15,081 research outputs found

    Joint Resource Allocation and Power Control in Heterogeneous Cellular Networks for Smart Grids

    Get PDF
    The smart grid communication plays a pivotal role in coordinating energy generation, energy transmission, and energy distribution. Cellular technology with long-term evolution (LTE)-based standards has been a preference for smart grid communication networks. However, conventional cellular networks could suffer from radio access network (RAN) congestion when many smart grid devices attempt access simultaneously. Heterogeneous cellular networks (HetNets) are proposed as important techniques to solve this problem because HetNets can alleviate the RAN congestion by off-loading access attempt from a macrocell to small cells. In smart grid, real-time data from phasor measurement units (PMUs) has a stringent delay requirement in order to ensure the stability of the grid. In this paper, we propose a joint resource allocation and power control scheme to improve the end-to-end delay in HetNets by taking into account the simultaneous transmission of PMUs. We formulate the optimization problem as a mixed integer problem and adopt a game-theoretic approach and the best response dynamics algorithm to solve the problem. Simulation results show that the proposed scheme can significantly minimize the end-to-end delay compared to first-in first-out scheduling and round-robin scheduling schemes

    A Comprehensive Survey of Potential Game Approaches to Wireless Networks

    Get PDF
    Potential games form a class of non-cooperative games where unilateral improvement dynamics are guaranteed to converge in many practical cases. The potential game approach has been applied to a wide range of wireless network problems, particularly to a variety of channel assignment problems. In this paper, the properties of potential games are introduced, and games in wireless networks that have been proven to be potential games are comprehensively discussed.Comment: 44 pages, 6 figures, to appear in IEICE Transactions on Communications, vol. E98-B, no. 9, Sept. 201

    Energy efficient resource allocation in 5G hybrid heterogeneous networks: A game theoretic approach

    Get PDF
    Millimeter wave (mmWave) technology integrated with heterogeneous networks (HetNets) has emerged as a new wave to overcome the thirst for higher data rates and severe shortage of spectrum. In this paper, we consider the uplink of a hybrid HetNet with femtocells overlaid on a macrocell, and formulate a two layer game theoretic framework to maximise the energy efficiency (EE) while optimising the network resources. The outer layer allows each femtocell access point (FAP) to maximise the data rate of its users by selecting the frequency band either from the sub-6 GHz and the mmWave. The solution to this non-cooperative game can be obtained by using pure strategy Nash equilibrium. The inner layer ensures the energy efficient user association method subject to the minimum rate and maximum transmission power constraints by using dual decomposition approach. Simulation results show that the proposed hybrid HetNet scheme exploiting the mmWave frequency band improves the sum-rate and EE in comparison to the scenario where all the networks operate at sub-6 GHz frequency band. The performance can further be enhanced by incorporating the power control mechanism

    Game Theory Meets Network Security: A Tutorial at ACM CCS

    Full text link
    The increasingly pervasive connectivity of today's information systems brings up new challenges to security. Traditional security has accomplished a long way toward protecting well-defined goals such as confidentiality, integrity, availability, and authenticity. However, with the growing sophistication of the attacks and the complexity of the system, the protection using traditional methods could be cost-prohibitive. A new perspective and a new theoretical foundation are needed to understand security from a strategic and decision-making perspective. Game theory provides a natural framework to capture the adversarial and defensive interactions between an attacker and a defender. It provides a quantitative assessment of security, prediction of security outcomes, and a mechanism design tool that can enable security-by-design and reverse the attacker's advantage. This tutorial provides an overview of diverse methodologies from game theory that includes games of incomplete information, dynamic games, mechanism design theory to offer a modern theoretic underpinning of a science of cybersecurity. The tutorial will also discuss open problems and research challenges that the CCS community can address and contribute with an objective to build a multidisciplinary bridge between cybersecurity, economics, game and decision theory

    A Game Theoretic Analysis for Energy Efficient Heterogeneous Networks

    Get PDF
    Smooth and green future extension/scalability (e.g., from sparse to dense, from small-area dense to large-area dense, or from normal-dense to super-dense) is an important issue in heterogeneous networks. In this paper, we study energy efficiency of heterogeneous networks for both sparse and dense two-tier small cell deployments. We formulate the problem as a hierarchical (Stackelberg) game in which the macro cell is the leader whereas the small cell is the follower. Both players want to strategically decide on their power allocation policies in order to maximize the energy efficiency of their registered users. A backward induction method has been used to obtain a closed-form expression of the Stackelberg equilibrium. It is shown that the energy efficiency is maximized when only one sub-band is exploited for the players of the game depending on their fading channel gains. Simulation results are presented to show the effectiveness of the proposed scheme.Comment: 7 pages, 3 figures, in Wiopt 201
    corecore