2,028 research outputs found

    2D Face Recognition System Based on Selected Gabor Filters and Linear Discriminant Analysis LDA

    Full text link
    We present a new approach for face recognition system. The method is based on 2D face image features using subset of non-correlated and Orthogonal Gabor Filters instead of using the whole Gabor Filter Bank, then compressing the output feature vector using Linear Discriminant Analysis (LDA). The face image has been enhanced using multi stage image processing technique to normalize it and compensate for illumination variation. Experimental results show that the proposed system is effective for both dimension reduction and good recognition performance when compared to the complete Gabor filter bank. The system has been tested using CASIA, ORL and Cropped YaleB 2D face images Databases and achieved average recognition rate of 98.9 %

    The effect of time on ear biometrics

    No full text
    We present an experimental study to demonstrate the effect of the time difference in image acquisition for gallery and probe on the performance of ear recognition. This experimental research is the first study on the time effect on ear biometrics. For the purpose of recognition, we convolve banana wavelets with an ear image and then apply local binary pattern on the convolved image. The histograms of the produced image are then used as features to describe an ear. A histogram intersection technique is then applied on the histograms of two ears to measure the ear similarity for the recognition purposes. We also use analysis of variance (ANOVA) to select features to identify the best banana wavelets for the recognition process. The experimental results show that the recognition rate is only slightly reduced by time. The average recognition rate of 98.5% is achieved for an eleven month-difference between gallery and probe on an un-occluded ear dataset of 1491 images of ears selected from Southampton University ear database

    Multiple Moving Object Recognitions in video based on Log Gabor-PCA Approach

    Full text link
    Object recognition in the video sequence or images is one of the sub-field of computer vision. Moving object recognition from a video sequence is an appealing topic with applications in various areas such as airport safety, intrusion surveillance, video monitoring, intelligent highway, etc. Moving object recognition is the most challenging task in intelligent video surveillance system. In this regard, many techniques have been proposed based on different methods. Despite of its importance, moving object recognition in complex environments is still far from being completely solved for low resolution videos, foggy videos, and also dim video sequences. All in all, these make it necessary to develop exceedingly robust techniques. This paper introduces multiple moving object recognition in the video sequence based on LoG Gabor-PCA approach and Angle based distance Similarity measures techniques used to recognize the object as a human, vehicle etc. Number of experiments are conducted for indoor and outdoor video sequences of standard datasets and also our own collection of video sequences comprising of partial night vision video sequences. Experimental results show that our proposed approach achieves an excellent recognition rate. Results obtained are satisfactory and competent.Comment: 8,26,conferenc

    Feature detection from echocardiography images using local phase information

    Get PDF
    Ultrasound images are characterized by their special speckle appearance, low contrast, and low signal-to-noise ratio. It is always challenging to extract important clinical information from these images. An important step before formal analysis is to transform the image to significant features of interest. Intensity based methods do not perform particularly well on ultrasound images. However, it has been previously shown that these images respond well to local phase-based methods which are theoretically intensity-invariant and thus suitable for ultrasound images. We extend the previous local phase-based method to detect features using the local phase computed from monogenic signal which is an isotropic extension of the analytic signal. We apply our method of multiscale feature-asymmetry measurement and local phase-gradient computation to cardiac ultrasound (echocardiography) images for the detection of endocardial, epicardial and myocardial centerline

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract

    From Gabor Magnitude to Gabor Phase Features: Tackling the Problem of Face Recognition under Severe Illumination Changes

    Get PDF
    Among the numerous biometric systems presented in the literature, face recognition systems have received a great deal of attention in recent years. The main driving force in the development of these systems can be found in the enormous potential face recognition technology has in various application domains ranging from access control, human-machin

    Multispectral Palmprint Encoding and Recognition

    Full text link
    Palmprints are emerging as a new entity in multi-modal biometrics for human identification and verification. Multispectral palmprint images captured in the visible and infrared spectrum not only contain the wrinkles and ridge structure of a palm, but also the underlying pattern of veins; making them a highly discriminating biometric identifier. In this paper, we propose a feature encoding scheme for robust and highly accurate representation and matching of multispectral palmprints. To facilitate compact storage of the feature, we design a binary hash table structure that allows for efficient matching in large databases. Comprehensive experiments for both identification and verification scenarios are performed on two public datasets -- one captured with a contact-based sensor (PolyU dataset), and the other with a contact-free sensor (CASIA dataset). Recognition results in various experimental setups show that the proposed method consistently outperforms existing state-of-the-art methods. Error rates achieved by our method (0.003% on PolyU and 0.2% on CASIA) are the lowest reported in literature on both dataset and clearly indicate the viability of palmprint as a reliable and promising biometric. All source codes are publicly available.Comment: Preliminary version of this manuscript was published in ICCV 2011. Z. Khan A. Mian and Y. Hu, "Contour Code: Robust and Efficient Multispectral Palmprint Encoding for Human Recognition", International Conference on Computer Vision, 2011. MATLAB Code available: https://sites.google.com/site/zohaibnet/Home/code

    Human Attention Detection Using AM-FM Representations

    Get PDF
    Human activity detection from digital videos presents many challenges to the computer vision and image processing communities. Recently, many methods have been developed to detect human activities with varying degree of success. Yet, the general human activity detection problem remains very challenging, especially when the methods need to work “in the wild” (e.g., without having precise control over the imaging geometry). The thesis explores phase-based solutions for (i) detecting faces, (ii) back of the heads, (iii) joint detection of faces and back of the heads, and (iv) whether the head is looking to the left or the right, using standard video cameras without any control on the imaging geometry. The proposed phase-based approach is based on the development of simple and robust methods that relie on the use of Amplitude Modulation - Frequency Modulation (AM-FM) models. The approach is validated using video frames extracted from the Advancing Outof- school Learning in Mathematics and Engineering (AOLME) project. The dataset consisted of 13,265 images from ten students looking at the camera, and 6,122 images from five students looking away from the camera. For the students facing the camera, the method was able to correctly classify 97.1% of them looking to the left and 95.9% of them looking to the right. For the students facing the back of the camera, the method was able to correctly classify 87.6% of them looking to the left and 93.3% of them looking to the right. The results indicate that AM-FM based methods hold great promise for analyzing human activity videos
    corecore