115 research outputs found

    Controllability of kinematic control systems on stratified configuration spaces

    Get PDF
    This paper considers nonlinear kinematic controllability of a class of systems called stratified. Roughly speaking, such stratified systems have a configuration space which can be decomposed into submanifolds upon which the system has different sets of equations of motion. For such systems, considering controllability is difficult because of the discontinuous form of the equations of motion. The main result in this paper is a controllability test, analogous to Chow's theorem, is based upon a construction involving distributions, and the extension thereof to robotic gaits

    Virtual Constraints and Hybrid Zero Dynamics for Realizing Underactuated Bipedal Locomotion

    Full text link
    Underactuation is ubiquitous in human locomotion and should be ubiquitous in bipedal robotic locomotion as well. This chapter presents a coherent theory for the design of feedback controllers that achieve stable walking gaits in underactuated bipedal robots. Two fundamental tools are introduced, virtual constraints and hybrid zero dynamics. Virtual constraints are relations on the state variables of a mechanical model that are imposed through a time-invariant feedback controller. One of their roles is to synchronize the robot's joints to an internal gait phasing variable. A second role is to induce a low dimensional system, the zero dynamics, that captures the underactuated aspects of a robot's model, without any approximations. To enhance intuition, the relation between physical constraints and virtual constraints is first established. From here, the hybrid zero dynamics of an underactuated bipedal model is developed, and its fundamental role in the design of asymptotically stable walking motions is established. The chapter includes numerous references to robots on which the highlighted techniques have been implemented.Comment: 17 pages, 4 figures, bookchapte

    The Mechanics and Control of Undulatory Robotic Locomotion

    Get PDF
    In this dissertation, we examine a formulation of problems of undulatory robotic locomotion within the context of mechanical systems with nonholonomic constraints and symmetries. Using tools from geometric mechanics, we study the underlying structure found in general problems of locomotion. In doing so, we decompose locomotion into two basic components: internal shape changes and net changes in position and orientation. This decomposition has a natural mathematical interpretation in which the relationship between shape changes and locomotion can be described using a connection on a trivial principal fiber bundle. We begin by reviewing the processes of Lagrangian reduction and reconstruction for unconstrained mechanical systems with Lie group symmetries, and present new formulations of this process which are easily adapted to accommodate external constraints. Additionally, important physical quantities such as the mechanical connection and reduced mass-inertia matrix can be trivially determined using this formulation. The presence of symmetries then allows us to reduce the necessary calculations to simple matrix manipulations. The addition of constraints significantly complicates the reduction process; however, we show that for invariant constraints, a meaningful connection can be synthesized by defining a generalized momentum representing the momentum of the system in directions allowed by the constraints. We then prove that the generalized momentum and its governing equation possess certain invariances which allows for a reduction process similar to that found in the unconstrained case. The form of the reduced equations highlights the synthesized connection and the matrix quantities used to calculate these equations. The use of connections naturally leads to methods for testing controllability and aids in developing intuition regarding the generation of various locomotive gaits. We present accessibility and controllability tests based on taking derivatives of the connection, and relate these tests to taking Lie brackets of the input vector fields. The theory is illustrated using several examples, in particular the examples of the snakeboard and Hirose snake robot. We interpret each of these examples in light of the theory developed in this thesis, and examine the generation of locomotive gaits using sinusoidal inputs and their relationship to the controllability tests based on Lie brackets

    Dynamic Walking: Toward Agile and Efficient Bipedal Robots

    Get PDF
    Dynamic walking on bipedal robots has evolved from an idea in science fiction to a practical reality. This is due to continued progress in three key areas: a mathematical understanding of locomotion, the computational ability to encode this mathematics through optimization, and the hardware capable of realizing this understanding in practice. In this context, this review article outlines the end-to-end process of methods which have proven effective in the literature for achieving dynamic walking on bipedal robots. We begin by introducing mathematical models of locomotion, from reduced order models that capture essential walking behaviors to hybrid dynamical systems that encode the full order continuous dynamics along with discrete footstrike dynamics. These models form the basis for gait generation via (nonlinear) optimization problems. Finally, models and their generated gaits merge in the context of real-time control, wherein walking behaviors are translated to hardware. The concepts presented are illustrated throughout in simulation, and experimental instantiation on multiple walking platforms are highlighted to demonstrate the ability to realize dynamic walking on bipedal robots that is agile and efficient

    Finite-time disturbance reconstruction and robust fractional-order controller design for hybrid port-Hamiltonian dynamics of biped robots

    Full text link
    In this paper, disturbance reconstruction and robust trajectory tracking control of biped robots with hybrid dynamics in the port-Hamiltonian form is investigated. A new type of Hamiltonian function is introduced, which ensures the finite-time stability of the closed-loop system. The proposed control system consists of two loops: an inner and an outer loop. A fractional proportional-integral-derivative filter is used to achieve finite-time convergence for position tracking errors at the outer loop. A fractional-order sliding mode controller acts as a centralized controller at the inner-loop, ensuring the finite-time stability of the velocity tracking error. In this loop, the undesired effects of unknown external disturbance and parameter uncertainties are compensated using estimators. Two disturbance estimators are envisioned. The former is designed using fractional calculus. The latter is an adaptive estimator, and it is constructed using the general dynamic of biped robots. Stability analysis shows that the closed-loop system is finite-time stable in both contact-less and impact phases. Simulation studies on two types of biped robots (i.e., two-link walker and RABBIT biped robot) demonstrate the proposed controller's tracking performance and disturbance rejection capability

    Unifying nonholonomic and holonomic behaviors in human locomotion

    Get PDF
    Our motivation is to understand human locomotion to better control locomotion of virtual systems (robots and mannequins). Human locomotion has been studied so far in different disciplines. We consider locomotion as the level of a body frame (in direction and orientation) instead of the complexity of many kinematic joints systems as other approaches. Our approach concentrates on the computational foundation of human locomotion. The ultimate goal is to find a model that explains the shape of human locomotion in space. To do that, we first base on the behavior of trajectories on the ground during intentional locomotion. When human walk, they put one foot in front of the other and consequently, the direction of motion is deduced by the body orientation. That’s what we called the nonholonomic behavior hypothesis. However, in the case of a sideward step, the body orientation is not coupled to the tangential direction of the trajectory, and the hypothesis is no longer validated. The behavior of locomotion becomes holonomic. The aim of this thesis is to distinguish these two behaviors and to exploit them in neuroscience, robotics and computer animation. The first part of the thesis is to determine the configurations of the holonomic behavior by an experimental protocol and an original analytical tool segmenting the nonholonomic and holonomic behaviors of any trajectory. In the second part, we present a model unifying nonholonomic and holonomic behaviors. This model combines three velocities generating human locomotion: forward, angular and lateral. The experimental data in the first part are used in an inverse optimal control approach to find a multi-objective function which produces calculated trajectories as those of natural human locomotion. The last part is the application that uses the two behaviors to synthesize human locomotion in computer animation. Each locomotion is characterized by three velocities and is therefore considered as a point in 3D control space (of three speeds). We collected a library that contains locomotions at different velocities - points in 3D space. These points are structured in a tetrahedra cloud. When a desired speed is given, it is projected into the 3D space and we find the corresponding tetrahedron that contains it. The new animation is interpolated by four locomotions corresponding to four vertices of the selected tetrahedron. We exhibit several animation scenarios on a virtual character

    Locomotion system for ground mobile robots in uneven and unstructured environments

    Get PDF
    One of the technology domains with the greatest growth rates nowadays is service robots. The extensive use of ground mobile robots in environments that are unstructured or structured for humans is a promising challenge for the coming years, even though Automated Guided Vehicles (AGV) moving on flat and compact grounds are already commercially available and widely utilized to move components and products inside indoor industrial buildings. Agriculture, planetary exploration, military operations, demining, intervention in case of terrorist attacks, surveillance, and reconnaissance in hazardous conditions are important application domains. Due to the fact that it integrates the disciplines of locomotion, vision, cognition, and navigation, the design of a ground mobile robot is extremely interdisciplinary. In terms of mechanics, ground mobile robots, with the exception of those designed for particular surroundings and surfaces (such as slithering or sticky robots), can move on wheels (W), legs (L), tracks (T), or hybrids of these concepts (LW, LT, WT, LWT). In terms of maximum speed, obstacle crossing ability, step/stair climbing ability, slope climbing ability, walking capability on soft terrain, walking capability on uneven terrain, energy efficiency, mechanical complexity, control complexity, and technology readiness, a systematic comparison of these locomotion systems is provided in [1]. Based on the above-mentioned classification, in this thesis, we first introduce a small-scale hybrid locomotion robot for surveillance and inspection, WheTLHLoc, with two tracks, two revolving legs, two active wheels, and two passive omni wheels. The robot can move in several different ways, including using wheels on the flat, compact ground,[1] tracks on soft, yielding terrain, and a combination of tracks, legs, and wheels to navigate obstacles. In particular, static stability and non-slipping characteristics are considered while analyzing the process of climbing steps and stairs. The experimental test on the first prototype has proven the planned climbing maneuver’s efficacy and the WheTLHLoc robot's operational flexibility. Later we present another development of WheTLHLoc and introduce WheTLHLoc 2.0 with newly designed legs, enabling the robot to deal with bigger obstacles. Subsequently, a single-track bio-inspired ground mobile robot's conceptual and embodiment designs are presented. This robot is called SnakeTrack. It is designed for surveillance and inspection activities in unstructured environments with constrained areas. The vertebral column has two end modules and a variable number of vertebrae linked by compliant joints, and the surrounding track is its essential component. Four motors drive the robot: two control the track motion and two regulate the lateral flexion of the vertebral column for steering. The compliant joints enable limited passive torsion and retroflection of the vertebral column, which the robot can use to adapt to uneven terrain and increase traction. Eventually, the new version of SnakeTrack, called 'Porcospino', is introduced with the aim of allowing the robot to move in a wider variety of terrains. The novelty of this thesis lies in the development and presentation of three novel designs of small-scale mobile robots for surveillance and inspection in unstructured environments, and they employ hybrid locomotion systems that allow them to traverse a variety of terrains, including soft, yielding terrain and high obstacles. This thesis contributes to the field of mobile robotics by introducing new design concepts for hybrid locomotion systems that enable robots to navigate challenging environments. The robots presented in this thesis employ modular designs that allow their lengths to be adapted to suit specific tasks, and they are capable of restoring their correct position after falling over, making them highly adaptable and versatile. Furthermore, this thesis presents a detailed analysis of the robots' capabilities, including their step-climbing and motion planning abilities. In this thesis we also discuss possible refinements for the robots' designs to improve their performance and reliability. Overall, this thesis's contributions lie in the design and development of innovative mobile robots that address the challenges of surveillance and inspection in unstructured environments, and the analysis and evaluation of these robots' capabilities. The research presented in this thesis provides a foundation for further work in this field, and it may be of interest to researchers and practitioners in the areas of robotics, automation, and inspection. As a general note, the first robot, WheTLHLoc, is a hybrid locomotion robot capable of combining tracked locomotion on soft terrains, wheeled locomotion on flat and compact grounds, and high obstacle crossing capability. The second robot, SnakeTrack, is a small-size mono-track robot with a modular structure composed of a vertebral column and a single peripherical track revolving around it. The third robot, Porcospino, is an evolution of SnakeTrack and includes flexible spines on the track modules for improved traction on uneven but firm terrains, and refinements of the shape of the track guidance system. This thesis provides detailed descriptions of the design and prototyping of these robots and presents analytical and experimental results to verify their capabilities
    • …
    corecore