7 research outputs found

    A Mixed Method Approach for Evaluating and Improving the Design of Learning in Puzzle Games

    Get PDF
    Despite the acknowledgment that learning is a necessary part of all gameplay, the area of Games User Research lacks an established evidence based method through which designers and researchers can understand, assess, and improve how commercial games teach players game-specific skills and information. In this paper, we propose a mixed method procedure that draws together both quantitative and experiential approaches to examine the extent to which players are supported in learning about the game world and mechanics. We demonstrate the method through presenting a case study of the game Portal involving 14 participants, who differed in terms of their gaming expertise. By comparing optimum solutions to puzzles against observed player performance, we illustrate how the method can indicate particular problems with how learning is structured within a game. We argue that the method can highlight where major breakdowns occur and yield design insights that can improve the player experience with puzzle games

    The Feedback Loop of Flow: Controlled Experiment Shows Task-relevant Feedback Increases Flow

    Get PDF
    Flow theory suggests three flow conditions lead to flow: optimal challenges, clear goals, and immediate feedback. Previous research has only confirmed the link between optimal challenges and flow with controlled experiments. Inspired by Miller’s test-operate-test-exit (TOTE) units and Csikszentmihalyi’s flow theory, we introduce a feedback loop of flow model of the cognitive processes that lead to flow in computer-based tasks. This model illustrates how the flow conditions come together to create the flow experience. In particular, the feedback loop of flow model we present suggests the feedback must be task-relevant to generate a flow state, which means there must be feedback that pertains to the goals of the task. We conducted a controlled experiment to test the causal relationship between task-relevant feedback and flow. Participants who experienced designs with task-relevant feedback rated their experience higher on a measure of flow than those in either the no feedback or randomized feedback control groups. Our findings provide evidence that feedback increases flow and specifically that designs with task-relevant feedback increase flow. We present a design for flow model and discuss design guidelines for how to create interactive systems that will facilitate users getting into a flow state. Task-relevant feedback communicates how well users are performing actions that make progress towards the goal of the optimally challenging task that is getting them into flow and how they can get better at that task. As with TOTE units, the feedback loop of flow is a recursive process, which suggests task-relevant feedback must be presented continuously and for each subtask of the overall task

    SUPPORTING THERAPY-CENTERED GAME DESIGN FOR BRAIN INJURY REHABILITATION

    Get PDF
    Brain injuries (BI) are a major public health issue. Many therapists who work with patients who have had a BI include games to ameliorate boredom associated with repetitive rehabilitation. However, designing effective, appropriate, and engaging games for BI therapy is challenging. The challenge is especially manifested when considering how to consolidate the different mindsets and motivations among key stakeholders; i.e., game designers and therapists. In this dissertation, I investigated the ideation, creation, and evaluation of game design patterns and a design tool, GaPBIT (Game Design Patterns for BI Therapy) that leveraged patterns to support ideation of BI therapy game concepts and facilitate communication among designers and therapists. Design patterns, originated from the work of Christopher Alexander, provide a common design language in a specific field by documenting reusable design concepts that have successfully solved recurring problems. This investigation involved four overlapping phases. In Phase One, I interviewed 11 professional game designers focused on games for health (serious games embedded with health-related goals) to explore how they perceived and approached their work. In Phase Two, I identified 25 therapy-centered game design patterns through analyzing data about game use in BI therapy. Based on those patterns, in Phase Three I created and iterated the GaPBIT prototype through user studies. In Phase Four, I conducted quasi-experimental case studies to establish the efficacy and user experience of GaPBIT in game design workshops that involved both game designers and therapists. During the design workshops, the design patterns and GaPBIT supported exploration of game design ideas and effectively facilitated discussion among designers and therapists. The results also indicated that these tools were especially beneficial for novice game designers. This work significantly promotes game design for BI rehabilitation by providing designers and therapists with easier access to the information about requirements in rehabilitation games. Additionally, this work modeled a novel research methodology for investigating domains where balancing the role of designers and other stakeholders is particularly important. Through a “practitioner-centered” process, this work also provides an exemplar of investigating technologies that directly address the information needs of professional practitioners

    Biometric storyboards: a games user research approach for improving qualitative evaluations of player experience

    Get PDF
    Developing video games is an iterative and demanding process. It is difficult to achieve the goal of most video games — to be enjoyable, engaging and to create revenue for game developers — because of many hard-to-evaluate factors, such as the different ways players can interact with the game. Understanding how players behave during gameplay is of vital importance to developers and can be uncovered in user tests as part of game development. This can help developers to identify and resolve any potential problem areas before release, leading to a better player experience and possibly higher game review scores and sales. However, traditional user testing methods were developed for function and efficiency oriented applications. Hence, many traditional user testing methods cannot be applied in the same way for video game evaluation. This thesis presents an investigation into the contributions of physiological measurements in user testing within games user research (GUR). GUR specifically studies the interaction between a game and users (players) with the aim to provide feedback for developers to help them to optimise the game design of their title. An evaluation technique called Biometric Storyboards is developed, which visualises the relationships between game events, player feedback and changes in a player’s physiological state. Biometric Storyboards contributes to the field of human-computer interaction and GUR in three important areas: (1) visualising mixedmeasures of player experience, (2) deconstructing game design by analysing game events and pace, (3) incremental improvement of classic user research techniques (such as interviews and physiological measurements). These contributions are described in practical case studies, interviews with game developers and laboratory experiments. The results show this evaluation approach can enable games user researchers to increase the plausibility and persuasiveness of their reports and facilitate developers to better deliver their design goals. Biometric Storyboards is not aimed at replacing existing methods, but to extend them with mixed methods visualisations, to provide powerful tools for games user researchers and developers to better understand and communicate player needs, interactions and experiences. The contributions of this thesis are directly applicable for user researchers and game developers, as well as for researchers in user experience evaluation in entertainment systems

    Understanding learning within a commercial video game: A case study

    Get PDF
    There has been an increasing interest in the debate on the value and relevance using video games for learning. Some of the interest stems from frustration with current educational methods. However, some of this interest also stems from the observations of large numbers of children that play video games. This paper finds that children can learn basic construction skills from playing a video game called World of Goo. The study also employed novel eye-tracking technology to measure endogenous eye blinks and eye gaze fixations. Measures of both these indicators of cognitive processing further suggested that children in the study learned to play the two video games, World of Goo and Bad Piggies. Overall, the results of the study provide further support of the potential for children to learn by playing commercial video games
    corecore