 and K9-12

    Get PDF
    We present the design and development of a new approach to teaching the introductory computing course (CS1), at both the college-level as well as K9-12, using the context of digital art and creative computation. Creative computation is a highly interdisciplinary area combining theory and methodology from computer science and engineering with aesthetic principles and creative practices from the arts. Using the Processing programming language, students create a portfolio of aesthetic visual designs that employ basic programming constructs and structures typically taught in traditional CS1 courses. The goal of this approach is to bring the excitement, creativity, and innovation fostered by the context of creative coding. We have developed a web portal containing an extensive set of resources for adoption by others. A comprehensive textbook has also been published in 2013 [Greenberg et al 2013]. We present results from a comparative study involving multiple offerings of the new course at the two lead institutions as well as several other partner institutions. We also describe the success of bringing creative computation via Processing into two very different high schools that span the range of possibilities of grades 9-12 in American education. We report on how contextualized computing that supports integration of media arts, design, and computer science can successfully motivate students to learn foundations of programming and come back for more. The work of two high school teachers with divergent pedagogical styles is presented. They successfully adapted a college-level creative computation curriculum to their individual school cultures providing a catalyst for significant increases in enrollment and female participation in high school computer science

    Interplay of Desktop and Mobile Apps with Web Services in an Introductory Programming Course

    Get PDF
    This paper describes a case study of a second-semester introductory programming course for information systems (IS) students that combined desktop and mobile application development and consumption of existing web services. Our aim was to provide students with a holistic view of how different types of applications can be developed and combined to solve real-world problems, as the students learned the basics of programming. Students progressively built a desktop Java application with a graphical user interface for a local public transit system. It combined the use of basic algorithms, existing web services for geo-coding and mapping to illustrate a recommended route on the system. Students then ported this application to the Android platform re-using most of the code they had already developed. Along with fulfilling the traditional objectives of an introductory course, this course also demonstrated the possible interplay of stand-alone components and web services in desktop and mobile applications and kept the students motivated and engaged throughout the semester

    Creative Coding and Visual Portfolios for CS1

    Get PDF
    In this paper, we present the design and development of a new approach to teaching the college-level introductory computing course (CS1) using the context of art and creative coding. Over the course of a semester, students create a portfolio of aesthetic visual designs that employ basic computing structures typically taught in traditional CS1 courses using the Processing programming language. The goal of this approach is to bring the excitement, creativity, and innovation fostered by the context of creative coding. We also present results from a comparative study involving two offerings of the new course at two different institutions. Additionally, we compare our results with another successful approach that uses personal robots to teach CS1

    Games, Robots, and Robot Games: Complementary Contexts for Introductory Computing Education

    Get PDF
    Using games to teach introductory computing courses provides another context with which to exploring the possible attraction, retention, and education of a new generation of computer science (CS) students. At Bryn Mawr College, we have been actively exploring these contexts and have identified four that have great promise for use in teaching introductory computing courses: visualization, multimedia, robotics, and, most recently, games. We are currently using and analysing robots and have some preliminary results. We believe that much of what we have learned in using robots in the classroom can be applied to the other contexts, especially gaming. In addition, many aspects of gaming can also be used in an introductory course using robots. This paper will explore robotics, gaming, their interactions, and provide suggestions on how best to proceed in making the most out of games in the classroom

    Creative Coding and Visual Portfolios for CS1

    Get PDF
    In this paper, we present the design and development of a new approach to teaching the college-level introductory computing course (CS1) using the context of art and creative coding. Over the course of a semester, students create a portfolio of aesthetic visual designs that employ basic computing structures typically taught in traditional CS1 courses using the Processing programming language. The goal of this approach is to bring the excitement, creativity, and innovation fostered by the context of creative coding. We also present results from a comparative study involving two offerings of the new course at two different institutions. Additionally, we compare our results with another successful approach that uses personal robots to teach CS1

    Creative Computation in High School

    Get PDF
    In this paper we describe the success of bringing Creative Computation via Processing into two very different high schools that span the range of possibilities of grades 9-12 in American education. Creative Computation is an emerging discipline that requires a thorough grounding in both media arts and computing. We report on how contextualized computing that supports integration of media arts, design, and computer science can successfully attract and motivate students to learn foundations of programming and come back for more. The work of two high school teachers with divergent pedagogical styles is presented. They successfully adapted a college-level Creative Computation curriculum to their individual school cultures providing a catalyst for significant increases in total enrollment as well as female participation in high school computer science
    corecore