4 research outputs found

    Synchronization of dynamical networks with nonidentical nodes: Criteria and control

    Get PDF
    This paper presents a framework for global synchronization of dynamical networks with nonidentical nodes. Several criteria for synchronization are given using free matrices for both cases of synchronizing to a common equilibrium solution of all isolated nodes and synchronizing to the average state trajectory. These criteria can be viewed as generalizations of the master stability function method for local synchronization of networks with identical nodes to the case of nonidentical nodes. The controlled synchronization problem is also studied. The control action, which is subject to certain constraints, is viewed as reorganization of the connection topology of the network. Synchronizability conditions via control are put forward. The synchronizing controllers can be obtained by solving an optimization problem.published_or_final_versio

    A bio-knowledge based method to prevent control system instability

    Get PDF
    This study presents a novel bio-inspired method, based on gain scheduling, for the calculation of Proportional-Integral-Derivative (PID) controller parameters that will prevent system instability. The aim is to prevent a transition to control system instability due to undesirable controller parameters that may be introduced manually by an operator. Each significant operation point in the system is firstly identified. Then, a solid stability structure is calculated, using transfer functions, in order to program a bio-inspired model by using an artificial neural network. The novel method is empirically verified under working conditions in a liquid-level laboratory plant

    A bio-inspired robust controller for a refinery plant process

    Get PDF
    This research presents a novel bio-inspired knowledge method, based on gain scheduling, for the calculation of Proportional-Integral-Derivative controller parameters that will prevent system instability. The aim is to prevent a transition to control system instability due to undesirable controller parameters that may be introduced manually by an operator. Each significant operation point in the system is identified first. Then, a solid stability structure is calculated, using transfer functions, in order to program a bio-inspired model by using an artificial neural network. The novel method is empirically verified under working conditions in a real refinery plant process

    Review of Active and Reactive Power Sharing Strategies in Hierarchical Controlled Microgrids

    Get PDF
    corecore