720 research outputs found

    Testing the GRACE follow-on triple mirror assembly

    No full text
    We report on the successful testing of the GRACE follow-on triple mirror assembly (TMA) prototype. This component serves to route the laser beam in a proposed follow-on mission to the Gravity Recovery and Climate Explorer (GRACE) mission, containing an optical instrument for space-based distance measurement between satellites. As part of this, the TMA has to meet a set of stringent requirements on both the optical and mechanical properties. The purpose of the TMA prototype testing is to establish the feasibility of the design, materials choice and fabrication techniques. Here we report on co-alignment testing of this device to the arc second (5 μrad) level and thermal alignment stability testing to 1 μ rad {{K}-1}

    GRACE and GRACE-FO processing at IfE/LUH

    Get PDF
    Updates on gravity field recovery from GRACE and GRACE Follow-On data at IfE/LUH

    On the co-estimation of static and monthly gravity field solutions from GRACE Follow-On data

    Get PDF
    Temporal gravity field modelling from GRACE Follow-On data is usually performed by computing monthly snapshots of spherical harmonic coefficients representing the state of the Earthâ?Ts gravity field. Associated to this, the spherical harmonic series has to be truncated at a certain point, commonly at degree/order 96. Higher degrees and orders are fixed to the a priori used background gravity field model. We present an investigation on the influence of the high degrees and orders of different a priori background gravity field models on monthly gravity field model computations from GRACE Follow-On data. Furthermore, we extend the temporal gravity field modelling to additionally co-estimate a static gravity field for the GRACE Follow-On satellite mission along with the monthly snapshots to provide for a consistent handling of correlations between temporal and static gravity field coefficients. Moreover, we model the stochastic noise of the data with an empirical description of the noise based on the post-fit residuals between the final GRACE Follow-On orbits, that are co-estimated together with the gravity field, and the observations, expressed in position residuals to the kinematic positions and in K-band range-rate residuals, to further study the influence of the high degrees and orders of the a priori background gravity field model on such noise models. We compare and validate the monthly solutions with the models from the operational GRACE Follow-On processing at AIUB by examining the stochastic behaviour of the respective post-fit residuals, by investigating areas where a low noise is expected and by inspecting the mass trend estimates in certain areas of global interest. Finally, we investigate the influence in a combination of monthly gravity fields based on other approaches as it is done by the Combination Service for Time-variable Gravity fields (COST-G) and make use of noise and signal assessment applying the quality control tools routinely used in the frame of COST-G

    Revisiting the Light Time Correction in Gravimetric Missions Like GRACE and GRACE Follow-On

    Get PDF
    The gravity field maps of the satellite gravimetry missions GRACE (Gravity Recovery and Climate Experiment) and GRACE Follow-On are derived by means of precise orbit determination. The key observation is the biased inter-satellite range, which is measured primarily by a K-Band Ranging system (KBR) in GRACE and GRACE Follow-On. The GRACE Follow-On satellites are additionally equipped with a Laser Ranging Interferometer (LRI), which provides measurements with lower noise compared to the KBR. The biased range of KBR and LRI needs to be converted for gravity field recovery into an instantaneous range, i.e. the biased Euclidean distance between the satellites' center-of-mass at the same time. One contributor to the difference between measured and instantaneous range arises due to the non-zero travel time of electro-magnetic waves between the spacecraft. We revisit the calculation of the light time correction (LTC) from first principles considering general relativistic effects and state-of-the-art models of Earth's potential field. The novel analytical expressions for the LTC of KBR and LRI can circumvent numerical limitations of the classical approach. The dependency of the LTC on geopotential models and on the parameterization is studied, and afterwards the results are compared against the LTC provided in the official datasets of GRACE and GRACE Follow-On. It is shown that the new approach has a significantly lower noise, well below the instrument noise of current instruments, especially relevant for the LRI, and even if used with kinematic orbit products. This allows calculating the LTC accurate enough even for the next generation of gravimetric missions.Comment: This is a preprint of an open-access article published in Journal of Geodesy. The final authenticated version is available online at: https://doi.org/10.1007/s00190-021-01498-

    Analysis of tilt-to-length coupling in the GRACE follow-on laser ranging interferometer

    Get PDF
    This thesis provides a detailed analysis of the coupling of satellite rotations into the inter-satellite range, measured by the Laser Ranging Interferometer (LRI) onboard the GRACE Follow-On satellites

    Laser link acquisition for the GRACE follow-on laser ranging interferometer

    Get PDF
    [no abstract

    In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer

    Get PDF
    The Laser Ranging Interferometer (LRI) instrument on the Gravity Recovery and Climate Experiment (GRACE) Follow-On mission has provided the first laser interferometric range measurements between remote spacecraft, separated by approximately 220 km. Autonomous controls that lock the laser frequency to a cavity reference and establish the 5 degrees of freedom two-way laser link between remote spacecraft succeeded on the first attempt. Active beam pointing based on differential wave front sensing compensates spacecraft attitude fluctuations. The LRI has operated continuously without breaks in phase tracking for more than 50 days, and has shown biased range measurements similar to the primary ranging instrument based on microwaves, but with much less noise at a level of 1 nm/Hz at Fourier frequencies above 100 mHz. © 2019 authors. Published by the American Physical Society

    Measuring Earth: Current status of the GRACE Follow-On Laser Ranging Interferometer

    Get PDF
    The GRACE mission that was launched in 2002 has impressively proven the feasibility of low-orbit satellite-to-satellite tracking for Earth gravity observations. Especially mass transport related to Earth's hydrological system could be well resolved both spatially and temporally. This allows to study processes such as polar ice sheet decline and ground water depletion in great detail. Owing to GRACE's success, NASA and GFZ will launch the successor mission GRACE Follow-On in 2017. In addition to the microwave ranging system, GRACE Follow-On will be the first mission to use a Laser Ranging Interferometer as technology demonstrator to track intersatellite distance changes with unprecedented precision. This new ranging device inherits some of the technologies which have been developed for the future spaceborne gravitational wave detector LISA. I will present the architecture of the Laser Ranging Interferometer, point out similarities and differences to LISA, and conclude with the current status of the flight hardware production.DFG/QUESTBMBF/03F0654
    corecore