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Abstract

GRACE Follow-On is a space mission consisting of two spacecraft in a Low Earth orbit
that map the gravitational potential of the Earth by continuously measuring changes in
their relative separation. In addition to the main microwave ranging instrument, GRACE
Follow-On will carry a laser ranging interferometer (LRI) as a technology demonstrator.
The LRI, as well as GRACE, is a US-German collaboration with substantial contribu-
tions from AEI. The work presented in this thesis is concerned with the development of
an acquisition procedure for the LRI on GRACE Follow-On.

Laser link acquisition is the process of reducing possibly large biases in the alignment
of the laser beam axes and the laser frequency, such that tracking of the satellites can
be initiated. Successful laser link acquisition is an essential first step to enable science
operation. Due to tight constraints on available resources, GRACE Follow-On does not
carry dedicated acquisition hardware such that the heterodyne signals of the science
photodiode have to be utilised. Additionally, no direct communication between the
satellites is available. Without dedicated hardware, laser link acquisition is a search in
five-degrees of freedom over a possibly large uncertainty space.

In this thesis, a detailed analysis of laser link acquisition using only heterodyne signals
is given. A comprehensive analysis of the tilt dependence of the interferometer signals is
carried out. This involves the simulation of tophat beams and fibre modes for which the
common approximation by Gaussian fundamental modes does not hold. For this reason,
the mode expansion method was implemented in IfoCad and successfully applied to
the simulation of tophat beams and the fundamental fibre mode. For the latter case,
a realistic model of the electric field distribution at the distant spacecraft could be
obtained. Furthermore, a data processing algorithm was designed for the detection of
the heterodyne signal and extensively analysed to obtain the distribution of its output in
the presence of noise. The models of the signals and the data processing are henceforth
combined with models of the instrument subsystems to develop a high-fidelity simulation
of the LRI.

This sophisticated simulation tool is used to investigate an initial line-of-sight calibra-
tion scan to reduce the large initial angular and frequency biases, to ease a subsequent
autonomous laser link acquisition. Along with an in-depth analysis of spatial scan pat-
terns to cover the angular uncertainty cone, realistic timing and accuracy estimates could
be obtained as well as limits to the scan resolution.

Finally, an algorithm was developed for the autonomous laser link acquisition, which
is able to acquire the heterodyne signal starting from the smaller alignment biases that
remain after the initial line-of-sight calibration and initiate tracking. This is done,
autonomously without the need for communication between the satellites. The proposed
algorithm is tested with the high-fidelity simulation for a broad range of parameters and
was found suitable regarding its high success rates of more than 99 %.

The results of the work described in this thesis have been used to define the baseline
acquisition procedure for the LRI within the GRACE Follow-On project.

Keywords: GRACE Follow-On, laser link acquisition, mode expansion method
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Kurzzusammenfassung

GRACE Follow-On ist eine Satellitenmission zur Vermessung des Erdschwerefeldes,
bestehend aus zwei Satelliten die kontinuierlich kleine Änderungen ihres gegenseitigen
Abstandes vermessen. Zusätzlich zu dem Hauptmessinstrument, welches den Abstand
mit Mikrowellen vermisst, wird GRACE Follow-On ein Laserinterferometer (LRI) als
Technologiedemonstrator tragen. Das LRI ist, wie auch GRACE, eine US-deutsche
Zusammenarbeit mit wesentlichen Beiträgen vom AEI. Die vorliegende Arbeit befasst
sich mit “Laser Link Akquisition” für das LRI an Bord von GRACE Follow-On.

Laser Link Akquisition bezeichnet die Ausrichtung der Laserstrahlen und das Ein-
stellen der Laserfrequenz, so dass ein Heterodynsignal detektiert werden kann. Die
anfängliche Ausrichtung der Laserstrahlen und Laserfrequenz nach dem Start, können
dabei stark von den optimalen Werten abweichen. Eine erfolgreiche Laser Link Akquisi-
tion ist notwendig um den Wissenschaftsbetrieb aufnehmen zu können. GRACE Follow-
On wird keine zusätzlichen Instrumente tragen oder eine direkte Kommunikation zwis-
chen den Satelliten ermöglichen, um diesen Prozess zu vereinfachen, so dass allein das
Heterodynsignal zur Verfügung steht. Ohne spezielle Instrumente muss ein fünf dimen-
sionaler Parameterraum nach dem Signal durchsucht werden.

In dieser Arbeit wird eine detaillierte Analyse der Laser Link Akquisition für GRACE
Follow-On vorgestellt. Eine Analyse der Abhängigkeit der Interferometersignale von
der Strahlachsenverkippung unter Berücksichtigung von nicht-Gaussschen Strahlen wird
präsentiert, für deren Simulation die Zerlegung in höhere Gaussmoden in der am AEI
entwickelten Software IfoCad implementiert wurde. Dieses ermöglichte die Simulation
von nicht-Gaussschen Strahlen wie z.B. Tophat Strahlen oder Fasermoden. Hiermit kon-
nte ein realitätsgetreues Modell der Intensitätsverteilung im Fernfeld entwickelt werden.

Außerdem wurde ein Algorithmus für die Detektion des Heterodynsignals analysiert,
um die Verteilung seiner Ausgabewerte zu bestimmen. Die Modelle für die Interferom-
etersignale und den Detektionsalgorithmus wurden mit Modellen für Subsysteme des
LRI benutzt um eine realitätsgetreue Simulation des LRI zu entwickeln. Die Simulation
wird in dieser Arbeit benutzt um eine Kalibration der Sichtlinie zu untersuchen, die die
anfänglich großen Unsicherheiten in der Strahlausrichtung und Laserfrequenz reduzieren
soll. Zusammen mit einer ausführlichen Analyse von möglichen Abtastschemata für die
Ausrichtung der Laserstrahlen wurden Schätzungen der benötigten Zeit und Genauigkeit,
sowie Grenzen der Auflösung der Abtastschemata bestimmt.

Zum Schluss dieser Arbeit, wird ein entwickelter Algorithmus für die autonome Laser
Link Akquisition vorgestellt, der in der Lage ist unabhängig vom zweiten Satelliten, von
anfänglichen Fehlern in der Strahlausrichtung, das Heterodynsignal zu detektieren und
die automatische Verfolgung des Partnersatelliten zu starten. Der vorgestellte Algorith-
mus wird mit Hilfe der entwickelten Simulation des Laserinterferometers für eine große
Auswahl an Parameterwerten getestet und ist in mehr als 99 % erfolgreich.

Die Ergebnisse dieser Arbeit wurden benutzt, um die grundlegende Prozedur für Laser
Link Akquisition für das LRI von GRACE Follow-On zu definieren.

Schlagworte: GRACE Follow-On, Laser Link Akquisition, Modenzerlegung
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1. Introduction

Inter-satellite laser interferometry is envisaged as the next generation technology for

inter-satellite ranging. The development of laser interferometers for space missions that

exchange laser light over hundreds or even millions of kilometers is highly demanding.

However, it promises to enable measurements of gravitational waves and mapping of

Earth’s gravitational potential with unprecedented accuracy.

This thesis is written in the context of eLISA, a mission proposed to the European

Space Agency (ESA) to measure gravitational waves, and GRACE Follow-On, a planned

successor to the Gravity Recovery and Climate Experiment (GRACE), that is scheduled

for launch in 2017. The following two sections will shortly introduce these two missions

before the aim and structure of this thesis is given.

Measuring Gravity with GRACE Follow-On

The Gravity Recovery and Climate Experiment (GRACE) was launched in 2002 to

measure Earth’s gravitational potential on a global scale [Ada02, TBWR04]. GRACE

consists of two satellites that fly in a low Earth orbit at an altitude of approximately

400 km. Their mean separation is 200 km and varies due to changes induced by variations

in the gravitational potential. GRACE maps the gravitational potential by continuously

measuring the distance changes between the two satellites by a microwave ranging in-

strument with a noise level of around 2µm/
√

Hz . Initially designed for an operational

lifetime of 5 years, GRACE is now in its 11th year in orbit and is still delivering data.

The orbit of the GRACE satellites has been chosen such that every month a snapshot

of the global gravitational field is obtained with a spatial resolution of approximately

400 km. The monthly snapshots of the gravitational potential reveal the time variability

of mass transportation in the Earth system. Over the years, GRACE provided im-

pressive results showing accelerated ice mass loss in Greenland and Antarctica [VW13],

evidence of large scale ground water depletion in northern India [RVF09] or the mass

transportations in the Amazon basin due to the yearly water cycle [TBR+04].

The current life time expectation sees the two satellites re-enter atmosphere between

2015 and 2016, while already the duration of science runs have been strongly reduced

due to the worn out batteries. However, longer time series of gravity data are needed

[WBvdB+13] to track the accelerated ice mass loss in the arctic regions. A successor
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1. Introduction

mission to GRACE is in development and scheduled for launch in 2017. In order to

keep the gap in the data as small as possible, the planned mission GRACE Follow-

On, is essentially a rebuild of the current GRACE mission. However, in addition to

the microwave ranging instrument, GRACE Follow-On will carry a laser interferometer

(LRI) as a technology demonstrator for future missions. The laser ranging interferometer

will provide improved ranging performance with an anticipated noise level of 80 nm/
√

Hz

and thereby increase the sensitivity of the ranging measurement as compared to the

microwave system by a factor of 25. In addition to the increased ranging performance,

the interferometer will also provide enhanced attitude data, which might be also valuable

for data analysis of the data provided by the microwave ranging instrument. Once

operational, the laser ranging interferometer aboard GRACE Follow-On will be the first

ever flown inter-spacecraft interferometer.

Measuring Gravitational Waves with eLISA

Another extremely demanding application of inter-spacecraft interferometry is the ob-

servation of gravitational waves. Since the first mentioning of gravitational waves by

Albert Einstein in the year 1916 [Ein16], indirect observations made by Hulse and Tay-

lor [HT75, TM80] gave evidence of their existence and proved once more the profound

accuracy of predictions made by his General Theory of Relativity. The wealth of scien-

tific insight that could be unveiled by direct observations of gravitational waves is due

to their weak interaction with matter. Once gravitational waves are created, they reach

Earth nearly unperturbed and carry information about the interior of their astrophys-

ical or cosmological sources which is inaccessible by optical telescopes. Gravitational

waves cause oscillatory, extremely small deformations of the space-time that periodi-

cally change the relative distance between free-falling test masses. They are expected

to be emitted at a wide range of frequencies starting from 10−18 Hz at the very low end

and reaching beyond 10 kHz [Tho95].

In order to measure gravitational waves, laser interferometers were proposed and cur-

rently the second generation of ground based detectors is being built, aiming for the first

direct detection. Ground based detectors such as LIGO, VIRGO or GEO600 reach the

necessary sensitivity in the frequency range between a few Hz and 10 kHz, thus probing

the higher frequencies of the expected gravitational wave spectrum. However, ground

based detectors are limited at low frequencies, due to seismic and gravity gradient noise

which excite the suspended mirror test masses in the interferometers [Wei72]. For this

reason, space based inter-spacecraft interferometers are required to measure gravita-

tional waves at frequencies below 1 Hz. The proposed mission, eLISA, will consist of
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three spacecraft, one mother and two daughter spacecraft, that are located at the ver-

tices of an equilateral triangle with a side length of 1 million kilometres. The separation

between the mother and the two daughters will be sensed by a laser interferometer with

a sensitivity goal of 10 pm/
√

Hz in the frequency range between 0.1 mHz and 1 Hz. In

this frequency range, eLISA will detect such cataclysmic events as colliding massive

black holes or merging neutron stars as well as in-spirals of stellar mass black holes into

massive black holes, thereby probing the very edge of the massive black holes’ horizon.

eLISA will measure these events throughout the whole universe up to redshifts of z ≈ 20

and help to generate a more complete understanding of our universe.

1.1. Aim and Structure of the Thesis

In order to design and optimise the layouts of highly complex optical instruments such

as the eLISA and the GRACE Follow-On laser interferometers, computer simulations

are indispensable tools. Despite the fact that only experiments can provide certainty of

the performance of the instrument, some conditions under which the interferometers are

operated in space cannot be realised in laboratories. For example, the laser beams that

are transmitted to the distant spacecraft expand due to the large inter-spacecraft sepa-

rations and the divergence of the beams. The light field that is received in the receive

aperture will have an approximately flat phase and intensity profile. Such beams are

hard to generate in laboratory-scale experiments with sufficient quality but computer

simulations allow to study interferometer designs for this type of laser beams.

Chapter 2 gives an introduction to heterodyne interferometry with an emphasis on

inter-spacecraft interferometers. Also, it presents the mode expansion method as a tool

to simulate the propagation of non-Gaussian beams through interferometers in the frame-

work of Gaussian beam tracing. Results are presented for the application of the mode

expansion method to the propagation of tophat beams and the fundamental fibre mode.

Furthermore, computer simulations can be used to test the instrument as a whole with

expected noise and signal levels before the actual system has been built. This, for exam-

ple, allows to study certain instrument operations such as the initial laser link acquisition

which is the process of aligning the laser beams and of tuning the laser frequency such

that a signal can be detected. A robust acquisition process that successfully establishes

the laser link with high probability in a limited amount of time is crucial in order to

enable science operation. Simulations can assist in designing and optimising and thereby

evaluating and minimising the risk associated with laser link acquisition. Chapters 3 to

7 provide a detailed analysis of laser link acquisition for GRACE Follow-On.
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Chapter 3 gives in introduction to laser link acquisition with heterodyne signals for

GRACE Follow-On.

Chapter 4 presents the design and detailed analysis of an algorithm to detect the het-

erodyne signal in the presence of additive white Gaussian noise.

Chapter 5 introduces a high-fidelity simulation and the employed models of the in-

strument subsystems that were developed as part of this thesis to simulate and test the

acquisition process.

Chapter 6 analyses an initial line-of-sight calibration scan, including a detailed discus-

sion of possible scan patterns, timing estimates and calibration accuracies.

Chapter 7 proposes an algorithm for an autonomous laser link acquisition for the

GRACE Follow-On laser ranging interferometer. Furthermore, simulation results are

presented estimating run times of the algorithm and success rates.

Chapter 8 concludes the thesis with a summary and an outlook for future work.
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Simulations of Precision Interferometers

In this chapter, heterodyne interferometry will be introduced for the case of inter-

spacecraft interferometers. Furthermore, the concept of Gaussian beam tracing is ex-

plained, which is a technique to simulate the propagation and transformation of Gaussian

beams in paraxial optical system.

Subsequently, the mode expansion method is presented, which enables the simulation

of non-Gaussian beams in interferometers. As part of this thesis, the mode expansion

method as described in this chapter was implemented into IfoCad which is an interfer-

ometer simulation toolkit developed at the Albert Einstein Institute [Hei12].

In the last part of this chapter the implemented mode expansion method is evaluated

for the propagation of tophat beams, which are generated at the receive aperture on the

optical benches aboard LISA and GRACE Follow-On.

A second important result is obtained from the application of the mode expansion

method to the propagation of the fundamental fibre mode. For the case of GRACE

Follow-On it yields a model for the far-field intensity pattern of the transmitted beam

at the distant spacecraft. The obtained model is further used as an important input for

the study of laser link acquisition in the second part of this thesis.

2.1. Heterodyne Signals

In LISA and GRACE Follow-On the interferometer determines changes in the relative

separation between the satellites by exchanging laser beams between the spacecraft and

measuring the phase difference between the local and received beam. A fraction of the

local laser beam that is emitted by the laser on each spacecraft is made to interfere with

the weak received light and is usually referred to as the local oscillator (LO).

In order to measure the phase difference between the local oscillator and the received

beam, the laser beams are superimposed on a beamsplitter and the power in the resulting

interference pattern is sensed by a photodiode. The laser frequencies are arranged such

that, together with the Doppler shift caused by the orbit-related relative line-of-sight

velocities between the spacecraft, the beatnote frequencies end up in the range of a few
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Figure 2.1.: Simplified sketch of an inter-spacecraft heterodyne interferometer that shows
the beam path of the local oscillator beam, ELO, and of the transmitted beam, ETX. The
beam that is transmitted from S/C 1 is received on S/C 2 with an additional Doppler shift,
due to the relative motion of the two spacecraft. The laser on S/C 2 is offset phase locked
to the received beam and sends its laser beam back to S/C 1, where it is eventually received
again, ERX, and interfered with the local oscillator on the photodiode.

MHz, e.g. 4 MHz to 16 MHz on GRACE Follow-On.

The photodiode converts the impinging light power into an AC photocurrent, from

which the relative phase between the beams is determined by the phasemeter. See for

example [GSB+13, WFS+06] for details on the phasemeter.

Figure 2.1 shows a simplified sketch of an inter-spacecraft laser interferometer. The

local laser beam is split at a beamsplitter and the part reflected off the beamsplitter

is sent to the distant spacecraft. At the distant spacecraft the beam is detected and

an amplified fresh laser beam is sent back to the first satellite. The other part of the

local laser beam that is transmitted through the beamsplitter is superimposed with the

received beam and propagates directly to the photodiode, serving as local oscillator.

The frequency of the received laser light is shifted with respect to the frequency of

the local oscillator beam due to the relative motion of the spacecraft. The frequency

difference is twice the one-way Doppler shift, fD, which occurs once on the way to

the distant spacecraft and once when the beam is returned. The one-way Doppler

shift for the case of GRACE Follow-On and LISA is expected to reach several MHz.

Therefore, the interferometers developed for GRACE Follow-On and LISA are heterodyne

interferometers.

In this chapter, the heterodyne photocurrent is derived and the main interferometer
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Figure 2.2.: Left: Sketch of a quadrant photodiode which shows the segment labelling, the
radius of the photodiode, RPD, and the width of the inactive slits between the segments, δs.
Right: Schematic of the photocurrent measured on a single segment, showing the amplitude
of the AC-part of the photocurrent, Aq, and the mean value of the photocurrent. The mean
photocurrent is proportional to the sum of the power in the local oscillator and of the received
beam impinging onto the active area of the segment.

signals are introduced. These are the longitudinal path length signal, which is the main

signal used to determine the changes in the separation between the spacecraft and the

differential wavefront sensing (DWS) signal, which provides an accurate measure of

the angular alignment between the two beams. Also the heterodyne efficiency will be

introduced which is a measure of the quality of the interference of the two beams. It is

also independent of the power of the individual beams.

2.1.1. Heterodyne Photocurrent and Heterodyne Efficiency

The photodiode used for the heterodyne measurement is typically a quadrant photodiode

(QPD) which consists of four individual photosensitive segments that can be read out

separately. The left panel in Figure 2.2 shows a quadrant photodiode and the labelling

of the segments that is used throughout this thesis. Two important quantities for the

characterisation of a quadrant photodiode are the radius of the active area RPD and

the width δs of the insensitive slits between the segments. The conversion ratio from

impinging light power to photocurrent is called the photodiode responsivity and denoted

by ρPD. It is around 0.7 A/W for InGaAs diodes at a wavelength of 1064 nm.

The shape of the heterodyne photocurrent that is derived in this section, is depicted

in the right panel of Figure 2.2. It is a sinusoid that is offset from zero, due to a constant
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average light power impinging on the detector. In the following, the photocurrent mea-

sured on a single segment of a quadrant photodiode is derived. However, no assumptions

for the geometric shape of the segments are made, so that the results are equally valid

for single element diodes.

The signal measured by the QPD is the photocurrent produced by the interference

of the local oscillator beam (LO) and the incoming received beam (RX) coming from

the remote spacecraft. The electric field amplitudes of the two beams expressed in

photodiode coordinates, r, are assumed to be of the form,

El(r, t) = al(r, t) exp(−i ψl(r, t)) exp(−2πiflt). (2.1.1)

Here, al(r, t) is the real valued amplitude of the electric field and ψl(r, t) contains the

phase of the electric field that generally varies over the surface of the photodiode segment.

The time evolution of both terms is assumed to be slow compared to the sampling

frequency fs of the photodiode. fl is the frequency of the laser beam and the label, l,

will be either RX or LO to denote the received beam or the local oscillator beam.

For a single segment the photocurrent is proportional to the time averaged power,

Pq(t), of the superposition of the electric field of the local oscillator beam ELO(r, t) and

the received beam ERX(r, t) on the active area, Bq, of the segment,

Pq(t) ∝
∫∫

Bq

|ELO(r, t) + ERX(r, t)|2 d2r

=

∫∫
Bq

|ELO(r, t)|2d2r +

∫∫
Bq

|ERX(r, t)|2d2r (2.1.2)

+ 2R
[∫∫

Bq

ELO(r, t) · E∗RX(r, t) d2r

]
. (2.1.3)

R(x) yields the real part of x and E∗RX is the complex conjugate of ERX. The first two

terms are proportional to the powers, PLO,q and PRX,q, of the local oscillator and the

received beam respectively, that impinge on the active area of the segment q. These are

defined by

PLO,q ∝
∫∫

Bq

|ELO(r, t)|2d2r =

∫∫
Bq

|aLO(r, t)|2d2r, (2.1.4)

PRX,q ∝
∫∫

Bq

|ERX(r, t)|2d2r =

∫∫
Bq

|aRX(r, t)|2d2r. (2.1.5)

The sum of these two terms is the mean light power, P̄q, impinging onto the photodiode
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segment,

P̄q = PLO,q + PRX,q. (2.1.6)

P̄q does not carry information about the relative phase between the local oscillator and

the received beam. However, this term is the main source of photon shot noise, which

is proportional to the square root of the mean power on the detector surface.

The last term in equation (2.1.3) is proportional to the AC part of the photocurrent,

which carries the information about the phase difference between the LO and the RX

beams. In the following, an expression for the time variable part of the photocurrent

is derived which depends on the relative phase between the interfering beams and the

heterodyne efficiency.

With equation (2.1.1) the time variable part of the impinging light power, P̃q(t), can

be written as

P̃q(t) ∝ 2R
[∫∫

Bq

ELO(r, t) · E∗RX(r, t) d2r

]

= 2R
[

exp(−2πifbt)

∫∫
Bq

aLO(r, t) aRX(r, t) exp(−iδψq(r, t)) d2r

]
, (2.1.7)

In the last line, the phase terms of the electric fields are combined and the beatnote

frequency, fb, is defined as the difference of the frequencies of the two laser beams,

fb = fLO − fRX. The relative phase difference between the local oscillator and the

received beam was defined by δψ(r, t) = ψLO(r, t) − ψRX(r, t). The remaining integral

in equation (2.1.7) is also called overlap integral.

The final result of this section is obtained after defining the normalised overlap integral

Oq(t) over the segment with area Bq as

Oq(t) :=

∫∫
Bq
aLO(r, t) aRX(r, t) exp(−iδψq(r, t)) d2r√∫∫
Bq
|aLO(r, t)|2d2r

∫∫
Bq
|aRX(r, t)|2d2r

. (2.1.8)

The normalisation of the integral ensures that its value is independent of the power of

the individual beams that falls onto the detector surface. The two double integrals in

the denominator are proportional to the power of the local oscillator, PLO,q, and the

received beam, PRX,q, as defined by equations equations (2.1.4) and (2.1.5). With this

assumption and writing Oq = |Oq| exp(i argOq), the time variable part of the impinging

9
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light power can be written as

P̃q(t) = 2
√
PLO,q PRX,q |Oq(t)| cos (2πfbt+ argOq(t)) . (2.1.9)

Fink [Fin75] defined a coherent detection signal-to-noise ratio, the heterodyne efficiency,

which is similar to the previously defined overlap integral. The heterodyne efficiency, ηq,

for the interference on segment q is then fully defined by the properties of the electric

field on the detector surface and can be given by

ηq = |Oq|2. (2.1.10)

The phase of the time variable part of the light power which was defined in equa-

tion (2.1.9), is the phase that the phasemeter measures. It encodes the path length

signal as well as local changes of the phase due to relative tilts of the wavefronts. For

the rest of the thesis the phase of the heterodyne signal for a single segment will be

denoted by

φq = argOq. (2.1.11)

The total light power measured by a single segment of a quadrant photodiode can finally

be given as

Pq(t) = P̄q + P̃q(t) (2.1.12)

= PLO,q + PRX,q + 2
√
PLO,q PRX,q ηq cos (2πfbt+ φq) . (2.1.13)

For the purpose of this thesis only the time variable part of the photocurrent will be

used. Here and in the following chapters, it will be denoted by sq(t), for a single segment

of the quadrant photodiode.

The photocurrent generated by the photodiode is proportional to the photodiode

responsivity, ρPD, which was introduced at the beginning of this section. Generally,

the amplitude of the photocurrent will also depend on the frequency of the beatnote,

fb, due to the finite measurement bandwidth of the photodiodes. Taking into account

the frequency dependence by the function g(fb) and the conversion from light power

to photocurrent by the photodiode responsivity, ρPD, the AC part of the heterodyne

photocurrent is found to be:

sq(t) = 2 ρPD g(fb)
√
PLO,q PRX,q ηq cos(2πfbt+ φq). (2.1.14)
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Figure 2.3.: DWS signal caused by horizontal misalignment between the RX and LO beam
axes at the QPD by an angle of δα. The misalignment causes a phase difference, δφ, between
the heterodyne currents of the left and right half of the QPD in the plane of incidence.

2.1.2. Heterodyne Signals

In this section the main interferometer signals used in this thesis are defined. They are

derived from the phase φq of the heterodyne signal, which is computed by the phasemeter.

See for example [WFS+06] for details on the phasemeter for GRACE Follow-On. The

resulting signals use combinations of the phases computed for the individual segments

of the quadrant photodiode, in order to suppress common mode effects or average out

phase changes between the different segments.

Longitudinal Pathlength Signal

The longitudinal pathlength signal is obtained from the phase of the heterodyne signal

by directly interpreting changes of the phase as changes in the propagated pathlength

of either beam. The pathlength difference between the local oscillator and the received

beam, δz, is computed from the average of the phases of all segments by

δz =
λ

2π

φA + φB + φC + φD

4
, (2.1.15)

where λ is the wavelength of the light. However, any deviation of the phase that is

not due to pathlength differences will directly couple into the length measurement as

measurement error. For example, the largest contributor to the error in the longitudinal

signal is frequency noise that cannot be distinguished from a change in the phase due

to pathlength changes. For this reason, excellent frequency stability is required for

high-precision heterodyne interferometers.

11
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Differential Wavefront Sensing

The second important signal generated from the heterodyne measurement that will

be briefly mentioned here, is the differential wavefront sensing (DWS) signal. The

DWS signal is routinely used to measure the relative tilt between the wavefronts of

two interfering beams, for example to automatically align beams in interferometers

[MMRW94a, MMRW94b].

The basic idea is that the phase of the heterodyne signal has opposite sign for the

two sides of the QPD if the interfering beams are tilted with respect to each other. See

Figure 2.3 for an illustration of a tilt in the horizontal direction in QPD coordinates.

Subtracting the phases of the corresponding halves of the quadrant photodiode gives a

measure of the relative wavefront tilt. The horizontal and vertical DWS signals are here

defined by

DWShor = (φA + φC)− (φB + φD), (2.1.16)

DWSver = (φA + φB)− (φC + φD). (2.1.17)

For small relative tilt angles, δα and δβ, the DWS signal is directly proportional to the

tilt of the beam axes of the two interfering beams

DWShor ≈ cDWS δα (2.1.18)

DWSver ≈ cDWS δβ. (2.1.19)

The coupling factor, cDWS, for two interfering tophat beams was calculated by Sheard et

al. [SHD+12] and for two interfering Gaussian beams, for an infinitely large photodiode

radius and zero slit width by Hechenblaikner et al. [Hec10]. It is usually of the order

of 103 to 104 radelec/radopt. Here radelec is the unit of the phase that the phasemeter

measures and radopt is the unit of the misalignment angle between the optical wavefronts.

The order of magnitude of the coupling factor can be estimated by w/λ, where w is the

radius of the Gaussian beams and λ is the wavelength of the light.

2.2. Simulation of Interferometers by Gaussian Beam Tracing

In this section a short introduction of interferometer simulations by means of Gaussian

beam tracing is given. The methods described here are included in the core functionality

of IfoCad [Hei12], a C library containing functions to plan and optimise interferome-

ters. It has the capability to simulate the propagation of stigmatic, simple or general

12



2.2. Simulation of Interferometers by Gaussian Beam Tracing

astigmatic Gaussian beams through 3D optical setups under the paraxial approximation

of the scalar wave equation [ST91]. Also, all heterodyne signals discussed in the last

section can be computed with IfoCad.

The purpose of this section is to give a brief introduction to IfoCad into which the

mode expansion method was implemented, and to optics related terms used throughout

this thesis. Here, only the stigmatic Gaussian beam is shortly introduced. The interested

reader is referred to the following references for further details [WHK+12, KWS+13].

Gaussian Beam

In order to simulate interferometers, the electric field provided by the lasers is usually

approximated by Gaussian beams. Circular symmetric Gaussian beams are the simplest

class of these beams, for which the electric field distribution can be given by

E(x, y, z) =

√
2P

π

1

w(z)
exp

(
−x

2 + y2

w2(z)

)
exp

(
−ikx

2 + y2

2R(z)
+ iζ(z)

)
exp(−iks).

(2.2.1)

E is for convenience defined here with absorbed constants such that |E|2 directly

yields the intensity in units of W/m2. Here, w(z) is the radius of the Gaussian beam,

R(z) is the radius of curvature of the wavefront, and ζ(z) is the so called Gouy phase

shift. The term exp(−iks) is an additional phase shift, which depends on the propagated

geometrical path length, s, and the wavenumber k = 2π/λ.

The radius of the Gaussian beam, w(z), is smallest for z = 0, where it is equal to the

waist radius, w0. Figure 2.4 shows a schematic of a Gaussian beam, explaining the most

important quantities introduced in this section. The Rayleigh range, zR, can be defined

by the wavelength, λ, and the waist radius, w0, by

zR = π
w2

0

λ
. (2.2.2)

The Rayleigh range is the characteristic length scale of the Gaussian beam in propagation

direction, which determines the evolution of the width, radius of curvature and Gouy

phase, along the optical axis. The width of the Gaussian beam can be given in terms of

the waist radius, w0, and the Rayleigh range, zR, by

w(z) = w0

√
1 +

(
z

zR

)2

. (2.2.3)

13
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Figure 2.4.: Geometry of the fundamental Gaussian beam.

At the Rayleigh range the width of the Gaussian beam is
√

2 w0, while for z � zR, the

width scales approximately linear with the distance from the waist,

w(z) ≈ w0

zR
z = θ0 z, for z � zR. (2.2.4)

The proportionality factor, θ0, is called the divergence angle of the Gaussian beam. The

radius of curvature of the Gaussian beam’s phasefront can also be defined in terms of

the Rayleigh range as follows:

R(z) = z

(
1 +

(zR

z

)2
)
. (2.2.5)

The radius of curvature approaches infinity for z → 0, such that the Gaussian beam has

plane wavefronts at the waist. At the Rayleigh range the radius of curvature reaches

a minimum value of R(zR) = 2 zR. In the far-field, for large propagation distances

compared to the Rayleigh range, the radius of curvature is approximately equal to the

distance from the waist, z. For this case the phasefront can be well approximated by a

spherical wave, originating from the waist position. The Gouy phase, ζ(z), describes an

additional phase shift of π when the beam propagates through its waist position. It can

also be given in terms of the Rayleigh range by

ζ(z) = tan−1

(
z

zR

)
. (2.2.6)

The Gouy phase is zero at the waist and approaches ±π/2 for z → ±∞.
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2.2. Simulation of Interferometers by Gaussian Beam Tracing

The circular symmetric Gaussian beam defined in equation (2.2.1) can also be parametrised

by the complex parameter q, which can be given in terms of the distance to the waist

and the Rayleigh range by

q = z + izR. (2.2.7)

The width and radius of curvature of the beam can be obtained from the inverse of the

q-parameter by

1

q
=

1

R
− i 2

k

1

w2
. (2.2.8)

More general beam types, i.e. simple and general astigmatic Gaussian fundamental

modes, that occur in general misaligned optical systems can be simulated with IfoCad,

but are not part of this thesis.

Beam Tracing

Interferometers for high precision metrology usually consist of numerous optical compo-

nents, such as lenses, beamsplitters, mirrors, apertures, photodiodes and lasers. The left

panel in Figure 2.5 shows a schematic of the optical bench of the laser ranging instru-

ment on GRACE Follow-On, as an example for a comparatively simple interferometer.

The local laser beam that is provided by the laser is routed via a movable fine-steering

mirror (FSM), a beamsplitter (BS) and two lenses (L1 and L2) to the quadrant photodi-

ode (QPD), to serve as local oscillator (LO). Gaussian beam tracing as implemented in

IfoCad models the laser beam as a combination of its beam axis and q-parameter. The

beam axis is traced through the interferometer by means of geometrical optics, while

the complete path of the beam is split into segments, which span between intersection

points of the beam axis with subsequent optical surfaces.

The right panel in Figure 2.5 shows three segments of a beam path, r0, r1 and r2.

The first segment starts at the intersection point, A, of the beam axis with the surface

of the previous component. From there the intersection point, B, of the beam axis with

the front surface of the next optical component is determined.

At the new intersection point the local normal vector to the surface is computed and

the reflected and refracted beam axes are found from Snell’s law and the well known

law of reflection [ST91]. The new beam axis segment, for example that of the refracted

beam, is then traced in exactly the same way to the next intersection point, C, with the

back surface of the optical component.
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Figure 2.5.: Left: Schematic of the optical bench of the Laser Ranging Interferometer on
board GRACE Follow-On. Right: Tracing of the beam axis r0 to r2, and transforming the q-
parameter to propagate and transform the Gaussian beam at surfaces of optical components.

The length of a beam axis segment is the geometrical pathlength, s, that the beam

propagated by. In order to calculate the correct phase of the beam at the final surface,

the optical pathlength along the beam path is accumulated. The optical pathlength is

computed from the geometrical pathlength by multiplying with the refracted index ni

of the medium [WHK+12].

The other part of the beam model in IfoCad, the q-parameter of the Gaussian beam,

is transformed according to the well known ABCD law for paraxial optical systems

[ST91], generalised for the handling of tilted ellipsoidal surfaces [MS69]. A new q-

parameter is computed at each intersection point and for each propagation between

intersection points. This leads to the sequence of q-parameters depicted in the right

panel of Figure 2.5.

The beam axis is traced up to a final surface at which the electric field needs to be

computed, for example a quadrant photodiode to compute the interferometer signals. In

order to compute the interferometer signals IfoCad implements the expressions for the

interferometer signals given in Section 2.1.

2.3. Mode Expansion Method

Not all beam types occurring in real interferometers can be well approximated by Gaus-

sian beams. The schematic setup of the GRACE Follow-On optical bench that is shown

in the left panel of Figure 2.5 indicates two examples. On the one hand, the local oscil-
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lator is delivered by an optical fibre to the optical bench. The beam coming out of the

fibre is not a perfect Gaussian beam. On the other hand, the beam received from the

distant spacecraft has a nearly flat phase and intensity profile across the receive aperture.

These non-Gaussian beams will show diffraction effects, while propagating through the

interferometer, which cannot be simulated by the simple Gaussian beam tracing.

For the propagation of arbitrary light fields, efficient methods were developed in the

past, such as fast-Fourier transform based direct integration of the Rayleigh-Sommerfeld

diffraction integral [SW06, NL09] or the angular spectrum decomposition [DH98, DH01,

MSW03, MS09]. These methods transform an arbitrary electric field distribution given

on a regular spaced grid in the input plane, to an arbitrarily aligned and offset output

plane. Optical components like apertures or lenses are simulated by modifying the phase

and amplitude of the electric field in the input plane, before the transformation is applied.

Special care needs to be taken to accommodate large wavefront curvatures, for example

as introduced by strongly curved surfaces, in order to avoid aliasing effects [OKT+11].

In this thesis, however, the mode expansion method, is used to study the propagation

of non-Gaussian beams through interferometers. This method is based on the fact that

certain families of beams constitute a complete and orthonormal basis for solutions of

the paraxial wave equation. Any other solution of the paraxial wave equation can be

represented by a weighted sum over members of these families, [FS10]. This is also often

called a mode decomposition.

The mode expansion method as described in this chapter was implemented into IfoCad

as part of this thesis and can be used to trace non-Gaussian beams through interfer-

ometers. In the past the method was applied to study free-space optical interconnects

[PR03] and general effects of diffraction [PR05, Sny07, CFAA10]. Also the effect of a

finite aperture lens on the heterodyne efficiency was studied using the mode expansion

method [STF81].

The well known Hermite-Gaussian or Laguerre-Gaussian modes [Sie86, ST91] both

constitute a complete orthonormal set of base functions. The difference between these

two basis sets is their symmetry. While Hermite-Gaussian beams have rectangular sym-

metry, Laguerre-Gaussian beams are circular symmetric. The transversal intensity dis-

tribution of the first Hermite-Gaussian modes is shown on the left in Figure 2.6 and the

intensity distribution of the first Laguerre-Gaussian modes is shown on the right. The

Hermite-Gaussian mode, umn(x, y; z, w0), with horizontal index m and vertical index n
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Figure 2.6.: Left: Transversal intensity distribution of the first Hermite-Gaussian modes,
umn. Right: Transversal intensity distribution of the first Laguerre-Gaussian modes, upl.

can be defined as:

umn(x, y; z, w0) =
cmn
w(z)

Hm

(√
2 x

w(z)

)
Hn

(√
2 y

w(z)

)
exp

(
−x

2 + y2

w2(z)

)
· exp

(
−ikx

2 + y2

2R(z)
+ i(m+ n+ 1)ζ(z)

)
,

(2.3.1)

where k = 2π/λ is the wavenumber of the beam. The waist radius w0 is hidden in

the definitions of the beam radius w(z), radius of curvature R(z) and Gouy phase ζ(z).

The definitions of these functions for the Hermite-Gaussian modes are in analogy to the

definitions given for the fundamental Gaussian beam in equations (2.2.3), (2.2.5) and

(2.2.6). The normalisation constants, cmn, are given by

cmn =
(
πm!n! 2m+n−1

)− 1
2 . (2.3.2)

The Laguerre-Gaussian modes, as the second mentioned set of complete orthonormal

solutions to the paraxial wave equation [FS10], can be defined in cylindrical coordinates,
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(r, φ), as

upl(r, φ; z, w0) =
cpl
w(z)

(√
2 r

w(z)

)|l|
Llp

(
2r2

w2(z)

)
exp

(
− r2

w2(z)

)
· exp

(
ilφ− ik r2

2R(z)
+ i(2p+ |l|+ 1)ζ(z)

)
,

(2.3.3)

with the same width, radius of curvature and Gouy phase shift as before. The function,

Llp, appearing in the definition above is the associated Laguerre polynomial with the

radial mode index, p ∈ N0, and the azimuthal mode index, l ∈ Z. The normalisation

factor, cpl, is defined by

cpl =

√
2p!

π(|l|+ p)!
. (2.3.4)

Similar to the fundamental Gaussian mode discussed in Section 2.2, one can define the

same q-parameter, that parametrises the Hermite- and Laguerre-Gaussian modes, see

equation (2.2.7). The connection between the q-parameter and the distance from the

waist z, as well as the waist radius w0, can be given by inserting the definition of the

Rayleigh range, from equation (2.2.2), into equation (2.2.7) by

q = z + iπ
w2

0

λ
. (2.3.5)

For this reason the modes will be parametrised by the q-factor, instead of the distance

to the waist z, and the waist radius w0, for example umn(x, y; q) = umn(x, y; z, w0).

The principle idea of the mode expansion method is the following. Let umn(x, y; q) be

a mode of a complete orthonormal set, e.g. the Hermite-Gaussian modes. Let further,

m, and n with m,n = 0, . . . ,∞, index different modes within the set. Any electric

field, E(x, y), given in a plane perpendicular to the propagation direction of the modes

umn(x, y; q), can be written as the sum over the umn, weighted by unique coefficients

amn, as

E(x, y) =

∞∑
m=0

∞∑
n=0

amn umn(x, y; q) exp(−iks), (2.3.6)

where s is the propagated geometrical pathlength. The input electric field is now ex-

pressed in terms of Hermite- or Laguerre-Gaussian modes, for which the propagation

and transformation through a paraxial optical system is known.
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The propagation and transformation of the electric field E(x, y), through a paraxial

optical system can then be computed by transforming the Hermite- or Laguerre Gaussian

modes and calculating the weighted sum of equation (2.3.6). The beam tracing can be

realised in exactly the same way as it was introduced for the fundamental Gaussian

beam. The beam axis is transformed according to geometrical optics, and the modes

are transformed by transforming the q-parameter, according to the ABCD formalism,

[MS69, SAC70, ST91].

The unique weighting coefficients or mode amplitudes, are invariant under paraxial

transformations of the modes. Hence, the amplitudes only need to be computed once, in

the beginning, and then only the beam axis and the q-parameter have to be transformed.

As such, most of the computational cost of the mode expansion method is due to the

decomposition of the electric field at the input plane, and evaluating the sum over the

modes to reconstruct the approximated field at the output plane. The propagation and

the transformation at optical components involves only few arithmetic operations. In

order to calculate the mode amplitudes, the inner product, or overlap integral of two

electric fields, E1 and E2, given in the x-y-plane, is defined as follows:

〈E1|E2〉 :=

∞∫
−∞

∞∫
−∞

E1(x, y)E∗2(x, y) dx dy. (2.3.7)

Here, E∗2 is the complex conjugate of E2. The orthonormality of the Hermite-Gaussian

modes ensures that the overlap integral between two modes, umn(q) and um′n′(q), van-

ishes if m 6= m′ ∨ n 6= n′, and it is equal to 1, if the modes are identical:

〈umn(q)|um′n′(q)〉 = δmm′ δnn′ . (2.3.8)

However, modes which are evaluated at different propagation distances z, or have dif-

ferent waist radii w0, are not orthogonal, (2.3.8) does not hold.

The mode amplitudes, amn, which occur in the series expansion of the electric field

E(x, y) in equation (2.3.6) can be computed by the overlap integral over the input electric

field and the mode umn(q) by

amn = 〈umn(q)|E〉. (2.3.9)

The q-parameter that is used in the mode expansion, can be chosen arbitrarily. For

different values, different mode amplitudes will be obtained resulting in a different series

expansion, although the completeness of the set of the modes ensures that for m,n→∞
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the total electric field distribution is independent of q.

However, this is only true if the number of modes used in the decomposition is infinite.

For any real application, the series expansion of equation (2.3.6) needs to be truncated

at a finite number of modes, which will result in deviations of the input electric field

from the approximate series expansion. By choosing an appropriate value for the q-

parameter, the error introduced by truncating the series expansion can be reduced for a

given total number of modes, while inappropriate values may lead to slower convergence

of the series. The truncated mode expansion of the input electric field E(x, y) given in

the x-y-plane into Hermite-Gaussian modes, can be given by

EMEM(x, y) ≈
mmax∑
m=0

nmax∑
n=0

amn umn(q) exp(−iks), with (2.3.10)

amn = 〈umn(q)|E〉, (2.3.11)

whereas for Laguerre-Gaussian modes the sum over the azimuthal index needs to include

the negative values as well. It can be defined as

EMEM(x, y) ≈
pmax∑
p=0

lmax∑
l=−lmax

apl upl(q) exp(−iks), with (2.3.12)

apl = 〈upl(q)|E〉. (2.3.13)

As mentioned before, the propagation of the input electric field, EMEM, through a parax-

ial optical system can be realised by tracing the beam axis of the modes by geometrical

optics and transform the q-parameter of the modal set by the ABCD formalism. The

mode amplitudes are invariant under such transformations.

However, if non-paraxial transformations need to be simulated, such as clipping of

the beam at limiting apertures, new coefficients need to be computed. In the left panel

of Figure 2.7 a simple schematic of an interferometer is shown, where the beam passes

through two apertures and a number of optical components in between. At each aper-

ture the electric field of the incoming beam needs to be computed in the aperture plane

and then decomposed into a set of higher-order Gaussian modes, which propagate per-

pendicular to the aperture plane. This is shown in the right panel of Figure 2.7.

Astigmatic Hermite-Gaussian Modes

The Hermite-Gaussian modes can also be used to describe simple astigmatic beams.

For this case the mode umn(q) is separated for the two orthogonal coordinates and

21



2. Mode Expansion Method for Optical Simulations of Precision Interferometers

Figure 2.7.: Left: Tracing a non-Gaussian beam through an interferometer. Reflection and
refraction of the beam axis at optical components is handled by Snell’s law [ST91], while
the transformation of the beam’s q-parameter is done using the ABCD formalism [MS69].
At limiting apertures the beam has to be decomposed again. Right: Decomposition at a
limiting aperture. The electric field distribution in the aperture plane needs to be computed.
The overlap integral for decomposition has to be evaluated in the aperture plane, such that
the direction of the outgoing beam is perpendicular to the aperture plane.

for each dimension separate q-parameters, qx and qy, are defined, leading to individual

waist radii w0x and w0y, as well as distances from the waist, zx and zy. Compare this

to equation (2.3.5), which gives the relation between the q-parameter, z and w0. The

astigmatic Hermite-Gaussian mode, u′mn(x, y; qx, qy) is then given by

u′mn(x, y; qx, qy) = vm(x; qx) vn(y; qy), (2.3.14)

where the functions vm(x; qx) and vn(y; qy) are defined by

vm(x; qx) =
cm√
wx(zx)

Hm

( √
2 x

wx(zx)

)

× exp

(
− x2

w2
x(zx)

− ik x2

2Rx(zx)
+ i

(
m+

1

2

)
ζx(zx)

)
(2.3.15)
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and

vn(y; qy) =
cn√
wy(zy)

Hn

( √
2 y

wy(zy)

)

× exp

(
− y2

w2
y(zy)

− ik y2

2Ry(zy)
+ i

(
n+

1

2

)
ζy(zy)

)
(2.3.16)

The normalisation factors cm and cn are of the form cm = (m! 2m−1/2√π )−1/2. The

orthonormality is also valid for the astigmatic modes if the two modes have the same

q-parameter in each direction,

〈u′mn(qx, qy)|u′m′n′(qx, qy)〉 = δmm′ δnn′ . (2.3.17)

When tracing astigmatic modes through a paraxial optical system the q-parameter for

each dimension needs to be transformed separately.

Basis Transformations

Sometimes it is advantageous to change the basis of the mode expansion from a Laguerre-

Gaussian basis into a Hermite-Gaussian basis or vice versa. A situation where this

reduces computational cost, is for example, when a non-Gaussian circular symmetric

input field needs to be traced through a simple astigmatic system.

Due to the symmetry of the input field, Laguerre-Gaussian modes are preferred for

the decomposition, as far less modes are necessary to approximate it. For a circular sym-

metric input beam all those azimuthal Laguerre-Gaussian modes, with l 6= 0 have an

amplitude of apl = 0. However, the description of simple astigmatic Laguerre-Gaussian

modes is usually done in the Hermite-Gaussian basis, as simple astigmatic transforma-

tions of these modes are straightforward [WOMT05].

The basis transformation between Laguerre- and Hermite-Gaussian modes is widely

discussed in the literature, for example in [OC00, BAvdVW93, FS10]. Throughout this

work the approach of O’Neil et al. is used [OC00], whereas the notation is slightly

altered to allow for an easy algorithmic implementation. It is required that the modes

are stigmatic and the Hermite- and Laguerre-Gaussian modes need to have the same

q-parameter.

An important property of the basis transformation between Hermite- and Laguerre-

Gaussian modes is that the order of a mode is preserved. The order, N , of a mode is
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typically defined as [OC00],

N :=

m+ n, for Hermite-Gaussian modes,

2p+ |l|, for Laguerre-Gaussian modes.
(2.3.18)

Modes of the same order have the same phase evolution in propagation direction, which

is given by the Gouy phase shift of (2p+|l|+1)ζ(z) and (m+n+1)ζ(z), for the Laguerre-

and the Hermite-Gaussian modes respectively. Hence, modes of the same order form a

closed subspace under the basis transformation. The dimension of the subspace for order

N is N + 1.

In fact, the transformation between the two modal sets is just a special case of the pre-

viously defined generally applicable decomposition which for a Hermite-Gaussian mode

of order N , in Laguerre-Gaussian modes of the same order is given by

umn(x, y; q) =
∑

2p+|l|=N

〈upl(q)|umn(q)〉upl(q). (2.3.19)

Since, both sets of modes form an orthonormal basis, one can define a unitary matrix,

MN , for a given order, N , that transforms the vector of all mode amplitudes AHG
N , of

Hermite-Gaussian modes of order N , into a vector ALG
N , containing the corresponding

mode amplitudes in the Laguerre-Gaussian basis. The unitarity of MN ensures that

its complex conjugate transposed, M †
N , is the transformation matrix that transforms

Laguerre-Gaussian modes into Hermite-Gaussian modes. Hence,

ALG
N = MN A

HG
N , and (2.3.20)

AHG
N = M †

N A
LG
N . (2.3.21)

The last step, before the actual transformation coefficients can be computed, is to define

a specific ordering of the modes of a fixed order N , in the vectors AHG
N and ALG

N , that

allows for scaling with N . The following order is proposed by O’Neil et al. [OC00]. If

i = 0, . . . , N indexes the position in the vector, then for Hermite-Gaussian modes the

horizontal and vertical mode indices, m and n, are computed by

m = i, and n = N − i. (2.3.22)

The resulting vector of modes of order N can be given, with the mode amplitudes am,n,
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as defined by equation (2.3.11), as follows:

AHG
N = (a0,N , a1,N−1, . . . , ai,N−i, . . . , aN,0)t. (2.3.23)

Here, t means transposition of the vector. For the case of the Laguerre-Gaussian modes

of order N , the mapping of the position in the vector, i = 0, . . . , N , to the radial and

azimuthal mode indices, p and l, can be given by

p = N − |N − 2i|, and l = N − 2i. (2.3.24)

This results in the following vector of Laguerre-Gaussian mode amplitudes ap,l, which

were defined in equation (2.3.13). For mode orders of N this is

ALG
N = (a0,N , a2,N−2, . . . , aN−|N−2i|,N−2i, . . . , a0,−N )t. (2.3.25)

With the given order, the transformation matrix MN can be defined in terms of the

coupling coefficients 〈upl(q)|umn(q)〉, between Hermite-Gaussian and Laguerre-Gaussian

modes. A restriction that needs to be made is that the Hermite and Laguerre-Gaussian

modes share the same q-parameter. As such the coupling coefficients are given by

〈upl(q)|umn(q)〉 = c(p, l,m, n). (2.3.26)

The coefficients can be given analytically by the following relation

c(p, l,m, n) =


0, 2p+ |l| 6= m+ n,

(−1)pimB

[
m+ n+ l

2
,
m+ n− l

2
,m

]
, 2p+ |l| = m+ n,

(2.3.27)

where i is the imaginary unit and the function B is defined by [BAvdVW93, FS10],

B(n,m, k) =

√
(n+m− k)!k!

2n+mn!m!

1

k!

dk

dtk
[(1− t)n(1 + t)m] |t=0 (2.3.28)

With the given coefficients of equation (2.3.27) and the ordering defined in equations (2.3.22)

and (2.3.24) the transformation matrix MN for transforming Hermite-Gaussian to La-

guerre Gaussian modes, can finally be given by,

(MN )i,j = c(N − |N − 2i|, N − 2i, j,N − j). (2.3.29)

The columns of the matrix MN , contain the images of the Hermite-Gaussian modes
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2. Mode Expansion Method for Optical Simulations of Precision Interferometers

expressed in the Laguerre-Gaussian basis.

For completeness it should be mentioned that analytical expressions for coupling co-

efficients have been derived also for transformations between Gaussian modes that have

different q-parameters. The underlying theory is thoroughly described in [BH84, FS10].

2.4. Propagation of Tophat Beams

In this section the mode expansion method is used to propagate a perfect circular sym-

metric, tophat beam through free-space. Tophat beams are produced on the GRACE

Follow-On optical bench by clipping the beam transmitted by the remote spacecraft at

the receive aperture. The long propagation distance and the small size of the receive

aperture, cause the portion of the beam that is clipped to be close to a perfect tophat

with flat phase and amplitude distribution.

For this reason the tophat beam is of special interest for simulations of interferometers

as flat phase and intensity profiles are hard to generate in experiments. Thus, it is

important to evaluate the accuracy of the mode expansion method for this case. The

electric field, ETH(r, φ), of the tophat beam in the aperture plane, at z = 0, can be given

as

ETH(r, φ) =


√
PTH

π

1

RTH
exp(iψ0), if r ≤ RTH,

0 if r > RTH.

(2.4.1)

with the radius of the tophat beam RTH, its power PTH, and a constant phase ψ0.

Figure 2.8 depicts the setup that is simulated in this section. The incoming plane wave

approximates the broadened incoming beam and is clipped at the aperture of radius RTH.

The electric field in the aperture plane is decomposed into a set of Laguerre-Gaussian

modes, in order to exploit the tophat’s symmetry, and eventually the Laguerre-Gaussian

modes are propagated to the observation screen at which the electric field is evaluated.

The accuracy of the mode expansion method will depend on the number of modes

included in the series expansion and the propagation distance between the aperture

plane and the observation plane. The accuracy is evaluated by comparing the electric

field computed with the mode expansion method to known analytical expressions for the

transversal distribution in the Fresnel region and the far-field as well as for the on-axis

electric field.

Comparing the electric field in the transversal direction leads to an empirical model

that estimates the maximum transversal range up to which the mode expansion method
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2.4. Propagation of Tophat Beams

Figure 2.8.: Explanation of the studied setup. Incoming plane waves are clipped at the
circular symmetric aperture of radius RTH. The electric field distribution in the aperture
plane is decomposed into a set of Laguerre-Gaussian modes and then the Laguerre-Gaussian
modes are propagated along the distance of z up to the observation screen, at which the
electric field is evaluated.

is providing accurate results. Subsequently, the comparison of the on-axis electric field

to an analytical expression yields a model to estimate the required maximum mode

order for the decomposition of a tophat beam, as a function of its radius and the desired

propagation distance.

The mode order was defined in equation (2.3.18). For Hermite-Gaussian modes the

mode order was defined as N = m+n and for Laguerre-Gaussian modes as N = 2p+ |l|.
Here, m and n are the horizontal and vertical mode number of the Hermite-Gaussian

modes and p and l are the radial and azimuthal index of the Laguerre-Gaussian modes

respectively. The mode order is preserved under a transformation between the two modal

sets. As such the maximum mode order required in a decomposition is a good indicator

for the accuracy of the modal decomposition, independent of the used basis system.

2.4.1. Decomposition of Tophat beams

The decomposition of the circular symmetric tophat beam in Laguerre-Gaussian modes

can be done analytically, because a recurrence relation can be given to compute the

amplitudes, ap,0, as defined by equation (2.3.13). For a tophat beam of intensity
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2. Mode Expansion Method for Optical Simulations of Precision Interferometers

|ETH(r, φ)|2 = 1 over the aperture plane and radius RTH, it reads [CFAA10, BGS96]:

a0,0 =
√

2π w0

[
1− exp

(
−R

2
TH

w2
0

)]
, (2.4.2)

a1,0 =
√

2π w0

[(
1− 2

R2
TH

w2
0

)
exp

(
−R

2
TH

w2
0

)
− 1

]
, (2.4.3)

ap,0 =
1

p

[√
2π

w0
R2

THL
0
p−1

(
2
R2

TH

w2
0

)
exp

(
−R

2
TH

w2
0

)
− ap−1,0 + (p− 1)ap−2,0

]
. (2.4.4)

Here, w0 is the waist radius of the fundamental Laguerre-Gaussian mode used in the

decomposition. It is a free parameter in the above recurrence relation. The value

of w0 relative to the radius of the tophat beam will determine the accuracy of the

approximation for a given maximum radial index pmax considered in the decomposition.

The Laguerre-Gaussian modes are evaluated at their waist position, in order to match

the flat wavefront of the tophat beam. L0
p is the associated Laguerre polynomial of radial

index p and azimuthal index l = 0 [BSMM01].

The recurrence formula computes only the amplitudes of radial Laguerre-Gaussian

modes, as the amplitudes of all azimuthal modes are zero, due to the cylindrical sym-

metry of the tophat beam. The order of the beam for the radial modes is just N = 2 p.

The mode expansion of the tophat beam up to a maximum considered mode order of

N̂ = 2 pmax, can be given in terms of the Laguerre-Gaussian modes up,0 as given in

equation (2.3.3), and the mode amplitudes, ap,0, by

EMEM(r, z) =

√
PTH

π

1

RTH

N̂/2∑
p=0

ap,0 up,0(r, z), (2.4.5)

where the dependence on the azimuthal angle φ was neglected, due to the circular sym-

metry. The mode-amplitudes are also scaled for the correct power of the tophat beam,

PTH.

An indicator for the accuracy of the decomposition is the difference of the power

contained in the perfect tophat beam, PTH, and the set of Laguerre Gaussian modes,

PN̂ , for a decomposition of up to order of N̂ which can be given as

PN̂ =
PTH

π

1

R2
TH

N̂/2∑
p=0

|ap,0|2. (2.4.6)
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Figure 2.9.: Left: Power, P50, in the set of Laguerre-Gaussian modes up to order 50, approx-
imating a tophat beam of power PTH, as a function of the waist radius of the fundamental
mode, relative to the optimal waist radius ŵ0 of equation (2.4.8). Right: Relative difference
of the power in the decomposed and perfect tophat beam as a function of the maximum
considered mode order N̂ . Here, the waist radius of the fundamental mode is the optimum
radius, ŵ0.

Normalised to PTH the error estimate can be given by

δPN̂ =
PTH − PN̂
PTH

= 1− 1

πR2
TH

N̂/2∑
p=0

|ap,0|2. (2.4.7)

The left plot in Figure 2.9 shows the dependence of δP50, for a decomposition up to order

N̂ = 50, as a function of the waist radius of the fundamental Laguerre-Gaussian beam.

The waist radius is given relative to an optimum waist radius, ŵ0, for which the error,

δP50, reaches a minimum. For a decomposition of a perfect tophat beam into Laguerre-

Gaussian modes Borghi et al. [BGS96] found an analytical expression for the optimum

waist radius that minimises the mean squared error as defined by equation (2.4.7). The

result can be given by

ŵ0 =

√
2

N̂
RTH. (2.4.8)

The right plot in Figure 2.9 shows the error δPN̂ , as a function of the maximum order,

N̂ , in the decomposition, if the optimum waist radius is used. An error of 1 % is obtained

for a maximum mode order of N̂ = 60.

The criterion given in equation (2.4.7) is an integral measure which does not give
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Figure 2.10.: Left: Intensity profile of the approximated tophat beam, for a decomposition
with different maximum orders. The waist radius of the fundamental mode is set to the
optimal value, ŵ0 defined in equation (2.4.8). Right: Mode amplitudes of the Laguerre-
Gaussian modes for the decomposition of the tophat beam, for different maximum orders
N̂ . Only even orders are plotted and joined with a solid line as a guide for the reader.

details about the spatial distribution of the remaining error. The left plot in Figure 2.10

shows a cross-section of the intensity distribution of the approximated tophat beam for

different maximum orders considered in the decomposition. The plot only shows one

half of the tophat beam, as it is symmetric about its propagation axis. The intensity of

the approximated tophat beam oscillates around the intensity of the perfect tophat.

Increasing the maximum considered order in the decomposition increases the frequency

of the oscillations, whereas the amplitude decreases. Another feature of the approxima-

tion is the strong overshoot near the discontinuity of the tophat beam. The overshoot

is not changed significantly, if more modes are added to the expansion, only the width

is reduced. This behaviour can be seen in the Fourier series expansion of a rectangular

function as well, and is generally called Gibb’s phenomenon [HH79].

The righ plot in Figure 2.10 shows the power of the N -th order Laguerre-Gaussian

mode in the series expansion. The plot only shows even orders, as odd orders are zero

due to the symmetry of the tophat beam. The single points are connected as guide for

the reader. It can be observed that increasing the number of considered modes in a

decomposition, distributes the total power in the tophat beam evenly for the lower order

modes of up to N = N̂/2, if the optimal waist radius, ŵ0, from equation (2.4.8) is used.

For higher orders the power in the modes drastically decreases.

The reason is that the radius of the modes of lower order are smaller than the radius

30



2.4. Propagation of Tophat Beams

of the tophat beam and virtually all of their power is contained within the aperture

hole. For this case the mode amplitudes are constant due to the normalisation of the

Laguerre-Gaussian modes, and the constant amplitude of the tophat beam. If the mode

radius of the Laguerre-Gaussian modes are compared to the aperture radius, it can be

understood, why the drop in power starts for orders of N ≈ N̂/2. The mode radius of

a Hermite- or Laguerre-Gaussian mode of order N can be defined as the location of the

outermost inflection point of the intensity profile. With the radius of the fundamental

mode, w(z), it can be given by

WN (z) =

√
N +

1

2
w(z). (2.4.9)

For the decomposition the Laguerre-Gaussian modes were evaluated at the waist po-

sition. Hence, for w(z = 0) = ŵ0, the mode radius for a mode of order N = N̂/2

is

WN̂/2 =

√
1 +

1

N̂
RTH ≈ RTH. (2.4.10)

Hence, the drop in power for the upper half of the considered mode amplitudes happens,

because an increasing fraction of the power of the Laguerre-Gaussian mode is located

outside of the aperture.

2.4.2. Fresnel Diffraction of Tophat Beams

In order to evaluate the accuracy of the mode expansion method for the propagation of

tophat beams, the electric field intensity for different propagation distances is computed

and compared to an analytic solution of the Fresnel diffraction of the circular symmetric

tophat beam [TLL05].

Fresnel diffraction is valid, if the Fresnel number, NFres ≥ 1, and the distance from

the optical axis is smaller than the propagation distance, r < z. The Fresnel number is

defined by

NFres =
R2

TH

λ z
, (2.4.11)

for the radius of the aperture or tophat beam, RTH, the wavelength of the light, λ, and

the propagation distance along the optical axis, z. Also the propagation distance should

be much larger than the wavelength, z � λ. If these requirements are met, the electric
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Figure 2.11.: Left: Optimum waist radius computed from equation (2.4.8) for different
tophat radii. Right: Rayleigh range, corresponding to the optimum waist radius, computed
from equation (2.4.13).

field distribution behind the circular aperture is given by [TLL05]

EFres(r, z) =
2π
√
PTH exp(−ikz)
−iλz

∫ RTH

0
J0

(
2π
rρ

λz

)
exp

(
−iπ(ρ2 + r2)

λz

)
ρdρ. (2.4.12)

Figures 2.12 and 2.13 show the electric field amplitude distribution for the tophat

beam, approximated by the mode expansion method, |EMEM(r, z)|, and the analytical

formula from equation (2.4.12), |EFres(r, z)|, as well as the amplitude of the difference,

|EMEM(r, z) − EFres(r, z)|. The electric field is computed at different propagation dis-

tances behind the aperture plane. The propagation distances are given in terms of the

Rayleigh range, zR, of the fundamental Gaussian mode of the mode expansion.

Here and in the following it is assumed that the waist radius of the fundamental mode

corresponds to the optimum, ŵ0, which was defined in equation (2.4.8). The order of

the highest considered mode is set to N̂ = 120.

The optimum waist radius ŵ0, and the corresponding Rayleigh range ẑR, are plotted

against the maximum considered mode order N̂ , in Figure 2.11. The Rayleigh range zR

was defined in equation (2.2.2) and can be given with the optimum waist radius, ŵ0,

from equation (2.4.8) by

ẑR = π
ŵ2

0

λ
=

2π

λ

R2
TH

N̂
. (2.4.13)

To check if the Fresnel diffraction is valid in the considered region one can consult the
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Figure 2.12.: Electric field amplitude for the propagated tophat beam, as computed from
the mode expansion method, |EMEM|, for a maximum considered mode order of N̂ = 120,
and the Fresnel integral from equation (2.4.12), |EFres|. Also, the amplitude of the difference
|EMEM−EFres| is plotted. The electric fields are computed for different propagation distances
up to z = 1 zR after the aperture plane. The propagation distances are given in terms of the
Rayleigh range, zR, of the fundamental Gaussian mode.
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Figure 2.13.: Electric field amplitude for the propagated tophat beam, as computed from the
mode expansion method, |EMEM|, for a maximum considered mode order of N̂ = 120, and
the Fresnel integral from equation (2.4.12), |EFres|, as well as the amplitude of the difference
|EMEM−EFres|, for different propagation distances up to z = 1 zR after the aperture plane.
The propagation distances are given in terms of the Rayleigh range, zR, of the fundamental
Gaussian mode. These plots continue the series of plots of Figure 2.12 to larger propagation
distances.
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Fresnel number from equations (2.4.11) and (2.4.13). It can be computed from the

maximum order in the decomposition and the ratio between the Rayleigh range and the

propagation distance by

NFres =
N̂

2π

ẑR

z
. (2.4.14)

The Fresnel numbers for the plots in the two figures range fromNFres ≈ 64, for z = 0.3 zR,

down to NFres ≈ 3.8, for z = 5 zR and thus, the Fresnel diffraction is valid in this regime.

Following are some numbers for the propagation distances for which the electric field

distributions are plotted: For a tophat beam of 4 mm radius, the Rayleigh range for

the used parameters, N̂ = 120 and w0 = ŵ0, is zR ≈ 79 cm. The plots thus show the

evolution of the tophat beam starting from z = 23 mm after the aperture plane, in the

upper most plot of Figure 2.12, to z = 3.95 m for the bottom plot in Figure 2.13. For

an aperture of 1 mm radius the Rayleigh range is 49 mm and the plots correspond to

propagation distances between z = 1.47 cm and z = 25 cm after the aperture plane.

The comparison between the electric field distributions, computed with the two meth-

ods, show deviations of the order of 10 % for the central region close to the optical axis,

in the plots of shorter propagation distances, in Figure 2.12. However, the difference is

smaller in the outer regions, closer to the edge of the tophat beam. The mode expansion

method does not reproduce the small scale features of the diffracted beam, which can

be observed for the Fresnel diffraction.

For larger propagation distances these features become smaller and structures of larger

scale become dominant which can be approximated by the mode expansion method

with higher accuracy. This is the reason why the accuracy of the mode decomposition

increases for larger propagation distances after the aperture plane. Figure 2.13 shows

the evolution of the tophat beam for larger propagation distances behind the aperture

plane. The difference between the two electric field distributions computed with the

two methods decreases rapidly and monotonically for larger z. Most of the small scale,

oscillatory features that are visible for small propagation distances vanish at propagation

distances equal to the Rayleigh range of the optimally decomposed beam, and the mode

expansion gains in accuracy.

The transversal width of the region for which the mode expansion yields accurate

results, is limited by the mode radius of the highest order Laguerre-Gaussian mode,

WN̂ (z), used in the mode expansion. The mode radius of the mode of order N was al-

ready given in equation (2.4.9) as WN (z) =
√
N + 1/2 w(z). Note that the waist radius,

w0, and the mode radius of the fundamental mode, W0, as defined by equation (2.4.9)
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are not identical W0(0) 6= w0.

The bottom plot in Figure 2.12 shows the intensity distribution after a propagation

by the Rayleigh range of the modal set. The width of the fundamental mode at the

Rayleigh range is
√

2 times its waist radius. The mode radii of the higher order modes

scale accordingly. Hence, at the Rayleigh range, the mode radius of the highest order

mode is
√

2 WN̂ (0) which is

√
2 WN̂ (0) = 2

√
1 +

1

2N̂
RTH ≈ 2RTH. (2.4.15)

This is exactly the location where the intensity of the distribution decreases rapidly.

However, the approximation seems to worsen already at about
√

2 RTH. For a prop-

agation distance of z = 2 zR the mode radius of the highest order mode is roughly

WN̂ (2 zR) ≈ 3.2RTH. This also corresponds to the location where the intensity starts to

drop rapidly, though the difference between the intensity computed by the mode expan-

sion and the Fresnel integral reaches the magnitude of the intensity computed by the

mode expansion at about 2RTH.

These results suggest to define a transversal region for which the mode expansion

method yields accurate results, under the assumption that the optimum waist radius is

used, by the following inequality:

r .
WN̂ (z)√

2
≈ RTH

√
1 +

(
z

ẑR

)2

. (2.4.16)

2.4.3. Far-Field Intensity Distribution of Tophat Beams

The far-field intensity distribution of the electric field behind a circular aperture is the

well known Airy pattern [ST91] which is obtained using Fraunhofer diffraction theory.

The formula to compute the intensity pattern is given by

IAiry(r, z) = I0

[
λz

πrRTH
J1

(
2πrRTH

λz

)]2

. (2.4.17)

Figure 2.14 shows three plots comparing the intensity pattern, computed with the mode

expansion method and the expression for the Airy disk intensity pattern, for different

propagation distances behind the aperture plane. The decomposition of the tophat beam

again uses the optimal waist radius, ŵ0 from equation (2.4.8), and a maximum order of

N̂ = 120. Additionally, the difference, |IMEM − IAiry|, is shown in the plots.

For a propagation distance of z = 20 zR, the intensity distribution computed by the

36



2.4. Propagation of Tophat Beams

0 5 10 15 20 2510−8

10−6

10−4

10−2

100

In
te

n
si

ty
/

r.
u
.

z = 20 zR

IAIRY

IMEM

|IMEM − IAIRY|

0 20 40 60 80 10010−8

10−6

10−4

10−2

100

In
te

n
si

ty
/

r.
u
.

z = 100 zR

0 20 40 60 80 100
Transversal Direction /RTH

10−8

10−6

10−4

10−2

100

In
te

n
si

ty
/

r.
u
.

z = 200 zR

Figure 2.14.: Far-field intensity distribution for the propagated tophat beam, as computed
from the mode expansion method, IMEM, and the Airy disk pattern from equation (2.4.17),
IAiry, as well as the difference |IMEM− IAiry|, for three different propagation distances after
the aperture plane.

mode expansion method, still deviates from the Airy disk pattern at the tails of the

central peak, whereas the central peak can be reproduced with an error of less than

10 %. Starting from about z = 100 zR the two distributions match closely, except for

the dips which are not as pronounced in IMEM. An additional increase of accuracy is

observed for a propagation by z = 200 zR.

The results obtained from the former section about the validity of the approxima-

tion by the mode expansion method in transversal direction, which are summarised in

equation (2.4.16), suggest the following inequality for the far-field, by assuming that

z � zR:

r . RTH
z

zR
. (2.4.18)

This is confirmed by the middle plot in Figure 2.14, where the difference approaches the

level of the intensity given by the Airy pattern at about 100RTH.
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The transversal range shown in the bottom plot does not suffice to show the full extent

of the validity region which reaches up to 200RTH. The Airy disk far-field intensity

pattern of the circular tophat beam, starting around z = 100 zR, is reproduced by the

mode expansion method with high accuracy for a wide range in transversal direction.

2.4.4. On-Axial Electric Field

The on-axial electric field has been known for more than 50 years and was first published

by Osterberg et al. in 1961 [OS61]. Dubra et al. [DF99] derived it in an easier form

which can be given in terms of the aperture radius, RTH, the propagation distance, z,

the wavenumber, k = 2π/λ, and the power contained in the tophat beam, PTH, by

EOA(z) =

√
PTH

π

exp (−ikz)
RTH

[
1− exp [ikz(1− α)]

α

]
, with (2.4.19)

α =

√
1 +

R2
TH

z2
. (2.4.20)

Using the difference of the on-axis electric field, computed by the mode expansion method

and the above formula, as an indicator for the overall accuracy of the mode expansion

method, the error of the approximation can be studied for different aperture sizes and

mode orders in the decomposition. This will show that the Rayleigh range of the op-

timally decomposed tophat beam is the limit for which good approximation can be

obtained.

Figure 2.15 shows the normalised difference, |EMEM − EOA|/|EOA|, of the on-axis

intensity distributions computed by the mode expansion method and the analytical

formula given in equation (2.4.20). The plot on the left shows the difference for three

different aperture sizes: RTH = 0.1 mm, RTH = 1 mm and RTH = 4 mm. The error

drastically decreases for propagation distances longer than the Rayleigh range of the

modal set in the mode expansion. The error reaches its lowest value after propagation

by about z ≥ 20 zR.

However, it should be stressed that the Rayleigh range depends on the square of the

aperture radius, RTH, as was shown in equation (2.4.13),

z

ẑR
=
λN̂

2π

z

R2
TH

. (2.4.21)

Hence, doubling the radius of the aperture, quadruples the propagation distance at which

the same electric field distribution is obtained. This means that the same accuracy of the
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Figure 2.15.: Left: Deviation of the on-axis electric field of the tophat beam approximated by
the mode expansion method, EMEM, and the electric field, EOA, computed by the analytical
formula of equation (2.4.20). The curves show the normalised amplitude of the difference
of the two fields, |EMEM − EOA|/|EOA|, for three different tophat beam radii. Right:
|EMEM − EOA|/|EOA| for three different maximum orders in the mode expansion. In both
plots the propagation distance, z, normalised to the Rayleigh range, zR, of the fundamental
mode in the mode expansion.

approximation is reached at four times the distance, than was obtained for the aperture

of half the size.

The right plot in Figure 2.15 shows the normalised difference, |EMEM−EOA|/|EOA|, for

different maximum mode orders used in the decomposition. The same general trend can

be observed for this case as well: the magnitude of the error between the on-axis intensity

distributions is only depending on the ratio, z/zR, between the propagation distance

and the Rayleigh range. Equation (2.4.21) shows that the ratio depends linearly on the

maximum mode order, N̂ , used in the decomposition. However, an increased number of

modes reduces the minimum error reached for large propagation distances.

An interesting effect can be observed in the data for the smallest shown aperture size

of RTH = 0.1 mm. For this case the difference between the analytical solution and the

mode expansion method slightly increases. In order to understand the origin and its

consequences, the phase term of the analytic expression of equation (2.4.20) needs to be
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Figure 2.16.: Left: Power of the fundamental Gaussian mode in a mode expansion of a
tophat beam, as a function of its waist radius. Right: Comparison of the on-axis electric
field for a mode expansion of a tophat beam of 1 mm radius using the optimal waist radius,
ŵ0, from equation (2.4.8) and the waist radius, w̄0, from equation (2.4.25) that maximises
the power in the fundamental mode. The mode expansion uses a maximum mode order of
N̂ = 120.

studied in more detail. For the assumption that R2
TH/z

2 � 1 it can be approximated by

φ(z) = −k
√
z2 +R2

TH + kz (2.4.22)

≈ −kR
2
TH

2z
+ k

R4
TH

8z3
, if

R2
TH

z2
� 1. (2.4.23)

For the case of the smallest aperture size in Figure 2.15, the second term of order,

R4
TH/z

3 is not negligible anymore and the error between the analytical solution and the

mode expansion method increases. Reducing the radius of the tophat beam amplifies

this effect.

For completeness it should be mentioned that a different goodness-of-fit criterion for

the decomposition into higher-order Gaussian modes, then given in equation (2.4.7), is

used by different authors.

For example, Petrovic et al. [PR03, PR05] use the mode expansion method to study

diffraction losses in free-space optical interconnects, whereas Cagniot et al. [CFAA10]

and Snyder et al. [Sny07] use the mode expansion method to study general diffraction

effects such as the propagation of clipped higher order Laguerre-Gaussian modes. In

contrast to maximising the power in the approximated electric field distribution, the

authors of the aforementioned publications determine the optimum waist radius for the
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2.4. Propagation of Tophat Beams

decomposition by maximising the power in the fundamental mode.

For the case of the tophat beam the power in the fundamental mode is determined by

its amplitude which was given by equation (2.4.2) as

a0,0 =
√

2π w0

[
1− exp

(
−R

2
TH

w2
0

)]
. (2.4.24)

The left plot in Figure 2.16 shows |a0,0|2 as a function of the waist radius. The power

in the fundamental mode is maximised for a waist radius of

w̄0 ≈ 0.892RTH. (2.4.25)

For the two cases of a decomposition using the optimal waist radius, ŵ0, of equa-

tion (2.4.8) and the waist radius, w̄0, that maximises the power in the fundamental

mode, the right plot in Figure 2.16 compares the amplitude of the difference between

the electric field computed by the mode expansion with the analytically calculated on-

axial electric field, |EMEM − EOA|/|EOA|.
It can be seen that using the optimal waist radius, ŵ0, results in a more accurate

approximation of the on-axial electric field for shorter propagation distances behind the

aperture plane.

2.4.5. Expression for the Required Mode Order

The results obtained in the last sections will be used now to deduce an expression for the

necessary mode order in the mode expansion of the tophat beam, as a function of the

radius of the tophat beam and the desired propagation distance after the aperture plane.

It is assumed that the waist radius of the fundamental mode of the mode expansion is

chosen as the optimal waist radius of equation (2.4.8).

In Section 2.4.2 the transverse electric field amplitude is compared for the case of

the tophat beam approximated by the mode expansion method, equation (2.4.5), and

the Fresnel integral of equation (2.4.12). The far-field intensity of the mode-expanded

tophat beam is compared to the Airy disk intensity pattern in Section 2.4.3. The Airy

disk pattern is given in equation (2.4.17).

For the far-field intensity pattern and the electric field in the Fresnel region, the

largest error is seen on the optical axis. In Section 2.4.4 the on-axial electric field

is computed with an analytic expression and compared to the on-axial electric field

computed with the mode expansion method. Independent of the radius of the tophat

beam and the maximum mode order used in the decomposition, the error drastically
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2. Mode Expansion Method for Optical Simulations of Precision Interferometers

decreases for propagation distances larger than the Rayleigh range of the modes in the

mode expansion.

As the error is largely independent of the tophat beam radius and the considered mode

order, the following relation can be given. The aim of the derived formula is to give a

lower limit for the mode order. For a desired propagation distance after the aperture

of z, the required mode order is such that the propagation distance corresponds to the

Rayleigh range of the modes in the decomposition:

z ≡ ẑR =
2π

λ

R2
TH

N̂
. (2.4.26)

and hence, the required mode order can be given by

N̂ = 2π
R2

TH

λz
= 2πNFres, (2.4.27)

with the Fresnel number, NFres, given in equation (2.4.11).

If for example the electric field after a circular aperture of radius RTH = 4 mm is desired

for a propagation distance of z = 20 cm, modes up to order of at least N̂ ≈ 472 are

required. However, these high mode orders are computationally demanding.

For a larger aperture radius of for example RTH = 10 mm and a desired propagation

distance of z = 1 m the mode order should at least be N̂ = 590. For these high modal

orders to consider, other methods might be preferable.

2.5. Propagation of the Fundamental Fibre Mode

Another example of an application for the mode expansion method is the propagation

of fibre modes through the interferometer, as they are sufficiently smooth and non-

Gaussian. Fibre modes are of interest in precision metrological interferometers like the

LRI in GRACE Follow-On or LISA because usually the laser light is delivered by optical

fibres to the optical bench. In the case of GRACE Follow-On, the beam emitted by the

fibre will be split off the central beamsplitter and routed via the triple-mirror assembly

to the other spacecraft. Hence, the far-field intensity pattern will be the fibre mode,

transformed by the fibre outcoupler optics and then propagated through approximately

200 km of free-space. The use of higher-order Gaussian modes will enable the propagation

of fibre modes in interferometers under the limit of the paraxial wave equation.

This section gives a brief introduction to the theory of fibre modes and uses the mode

expansion method to compute the far-field intensity pattern for the case of GRACE
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2.5. Propagation of the Fundamental Fibre Mode

Follow-On. Based on the results of these investigations a simple model for the far-field

intensity pattern is developed and used to efficiently compute the received power in the

simulation of laser link acquisition.

2.5.1. A Brief Introduction to Fibre Modes

Fibre modes were extensively studied in the past with a history of more than 100 years.

A short historical summary was published by Doerr and Kogelnik [DK08] who give a

brief introduction to fibre modes of various types. A good and comprehensive summary

of the theory of optical fibres can also be found in [Buc04], while in [Sny81] the emphasis

is on deriving basic properties of fibre modes by approximating the fundamental fibre

mode by a Gaussian beam.

The fibre modes discussed here are derived under the weak-guiding condition and for

cylinder-symmetric dielectric waveguides with step index profiles. The fibres used for

high precision interferometers usually use polarisation maintaining fibres. These fibres

have additional stress-inducing elements that introduce birefringence [SSOH83]. Here,

polarisation is neglected but the weakly-guiding and symmetrical waveguide is a good

approximation. Also, the phase propagation within optical fibres is of no interest here

and will thus not be covered. Only the amplitude distribution of the fundamental fibre

mode at the end-face of the optical fibre is needed.

The weak-guiding condition for a fibre is met if the following relation for the refractive

indices of the core ncore and the cladding nclad hold:

ncore ' nclad. (2.5.1)

The index profile in step index fibres is characterised by a discontinuous change in the

refractive index at the core-cladding interface. In this case, the modes of the fibre can

be described as the linear-polarised (LP) modes which were first derived by D. Gloge

in 1971 [Glo71]. As the name suggests, due to the weak guidance, the electric field in

the fibre can be well approximated by freely propagating plane waves which are linearly

polarised and have a negligible field amplitude in propagation direction.

The transverse amplitude distribution of these modes is characterised by only two

parameters which are the core radius a and the normalised frequency V . The normalised

frequency determines the number and type of modes that are guided in a fibre.

Manufacturers usually characterise optical fibres in terms of the numerical aperture,

the mode-field radius r0, or cut-off wavelength λcut given at an operating wavelength

λop. They usually do not specify the refractive indices or the core diameter. This section
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2. Mode Expansion Method for Optical Simulations of Precision Interferometers

will briefly review the theory of fibre modes so that the functional dependence between

these quantities and V and a can be given.

The normalised frequency is a function of the vacuum wavelength λ of the light prop-

agating in the fibre as well as the core radius a and the refractive indices of the core

ncore and cladding nclad. It can be expressed by

V =
2πa

λ

√
n2

core − n2
clad . (2.5.2)

The electric field of the linearly polarised LP modes can be given by the following

expressions for the inner core and the cladding region. It is expressed in cylindrical

coordinates (r, φ, z), where r is the radial distance from the centre of the core, φ is

the azimuthal angle in the plane orthogonal to the fibre axis and z is the propagation

distance along the fibre axis. The field amplitude is then given by

E(r, φ, z)l,m =

E0Jl(σr/a) cos(lφ) exp(−iβz), if r ≤ a
E0[Jl(σ)/Kl(τ)]Kl(τr/a) cos(lφ) exp(−iβz), if r > a.

(2.5.3)

The V -parameter is not explicitly visible in this equation but the parameters σ, τ and

β are functions of it. The radial dependence in the core region is described by Bessel

functions of the first kind, Jl, of order l which appear due to the cylindrical symmetry

of the system and the discontinuous boundary at the core-cladding interface.

The amplitude of the electric field outside of the core region, in the cladding, is expo-

nentially damped by the modified Bessel function of the second kind Kl. This can be de-

duced from the asymptotic behaviour for large arguments x, Kl(x) ≈
√
π/(2x) exp(−x)

[BSMM01]. The dependence in azimuthal direction is given by the term cos(lφ), where

l has to be an integer such that the field is reproduced for angles larger than 2π and

l = 0 represents the fundamental mode with cylindrical symmetry.

The propagation along the fibre axis is taken care of by the factor exp(−iβz) with

the propagation constant β that takes the role of the wavenumber k. It varies for

different LP modes and depends on the frequency and the refractive indices. The two

new parameters σ and τ are connected via V =
√
σ2 + τ2 and are constants for a given

V and fibre mode LPl,m. In general, they are functions of the core diameter, refractive

indices and the propagation constant β. The index m does not appear explicitly in

equation (2.5.3) but it is used to index allowed regions for the σ parameter.

The on-axial electric field amplitude can be given in terms of the power contained in

the fibre mode. Here, the impedance of the medium is set to unity as before in the case
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of the Gaussian beam, which leads to the following equation:

E0 =

√
2P

cl

σ

V

1

aJl(σ)

Kl(τ)√
Kl−1(τ)Kl+1(τ)

. (2.5.4)

The constant factor cl which appears in equation (2.5.4), is defined as

cl :=

2π if l = 0,

π if l 6= 0.
(2.5.5)

A derivation of equation (2.5.4) is given in the Appendix A. For a given V , the parameter

σ can be obtained by numerically solving the eigenvalue equation of the LP modes which

is given here because besides approximate formulae it is the more accurate method of

determining σ [Buc04, Sny81]. It reads:

Jl−1(σ)

Jl(σ)
= − τ

σ

Kl−1(τ)

Kl(τ)
. (2.5.6)

The number of solutions of this equation is finite for a given value of V and increases

with increasing V . For 0 < V < 2.405 only one solution exists if l = 0. The index m

for this first mode arising is set to m = 1 and the mode LP0,1 is called the fundamental

fibre mode. If 2.405 < V < 3.832 the two modes that are allowed to propagate are the

fundamental mode and additionally the LP1,1 mode.

These so called cut-off frequencies exist for every guided fibre mode and only the

fundamental mode has a cut-off frequency of Vcut = 0. For a detailed summary of the

designation of the LP modes see one of [Glo71, Buc04]. Thus, if a fibre should be single-

mode, a normalised frequency of V < 2.405 has to be realised. The cut-off frequencies

define the cut-off wavelength for a given fibre by

Vcut =
2πa

λcut

√
n2

core − n2
clad . (2.5.7)

Hence, if the cut-off wavelength is given for a fibre, the normalised frequency V for any

other wavelength λ is just given by

V = (λcut/λ)Vcut. (2.5.8)

For a single-mode fibre the cut-off wavelength for the second fibre mode LP1,1 is usually

given such that Vcut = 2.405. Knowing V for the desired operating frequency, the

eigenvalue equation (2.5.6) can be solved for σ by inserting τ =
√
V 2 − σ2 .
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A useful property of the LP modes is that they are orthonormal such that any light

field at the input of the fibre decomposes into different LP modes. If a Gaussian beam is

coupled under normal incidence and properly matched into the fibre, most of the power

will couple into the fundamental fibre mode as it is the mode that closest resembles a

Gaussian beam [Buc04]. The mode field radius r̂ is now defined as the radius of the

Gaussian fundamental mode that maximises the coupling into the fundamental fibre

mode. An approximate empirical formula can be given that connects the core radius a,

and the normalised frequency V , to the mode field radius by [Mar77]

r̂

a
≈ 0.65 +

1.619

V 3/2
+

2.879

V 6
. (2.5.9)

If the normalised frequency is computed for the same wavelength for which the mode field

radius is known, the core radius a can be computed from equation (2.5.9). Together with

V for the desired operating wavelength, all parameters required to compute the electric

field of the fibre modes with equation (2.5.3) are known.

If instead of the cut-off frequency the numerical aperture of the fibre is given, equa-

tion (2.5.9) can be transformed into a nonlinear equation for the core radius with the

following relations: The numerical aperture, NA, is the sine of the maximum acceptance

angle θNA, of a fibre and can be given in terms of the refractive indices of the fibre and

that of the surrounding medium n0 as

NA = sin θNA =
1

n0

√
n2

core − n2
clad . (2.5.10)

Here the fibre is assumed to be in air or vacuum such that n0 ≈ 1. For this case, the

normalised frequency can be given as a function of NA by (compare to equation 2.5.2)

V =
2πa

λ
NA. (2.5.11)

Inserting equation (2.5.11) into equation (2.5.9), with λ set to the wavelength for which

the mode field radius is given, the core radius can be computed, and successively with

equation (2.5.11) and the desired operating wavelength, the V -parameter.

For the analysis presented in this section, the following fibre parameters were used

which correspond to a Corning PM98-U25A polarisation maintaining PANDA struc-

tured fibre. The mode field radius is given as r̂ = 3.05µm–3.55µm at a wavelength

of λspec = 980 nm and the cut-off wavelength for the second mode LP1,1 is given as

λcut = 870 nm–950 nm. The finite ranges given for the mode field diameter and the

cut-off wavelength result from uncertainties in the core diameter and the normalised
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Figure 2.17.: Cross sectional amplitude profile of the LP0,1 fibre mode as compared to the
Gaussian beam that maximises the input coupling. Left: Profile for the smaller core diameter.
Right: Profile for the larger core diameter.

frequency. To accommodate these uncertainties, the smallest and largest core diameter

are computed and a comparison of the resulting fibre modes is done. From the cut-

off wavelengths the normalised frequency Vspec at the specified wavelength λspec can be

computed by equation (2.5.8), with Vcut = 2.405 to Vspec = 2.135–2.331.

Table 2.1.: Summary of the specified and computed values of the Corning PM98-U25A
PANDA fibre used for the analysis of this section. The specified mode field radius r̂spec and
normalised frequency Vspec are given for λspec = 980 nm. The computed parameters at the
operating wavelength of λ = 1064 nm are Vop, σop-parameter and the mode field radius r̂op.
The best fit Gaussian radius, rfit, was found by fitting a Gaussian profile to the fibre mode
using a least squares fit.

Item

Description Symbol Case 1: smaller core Case 2: larger core

Cut-off wavelength λcut 870 nm 950 nm
Mode field radius r̂spec 3.05µm 3.55µm
Normalised frequency Vspec 2.135 2.331
Core radius a 2.54µm 3.16µm
Normalised frequency Vop 1.967 2.147
σ-parameter σop 1.517 1.575
Mode field radius r̂op 3.27µm 3.77µm
Best fit Gaussian radius rfit 3.15µm 3.70µm
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From there, the core radius, a, can be computed by equation (2.5.9). A higher nor-

malised frequency results in stronger mode confinement and thus a smaller mode field

radius compared to the core radius. For a fixed mode field radius, a higher frequency

will result in a larger core radius as computed from equation (2.5.9). To obtain the range

of possible core radii which fit to the provided specifications, the smaller V parameter

is used with the lower value for the mode field radius, under the assumption that the

errors are uncorrelated. This results in a = 2.54µm–3.16µm.

After computing Vop for the operating wavelength λ = 1064 nm, the σ parameter

can be computed with help of the eigenvalue equation (2.5.6) and the parameter τ , by

τ2 = V 2 − σ2. The specified and computed values for the parameters for the two cases

are summarised in Table 2.1. The resulting field amplitudes for the fundamental fibre

mode are given in Figure (2.17) compared to the Gaussian beam with the corresponding

mode field radius, r̂op. The mode field radius r̂op is computed from equation (2.5.9)

using Vop at the operating wavelength.

If instead of equation (2.5.9) a least squares fit is used to fit a Gaussian profile to the

fibre mode, a slightly different radius is found deviating from the computed value by

roughly 2 %-3.5 % which gives a rough indication of the error of the empirical formula.

The fibre mode and the Gaussian beam with maximised overlap fit well in the core

region, while starting from a radial distance of roughly 1.5 r̂, the two beam types start

to deviate.

The prominent difference between the two beams, however, is the decay in transversal

direction that is, on a log scale, quadratic in the case of the Gaussian beam and linear

for the fibre modes. Thus, the amplitude distribution will change differently under

propagation.

2.5.2. Propagation of LP0,1 with the Mode Expansion Method

The propagation of the LP0,1 mode will be studied here with the use of the mode

expansion method which was described in Section 2.3. The mode expansion method is

well suited to simulate the propagation of the fibre mode as the fibre modes are non-

Gaussian but sufficiently smooth to be well approximated by a suitable set of higher

order Gaussian modes.

For the decomposition of the fibre mode the implementation of the mode expansion

in IfoCad was used. At first, the electric field amplitude of the fibre mode at the fi-

bre end-face was computed on a regular square grid with help of the analytical formula

of equation (2.5.3). The core radius and normalised frequency were set to the values

computed for the Corning PM98-U25A polarisation maintaining fibre which are sum-
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marised in Table 2.1.

Due to the rectangular symmetry of the underlying grid, Hermite-Gaussian modes were

used as the basis set for the mode expansion, and the mode amplitudes were computed

according to equation (2.3.11). However, the circular symmetry of the fibre mode was

taken into account by limiting the mode expansion to modes of even orders. The order

N of a Gaussian mode was defined in equation (2.3.18) as N = m + n for the case of

Hermite-Gaussian modes and N = 2p + |l| for the case of Laguerre-Gaussian modes.

Here, m and n are the horizontal and vertical mode indices of the Hermite-Gaussian

modes and p and l are the radial and azimuthal mode indices of the Laguerre-Gaussian

modes. The series expansion of a circular symmetric electric field distribution into

Laguerre-Gaussian modes contains only modes for which the azimuthal index l = 0.

The order of the modes contained in the series expansion is therefore given by N = 2p,

for p = 0, . . . , pmax. Hence, also the expansion into Hermite-Gaussian modes contains

only even orders, as the order of a mode is preserved under a basis transformation from

Laguerre- to Hermite-Gaussian modes. For further details see Section 2.3.

The phase front of the fibre mode is that of a plane wave under the weak-guiding

approximation such that the waist position of the Hermite-Gaussian modes was set to

coincide with the fibre end-face. The waist radius of the fundamental mode, w0, in the

set of Hermite-Gaussian modes was set to the mode field radius w0 = r̂ that was derived

with the empirical formula given in equation (2.5.9). As this particular choice of the

mode field radius maximises the coefficient of the fundamental Gaussian mode in the

decomposition, it leads to a reasonably small number of required higher order modes.

The result of the mode decomposition is shown in Figure 2.18 for the two cases of the

last section. Shown is the sum of the power over modes with the same order N = m+n

for a decomposition in Hermite-Gaussian modes. The left plot in Figure 2.18 only shows

the non-zero even orders and the connecting line is meant as a help for the reader. It can

be seen that the power in the fundamental mode is quite high, reaching |a0,0|2 = 0.986

for the smaller core radius and |a0,0|2 = 0.994 for the larger core radius, for the case of

a fibre mode of power P = 1.

A Gaussian beam is already a good approximation to the fibre mode in terms of the

strong localisation of the beam power. To model the propagation of the fibre mode after

it emerged into free-space and keep high precision of the amplitude distribution, also in

the flanks, the higher order modes are needed. To estimate the number of higher order

modes necessary to approximate the fibre mode, the right plot in Figure 2.18 shows a

analytical amplitude distribution compared to the approximation by a set of Gaussian

modes for different maximum orders N , considered in the mode expansion.
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Figure 2.18.: Left: Power in the modes of the same order for the decomposition of the two
LP0,1 modes presented in Table 2.1. The waist radius of the Gaussian fundamental mode is
chosen as the mode field radius of the fibre mode. Only even orders are plotted. The line
through the single points is meant as a guide for the reader. Right: Electric field amplitude
for the LP mode and the approximating mode expansion for different maximum orders N ,
considered in the mode expansion. The fibre mode corresponds to the case with the smaller
core radius.

A good approximation within about 6 mode field radii can already be obtained for

a maximum order of N = 40. Adding higher orders only slightly increases the region

for which the deviation between the exact and approximated LP amplitudes is small.

This is due to the fact that the mode radius of the higher order modes increases only

proportional to
√
N , making it necessary to increaseN quadratically for a linear increase

in the width of the matching region. The mode radius of a higher-order mode was defined

in equation (2.4.9) as W (z) =
√
N + 1/2 w(z), as a function of the beam radius w(z)

of the fundamental Gaussian mode which was defined in equation (2.2.3).

The propagation of the LP mode in free-space is now accomplished by propagating

the set of higher order Gaussian modes. In order to determine the accuracy of the

approximation for the propagated fibre mode an analytical expression for the normalised

far-field intensity pattern of the fundamental fibre mode is used which was derived by

Gambling et al. [GPMD76] based on the work of Snyder [Sny69]. For α = ak sin θ it is

given by
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Figure 2.19.: Intensity pattern of the propagated Hermite-Gaussian expansion of the LP01

mode for the smaller core case of the last section for expansions including different maximum
orders of Hermite-Gaussian modes. The intensity pattern is compared to the analytical far-
field intensity pattern of equation (2.5.12). The Hermite-Gaussian modes are propagated by
3.394 cm in homogeneous Fused Silica with an index of refraction n = 1.44963. The width
of the fundamental mode is w(z = 3.394 cm) = 2.42 mm.

|E0,1|2 =


σ4τ4

(σ2 − α2)2(τ2 + α2)2

[
J0(α)− αJ1(α)

J0(σ)

σJ1(σ)

]2

if σ 6= α

σ4τ4

4V 4

1

σ2J2
1 (σ)

(
J2

0 (α) + J2
1 (α)

)2
if σ = α.

(2.5.12)

The intensity distribution is given on a sphere with radius equal to the propagation

distance, with its centre at the fibre end-face and θ being the polar angle between the

fibre axis and the direction for which the intensity should be computed. The normalised

frequency V and the core radius a are defined as before. Also, σ and τ are the fibre

mode parameters connected to the normalised frequency by V 2 = σ2 + τ2 and k is the

wavenumber in the medium surrounding the fibre.

Anticipating a result from the next section for comparison, the LP0,1 fibre mode was

decomposed into a set of Hermite-Gaussian modes. Here, again the waist location is set

to coincide with the fiber end-face and the waist radius of the fundamental Gaussian

mode is set to the mode field radius of the fibre mode, w0 = r̂. After this, the set

of higher-order modes is propagated through Fused Silica, with an index of refraction

of nFS = 1.44963, by a distance of 3.394 cm. Thereafter, the electric field intensity

was computed and compared to the analytical expression of equation (2.5.12). The

51



2. Mode Expansion Method for Optical Simulations of Precision Interferometers

computed field distribution corresponds to the field distribution at the end surface of

the fibre outcoupler that is discussed in the next section.

The comparison is excellent as can be seen in Figure 2.19. For orders of N = 40 the far-

field intensity can be reproduced by up to 6 times the width of the fundamental Gaussian

mode, whereas for N = 120 the approximation agrees to up to 10 times the width. The

width of the propagated fundamental mode was computed to w(z) = 2.42 mm. In the

following part of this chapter, the waist radius of the fundamental Gaussian mode that

is used to decompose the fibre mode is always set to the mode field radius of the fibre,

as computed by equation (2.5.9). The width of the fundamental Gaussian mode as it

propagates will be called the mode radius of the fibre mode and denoted by the usual

w(z).

The results of this sections are now used in the following section to determine the

expected far-field intensity pattern for the case of a special design of a fibre outcoupler

on the GRACE Follow-On optical bench.

2.5.3. GRACE Follow-On Far-Field Intensity Pattern

Simulating the far-field intensity pattern is important for acquisition as it determines

the dependence of the power received by the distant spacecraft on misalignments of the

transmitted beam. For this analysis a special design for a fibre outcoupler is assumed

which is depicted in Figure 2.20. The actual design for the GRACE Follow-On mission

uses an aspheric end-surface (private communication M. Dehne, STI, 2013). However,

aspherical surfaces cannot be simulated by the mode expansion method in IfoCad as it

is implemented at the moment. Due to this, the end-surface of the fibre outcoupler will

be approximated by a parabolic surface with a radius of curvature of RS.

The fibre outcoupler is assumed to be a monolithic block of Fused Silica with index of

refraction of nFS = 1.44963 to which the fibre is rigidly attached. The end surface of the

outcoupler is a parabolic surface with a radius of curvature of RS = −10.527 mm. The

length of the outcoupler is chosen such that the fibre end-face is located at the back focal

plane of the curved front surface. This means that the length is fixed to z1 = 33.94 mm.

This also implies that the waist position of the modal set used in the decomposition is

close to the end surface of the fibre outcoupler such that here, w(z) ≈ w0.

In order to determine the far-field intensity pattern, the fibre mode amplitude is

analytically calculated for the small core radius case of the former section. This is

done because the mode field radius of the fibre mode of the smaller core fibre, at the end

surface of the fibre outcoupler, is w(z) = 2.42 mm. This is closer to the nominal Gaussian

beam expected for GRACE Follow-On of w0 = 2.5 mm. The amplitude distribution of
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2.5. Propagation of the Fundamental Fibre Mode

Figure 2.20.: Schematic of the simulated setup. The fibre mode is decomposed into a set of
Hermite-Gaussian modes at the fibre end-face and propagated via the fibre outcoupler to the
exit aperture with radius Rea. After clipping at the exit aperture, the beam is propagated to
the remote spacecraft where the intensity pattern is calculated. The distances are assumed
to be: z1 = 33.94 mm, z2 = 2.38 m and z3 = 220 km.

the fibre mode is then decomposed into a set of higher order Hermite-Gaussian modes

up to order N = 120.

The set of Hermite-Gaussian modes is then propagated in Fused Silica to the tip of

the curved interface of the fibre outcoupler. The assumption is that the fibre is perfectly

aligned and that the beam passes through the glass-air interface on the optical axis of

the parabolic surface. In this case the effect of the lens can be taken into account by

transforming the q-parameter of the Gaussian beam. Generally, the ABCD-matrix for

the transformation of the Gaussian beam at the curved interface between Fused Silica

with a refractive index of nFS = 1.44963 and vacuum with n0 = 1 and radius of curvature

RS is [MS69]:

M =

 1 0

nFS − 1

RS

1

nFS

 . (2.5.13)

After the beam is transformed through the lens, the Gaussian beam is propagated by

z2 = 2.38 m to the exit aperture with radius Rea. The field distribution in the exit

aperture is computed and the field is again decomposed into a different set of Hermite-

Gaussian modes of maximum order N = 120. The waist radius w0 of the Gaussian

modes is chosen to be the optimal radius of equation (2.4.8), namely w0 = Rea/
√
N/2

for a circular aperture. The waist position is set to coincide with the aperture plane.

The Hermite-Gaussian modes approximating the clipped beam are then propagated by

z3 = 220 km and after this, the intensity pattern is computed.
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Figure 2.21.: Left: Intensity pattern behind the curved interface for several propagation
distances z2 after passing through the front surface of the fiber outcoupler. Here, no clipping
at the exit aperture is simulated. The curve for z2 = 0 m shows the field directly at the curved
surface, which corresponds to the field-distribution shown in Figure 2.19. Right: Far-field
intensity pattern of the clipped and transmitted fibre mode in 220 km distance at the remote
spacecraft and for comparison the fundamental Gaussian mode in the series expansion. The
radius of the exit aperture, Rea, is varied by multiples of w(z2 = 0) = 2.42 mm, which is
approximately the mode radius of the fiber mode at the exit aperture. The horizontal axis is
normalised to the mode radius of the propagated fiber mode which is w(z3) = 29.7 m with
z3 = 220 km.

In the left plot of Figure 2.21 the change of the intensity pattern after the curved

surface of the fiber outcoupler is shown for several propagation distances, z2. The field

at z2 = 0 m corresponds to the field distribution directly at the surface and coincides

with the intensity distribution shown in Figure 2.19 for N = 120. A comparison was

made also for different maximal orders of the decomposition in order to investigate if

additional modes alter the intensity pattern. It was found that convergence was reached

starting from mode orders of N = 100.

The Rayleigh range of the Hermite-Gaussian beam used in the expansion is equal to

zR ≈ 17.3 m and generally the biggest changes to the field should be seen within a region

of the order of zR because the relative phase shift between the higher-order modes is due

to the Gouy phase. For a stigmatic mode this is equal to

ζ(z3) = (N + 1) tan−1

(
z3

zR

)
. (2.5.14)

In the plot a stable state of the intensity pattern, that only scales linear with the propa-

54



2.5. Propagation of the Fundamental Fibre Mode

gation distance is reached at z3 ≈ 40 m, i.e. roughly of 2.3 zR. From there on, only small

ripples in the left and right tail of the distribution remain.

In the right plot of Figure 2.21 the far-field pattern for a propagation distance of z3 =

220 km is shown for different radii of the exit aperture and compared to the propagated

Gaussian beam maximising the coupling into the fibre mode, which was computed with

the help of equation (2.5.9). The Gaussian beam and the propagated fibre mode match

well in the transversal direction up to about 1.5 times the width of the Gaussian beam.

After this, the propagated fibre mode falls off significantly slower than a Gaussian beam.

If the outgoing beam is clipped by the exit aperture at the mode radius of the fibre mode

w(z2), a significant change of the far-field intensity pattern can be observed.

For larger aperture sizes the effect decreases but does not vanish. If for example the

beam is clipped at 2w(z2) the intensity pattern in the far field is only slightly different

from the non-clipped beam for intensities larger than 10−4 of the on-axis intensity. For

clipping at 3w(z2) hardly any effect of the aperture can be seen at all, but the difference

to a Gaussian beam remains.

The far-field intensity of the fibre mode transformed by the parabolic surface is seen

to be equal to the intensity of the fibre mode itself, except for scaling, which is due to the

imaging properties of the perfect lens, when the fibre is located at the back focal point.

During the laser link acquisition of the LRI on GRACE Follow-On, the far-field intensity

distribution determines the power that is received by the spacecraft, depending on the

misalignment of the transmitted beam relative to the line-of-sight between the satellites.

The results obtained in this section give a model of the far-field intensity pattern, based

on a realistic beam model and output optics and consider clipping of the transmitted

beam.

2.5.4. Analytical Model for the Far-Field Intensity Pattern

The computation of the far-field intensity in the high-fidelity simulation of the laser link

acquisition for GRACE Follow-On should be fast and easy to implement, as it has to

be computed several 10 000 times for different beam alignments in order to compute the

amplitude of the heterodyne signal. For this, a simple analytical expression taking the

decrease of the amplitude with propagation distance and the divergence of the beam

into account is preferred.

As no analytic expression for the intensity pattern was found a new model was de-

veloped based on the observation that the shape of the intensity pattern resembles that

of the LP0,1 fibre mode as found in the last section for the case that clipping of the

beam can be neglected. If an electric field can be decomposed into a finite number of
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Figure 2.22.: Comparison between the far-field intensity pattern as computed by the mode
expansion method and the simple model developed in this section. The comparison is made
for various propagation distances over the expected spacecraft separation in the GRACE
Follow-On mission. The transmitted power is set to 13.7 mW. The propagated fibre mode is
the small core case of the former sections.

higher-order modes with sufficient accuracy the far-field properties of the decomposed

beam are given by the far-field properties of the higher-order modes. The change of the

beam parameters upon propagation in the far-field, i.e. for z3 � zR, are given by:

R(z3) ≈ z3

w(z3) ≈ w0

zR
z3 = θ0 z3, (2.5.15)

meaning that the wavefronts are approximately spherical and the width of the modes

scales linear with the propagation distance. Again most of the power in the fibre mode

is in a Gaussian fundamental mode and the far field properties should be governed by

the far-field properties of this mode.

The setup that is simulated here is the same that was studied in the last section

and was shown in Figure 2.20. The fiber mode for the fibre with the smaller core is

decomposed into a set of higher-order Gaussian modes and then propagated to the end

surface of the fibre outcoupler. It is then transformed by the curved glass-air interface

and finally propagated into the far-field. The smaller core fibre is used as its mode radius

is closer to the nominal beam radius expected for the LRI on GRACE Follow-On.

At the end surface of the fibre outcoupler the waist radius of the Gaussian modes can

be computed as w0 = 2.43 mm. The beam radius as it propagates by a distance z3 is
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denoted by w(z3). In the far-field the beam radius can be approximated by

w(z3) ≈ θ0 z3, with θ0 = λ/(πw0). (2.5.16)

The expression for the electric field of the fibre modes in equation (2.5.3) only depends

on the ratio of the radial coordinate to the core radius a. The core radius is proportional

to the mode field radius r̂ for fixed σ, τ and hence V , and can be written with the

proportionality constant α as a = α r̂.

Correct scaling of the intensity pattern can be achieved by using the scaling of the

mode field radius with the propagation distance taken from equation (2.5.15) which

yields

a(z3) = αw(z3). (2.5.17)

The proportionality constant can be set to α = a/r̂ in order to resemble the shape of the

intensity pattern of the fiber mode itself. Rewriting the electric field of the fundamental

fibre mode as a function of the mode field radius and using the connection between the

power in the beam and the on-axis electric field E0 from equation (2.5.4), the following

model for the far-field beam is obtained:

|EFF(ρ, z)|2 =
P

π(αw(z))2

V 2

τ2J2
1 (σ)


J2

0

(
σρ

αw(z)

)
, if ρ ≤ αw(z)[

J0(σ)

K0(τ)

]2

K2
0

(
τρ

αw(z)

)
, if ρ > αw(z).

(2.5.18)

Figure (2.22) shows a plot comparing the simple model for the far-field of equation (2.5.18)

with the far-field computed with the mode expansion method neglecting clipping at the

exit aperture. Over the range of expected spacecraft separations for GRACE Follow-On

the developed model yields accurate results and can be used as an efficient method to

compute the far-field in the acquisition simulation.

2.6. Conclusions

In this chapter an introduction to heterodyne interferometry was given with a derivation

of the heterodyne photocurrent. Subsequently, the longitudinal pathlength signal and

the differential wavefront sensing signal were presented.

The mode expansion method is introduced, after a presentation of Gaussian beam
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tracing, as a tool to simulate high-precision interferometers under the paraxial approx-

imation of the scalar wave equation for non-Gaussian beams. The mode expansion

method makes use of the fact that both the Laguerre- and Hermite-Gaussian modes

form complete orthonormal sets of solutions of the paraxial wave equation. Any light

field given in an input plane can be expressed as a unique series expansion of these

modes.

The propagation of higher-order Gaussian modes through a paraxial optical system

can be handled by transforming the q-parameter of the modal set by means of the ABCD

formalism, whereas the amplitudes of the modes are invariant under these transforma-

tions. As such, the mode amplitudes in a mode decomposition need to be computed only

once at the input plane, while the propagation through the paraxial system involves just

a few arithmetic operations.

The mode expansion method was implemented into IfoCad, an interferometer simu-

lation toolkit developed at the Albert Einstein Institute. It was successfully applied to

the propagation of the important cases of a tophat beam and a fundamental fibre mode.

For the case of the tophat beam, the validity of the mode expansion method could be

verified by comparisons to analytical expressions for Fresnel- and Fraunhofer diffraction.

If an optimal waist radius is used for the decomposition, the range in transversal direc-

tion for which the approximation yields accurate results, could be linked to the mode

radius of the highest order mode considered in the series expansion.

A subsequent comparison of the on-axial electric field to a known analytical solution

yields an expression for a lower limit of the required mode order in a mode expansion

of the tophat beam. The obtained expression is a function of the tophat beam’s radius

and the desired propagation distance after the aperture plane.

The mode expansion method accurately computes the propagation of tophat beams

for small aperture radii, even for small propagation distances. Also, the far-field inten-

sity can be reproduced with high accuracy for arbitrary aperture radii. However, the

dependence of the required mode order to the square of the aperture radius makes it

computationally expensive to simulate the electric field close to the aperture for large

aperture radii. For cases where this is required different simulation tools might be a

better choice. This needs to be evaluated in future studies.

As a second application of the mode expansion method the propagation and transfor-

mation of the fundamental fibre mode was investigated. The far-field intensity pattern

at the location of the distant spacecraft could be obtained for the case of a specific de-

sign of a fibre outcoupler on the GRACE Follow-On optical bench. Clipping at the exit

aperture was considered for different clipping ratios. It could be found that clipping at
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more than twice the radius of the fibre mode leads to negligible changes of the far-field

intensity pattern as compared to the case of no clipping. For the case of negligible clip-

ping, a comparison of the far-field intensity distribution of the transformed fibre-mode

with the shape of the fundamental fibre mode at the fibre end-face leads to an analytical

model for the far-field intensity distribution with more than sufficient accuracy which

can be efficiently evaluated.

As a result, one can put to record that the mode expansion method is well suited

to simulate the electric field of non-Gaussian light fields, with some restrictions for the

simulation of hard-edge apertures. For the investigation of the far-field intensity pattern

of the fundamental fibre mode for the case of the LRI, the actually aspheric surface

of the fibre outcoupler had to be approximated by a parabolic surface. Combining the

description of aspheric surfaces with the description of non-Gaussian beams by a set of

higher-order modes would be highly valuable. Also, in the decomposition of the tophat

beam an effect generally known as Gibbs phenomenon could be observed that originates

due to the discontinuous boundary of the electric field amplitude at the edge of the

tophat beam. Here, techniques such as low pass filtering the input field might increase

the accuracy of the approximation.
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3. Laser Link Acquisition for Inter-Satellite

Laser Interferometers

In the following chapters laser link acquisition for the case of the GRACE Follow-On

mission is studied. This chapter is meant as an introduction to give background informa-

tion on the design of the Laser Ranging Interferometer (LRI), whereas In the following

chapters, the information which is given here will be used to design and investigate an

algorithm for the detection of the heterodyne signal and explain a high-fidelity simula-

tion that was developed as part of this thesis in order to test acquisition procedures.

After this, the actual acquisition process will be studied. At first, results for an initial

line-of-sight calibration scan are given and in the subsequent chapter an algorithm for

an autonomous laser link acquisition is discussed.

This chapter starts with a short summary of work that was done on laser link ac-

quisition for other space missions and relates this to the work done in this thesis by

explaining the main differences. Thereafter, the focus is on laser link acquisition for

GRACE Follow-On.

At first, the laser ranging interferometer is explained by highlighting the subsystems

important for acquisition. This is followed by a summary of the sensor signals that are

available for acquisition and a presentation of the main noise sources. The noise sources

are separately discussed for the case of additive noise sources such as laser shot noise or

electronic noise and for the case of non-additive noise sources such as pointing noise of

the beam axes and laser frequency noise. The relation between the beatnote frequency of

the heterodyne signal and the Doppler shift due to the relative motion of the satellites is

discussed after this. The chapter ends with a discussion on possible acquisition schemes.

3.1. Introduction

One of the critical phases of missions exploiting inter-satellite laser interferometry such

as GRACE Follow-On [SHD+12], is to establish a working laser link after launching the

satellites into space. These missions use heterodyne interferometry to measure the dis-

tance changes between the satellites. The heterodyne signal amplitude strongly depends

on the alignment of the two interfering beams and precise pointing of the laser beams
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is required in order to enable signal detection. The finite frequency bandwidth of the

photoreceiver also limits the frequency difference between the two interfering beams such

that a signal is still measurable.

In nominal operation the beam axis alignment is automatically controlled using dif-

ferential wavefront sensing [MMRW94a] to correct for relative wavefront tilts between

the received beam and the local oscillator beam. The frequency is also automatically

held in the frequency band of the photodiodes by offset phase locking the laser on one

of the spacecraft to the received light. The laser on the other spacecraft is locked to a

reference cavity.

However, initially after launch, unknown biases of attitude sensors, misalignments due

to launch or thermal effects, result in possibly large uncertainties, relative to the beam

divergence, in the initial beam alignment and in the frequency of the lasers. The largest

contribution to these uncertainties are static biases which need to be identified by the

initial laser link acquisition. Once these biases are known, the resulting uncertainty

space for subsequent acquisitions is much smaller. The problem of laser link acquisition

can thus be divided into two separate problems. On the one hand, the initial laser link

acquisition to determine the large initial biases, and on the other hand reacquisitions

over much smaller uncertainties.

3.1.1. Previous Work on Laser Link Acquisition

Laser link acquisition has been studied in the past by several authors in the context

of inter-satellite laser communication between satellites in Low Earth orbits, for exam-

ple between the NFIRE and TerraSAR-X satellites [HKC+10, LS05]. Also ground-to-

satellite links have been discussed [TYY+04] and laser links between satellites in Low

Earth and geostationary orbits, for example by the Japanese OICETS satellite [JTN+99]

and the french SPOT-4 satellite [TNO02], who both established a working laser link to

the European ARTEMIS satellite. Furthermore, the acquisition procedure and control

algorithms for the fundamental physics mission LISA has been studied [MHK05, CG09].

One noticeable difference between the aforementioned and this study is that the pay-

load of the satellites include dedicated hardware to simplify acquisition. These are for

example, dedicated high power, high divergence beacon beams that cover big portions of

the spatial uncertainty cone [PPS86, JTN+99, LYMT11] or beam shaping mechanism to

widen the narrow measurement or communications beam [HHL+07, GKK+04]. Besides

that, beaconless acquisition was studied by Hindman et al. [HR04] or Guelman et al.

[GKK+04], though these instruments rely on a beam-shaping mechanism to increase the

beam divergence.
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Another important part of the payload of all of these satellites are dedicated acquisition

sensors for coarse and fine pointing. Some of the designs use a combination of a wide

field-of-view (FOV) sensor with low pointing accuracy and a fine pointing or tracking

sensor with high accuracy in a two stage process. These are proposed to be used by

LISA and OICETS. These missions use focal plane array detectors [Cox85, IK93], such

as a CCD sensor, with FOV sizes of several beam widths to roughly point the beam

in the right direction and steer it into the FOV of the fine pointing sensor which has a

smaller FOV but a higher accuracy. The control of the beam direction is then handed

over to the fine pointing sensor to sufficiently narrow down the pointing error to be able

to acquire lock.

Other possibilities include a single sensor with different modes for coarse and fine

pointing. The Laser Inter-satellite Transmission Experiment (LITE) [KS89, Bor93,

GBD94] uses a combination of four high sensitive avalanche photodiodes (APD) with the

output summed for coarse pointing and a differential measurement between the APDs

for fine pointing. However, all of the above sensors have in common that the sensor

output is independent of the pointing of the outgoing beam which significantly reduces

the complexity of determining the correct pointing direction.

3.1.2. Laser Link Acquisition for GRACE Follow-On

The design choices made for the LRI on GRACE Follow-On do not include dedicated

acquisition hardware, due to tight constraints on available resources. For example, no

beam shaping mechanisms or acquisition sensors are available. As a result the sensors

to be exploited for laser link acquisition in GRACE Follow-On are the same quadrant

photodiodes (QPD) that are used for the science measurement. Analysis show that

using the QPD to directly measure the incoming light with the local laser switched off is

not feasible due to the received low power levels and that exploiting the interferometer

signals is the best option to detect the signal of the remote spacecraft [SH11].

Given the current design of the LRI, using the heterodyne signal for acquisition leads

to a coupling of the sensor output to local and remote beam axis misalignments simulta-

neously. Misalignments of the remote spacecraft’s beam axis to the line-of-sight (LOS)

between the satellites reduces the received power. Relative tilts between the local oscil-

lator and the received beam reduce the heterodyne amplitude due to a loss in heterodyne

efficiency. Additionally, the sensor output is dependent on the frequency of the beat-

note between the received and transmitted beam which has to be within the photodiode

bandwidth between 4 MHz and 16 MHz, in order to be detectable. The initial frequency

uncertainty is expected to be larger than the detection bandwidth making it necessary
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Figure 3.1.: Left: Important geometric parameters for the spatial acquisition scan. Shown
are the uncertainty cone radius, Ruc, the maximum separation between the line-of-sight and
the scan track, ĥ, the spacecraft separation, DS/C, and the difference between the estimated
and real line-of-sight (LOS). Right: The frequency of the free-running slave laser has to
be swept, in order to place the beatnote frequencies of the two spacecraft into the usable
photodiode bandwidth.

to scan the frequency.

Use of the heterodyne signal render the acquisition process in GRACE Follow-On a

search in five degrees of freedom, over a possibly large uncertainty space. An additional

constraint is that there will be no direct communication between the satellites. Figure 3.1

summarises the acquisition problem. In the left panel, the two spacecraft are shown,

with the true LOS connecting them. The estimate of the LOS produced by either

spacecraft deviates from the true LOS by a predetermined maximum, although the true

misalignment is unknown. The range of angles around the LOS that are bounded by the

expected maximum misalignment is the uncertainty cone. The maximum misalignment,

Ruc, is called the uncertainty cone radius. As the true alignment is unknown, each

spacecraft has to scan its transmitted beam over the uncertainty cone, in order to enable

signal detection. The maximum separation between the line-of-sight and the scan track,

ĥ, that occurs during a spatial scan sets a lower limit to the maximum signal power that

will be detected during the scan. Hence, determining, ĥ for the considered spatial scan

patterns is essential for a successful acquisition. The right plot in Figure 3.1 depicts a

frequency scan. The laser frequency has to be tuned over a potentially large uncertainty

interval, such that the beatnote frequency at some point enters the usable photodiode

bandwidth.
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3.2. GRACE Follow-On Laser Ranging Interferometer

Figure 3.2.: Shows the design of the GRACE Follow-On laser ranging interferometer (LRI),
including the optical benches with photodiodes and fine-steering mirrors (FSM) and the triple
mirror assembly (TMA). The K/Ka-band ranging instrument, occupying the main axis, is
shown in the centre. Adapted from [SHD+12].

3.2. GRACE Follow-On Laser Ranging Interferometer

The LRI on board GRACE Follow-On is presented in Figure 3.2. Shown are the two

spacecraft and a schematic of the LRI layout. The principle of operation is well described

in [SHD+12] and here only the parts important for acquisition will be mentioned in

more detail. Although both spacecraft carry identical payloads, the LRI components

will be operated in two different modes. One spacecraft, from now on called the master

spacecraft, will be frequency stabilised to an ultra-stable cavity [TFdV+11]. The laser

on the other spacecraft will be offset phase locked to the received laser light from the

master, once a working laser link has been established. The latter spacecraft will be

called slave spacecraft within the rest of this thesis.

This implies two important points for acquisition. First, the absolute frequency of

the master laser will be unknown after it has been locked to the reference cavity. Also

the absolute frequency of the slave laser will be unknown because it is initially operated

free-running. Secondly, due to the fact that the slave laser will initially be operated

free-running, the beatnote frequency will be subject to frequency noise.

An additional complication is that the spacecraft will move with respect to each other
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which will introduce a Doppler shift of the laser frequency. The Doppler shift might be

as large as 3 MHz. This additional frequency offset has to be taken into account during

acquisition since the bandwidth of the photodiode is limited.

The optical bench of the LRI also includes a fine steering mirror (FSM) which in nom-

inal operation steers the local oscillator beam axis in order to align it with the beam axis

of the incoming received beam. The FSM coordinate system and tilt angles are shown

in the right panel of Figure 3.3. The automatic beam pointing is accomplished using

differential wavefront sensing (DWS) signals [MMRW94a] as error signals. Matching the

alignment of the local oscillator to the alignment of the received beam also aligns the

beam transmitted to the other spacecraft to the received beam. This is achieved because

the local oscillator beam is split at the central beamsplitter and most of the light will

be directed through the triple-mirror assembly (TMA) and used as the transmit beam

(TX) which is sent to the distant spacecraft.

During acquisition the FSM is used to scan the spatial uncertainty cone. This illus-

trates that a tilt of the FSM simultaneously affects the signal amplitude of the measure-

ment on both spacecraft, since tilting the FSM will tilt the local oscillator beam (LO)

with respect to to the received beam (RX) which decreases the heterodyne efficiency. On

the other hand, it will change the direction of the TX beam relative to the nominal LOS

which alters the power that is received by the remote spacecraft. This means that only

if the beam axes of the transmitted beams of both spacecraft are aligned with sufficient

accuracy the heterodyne signal will be intense enough to be detectable.

The properties of the TMA ensure that a beam being reflected from it will be sent

in exactly the opposite direction of the incoming beam, independent of the angle and

position of the beam axis. Misalignments of the individual mirrors of the TMA though,

will result in deflection from the nominal reflection axis. This coalignment error γTMA

is assumed, here, to be less than 40µrad. The effect of a non-zero coalignment error

is a misalignment of only the transmitted beam. Hence, for perfect alignment of the

local oscillator with the received beam, the outgoing beam will be misaligned by the

coalignment error and the power received by the remote spacecraft will be decreased.

See Figure 3.3 for a schematic of the triple-mirror assembly and the coalignment error.

The quadrant photodiode (QPD) on the optical bench, is taking the science data

during science operations and is the only available acquisition sensor. The measurements

taken by the QPD will be sent to the phasemeter which computes the amplitudes and

the phases of the photocurrent of each of the segments. For details on the phasemeter

for GRACE Follow-On see, for example [WFS+06]. The phasemeter will also be used to

run the detection algorithm discussed in the next chapter.
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Figure 3.3.: Left: Triple-mirror assembly (TMA) with incoming and outgoing beam. The
intersection point of the mirror surfaces is aligned to the gravitational-reference point of the
accelerometer. For a non-perfect TMA with mirror misalignments the outgoing beam axis
will be misaligned from the nominal beam axis by the TMA coalignment error, γTMA. Right:
Fine-steering mirror (FSM) coordinate system and tilt angles, αFSM and βFSM, in the two
orthogonal directions.

The average of the phases of the four segments is the longitudinal signal, encoding the

distance changes between the two satellites. Differences of the top and bottom or the

Table 3.1.: Overview of the salient parameters for the beams, photodiode and the optical
bench used in this analysis.

Item

Description Symbol Value Unit

Wavelength λ 1064 nm
Waist radius w0 2.5 mm
Beam quality factor M2 1.0 - 1.2 r.u.
Nominal divergence half angle θ0 135.5 µrad
Transmitted power PTX 13.7–19 mW
LO power at QPD PLO 0.54–0.93 mW
Receive aperture radius ra 4 mm
Photodiode radius RPD 0.5 mm
Photodiode responsivity ρPD 0.6 A/W
Photodiode slit width δs 20, 30, 45 µm
S/C separation DS/C 170–270 km
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left and right segments’ phases give a sensitive measurement of the relative wavefront

tilt between the two interfering beams. The latter signal combination is the already

mentioned DWS signal. In nominal operations it keeps the beam axis of the incoming

and outgoing beam aligned. To note an important comparison: the QPD together with

the phasemeter and DWS as error signal can be seen as the tracking or fine pointing

sensor as it is called in former publications dealing with laser link acquisition. The goal

of acquisition here also is to align the beams accurately enough such that the tracking

sensor can take over.

Up to the point when the DWS signal is available the satellites have no means to asses

the actual direction or size of the misalignment of the received beam with respect to

the local oscillator. The only available information is the amplitude of the heterodyne

signal which is dependent on the received beam power, the local beam alignment as well

as the frequency difference between the RX and LO beams.

3.3. Sensor Signals

This section will give an overview of the sensor signals available for acquisition. At

first the heterodyne signal current is reviewed. The effective received power will be

introduced thereafter, which separates the dependence of the heterodyne amplitude on

beam misalignments from the dependence on the frequency of the signal. The different

constituents of the effective received power, i.e. the heterodyne efficiency and the power

received in the receive aperture, are studied in the following. The end of this section is

reserved to a presentation of the differential wavefront sensing signal.

3.3.1. Heterodyne Photocurrent

The science data is taken by the pair of redundant quadrant photodiodes. A quadrant

photodiode consists of four individual photosensitive segments, whose photocurrents can

be read out separately. The segments are here labelled by A, B, C, and D in the order:

top left, top right, bottom left and bottom right. The left panel in Figure 3.4 illustrates

the labelling of the segments.

Two hot redundant QPDs are mounted onto the optical bench of the LRI, which are

labelled QPD1 and QPD2, in the following. QPD1 receives the light in transmission

through the beamsplitter in front of the redundant pair, whereas QPD2 receives the

beam after reflection off the beamsplitter. The mirroring of the beam, for only one of

the photodiodes, reverses the horizontal tilt direction of the beam axis for QPD2 as

compared to QPD1.
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Figure 3.4.: Left: Dimensions and labels of a quadrant photodiode, showing the location of
the segments. Also shows the radius and the slit width of the QPD. Right: Combination of
the single element AC photocurrents of the two redundant photodiodes, into channels, for
further data processing.

The signals of the two redundant QPDs are coherently summed while the mentioned

asymmetry has to be taken into account. The right panel in Figure 3.4 shows the

combination of the data coming form the segments into channels, whereas the right half

of QPD1 is connected with the left half of QPD2. The label of the resulting sum of the

two segments, in the following called a channel, is set to A, B, C and D, according to

the label of the segment on QPD1.

Specific quantities, affecting the signals, are the radius of the active area, RPD, the

width of the insensitive slit between the segments, δs, and the photodiode responsivity

ρPD. Table 3.1 lists the ranges of values of the QPD parameters used throughout this

thesis.

The signal measured by the QPD is the photocurrent produced by the interference

of the local oscillator beam (LO) and the incoming received beam (RX) send by the

remote spacecraft. A detailed derivation of a mathematical expression for the expected

photocurrent of the heterodyne signal was already given in Section 2.1.1. The time

dependent AC part of the heterodyne photocurrent, sq, of a single segment was given in

equation (2.1.14) by

sq(t) = 2 ρPD g(fb)
√
PLO,q PRX,q ηq cos(2πfbt+ φq). (3.3.1)

Here, ρPD is the photodiode responsivity and g(fb) is the frequency response of the
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photodiode. Although the frequency response of the photodiode g(fb) will generally

also introduce a change of the phase of the heterodyne signal, this is neglected in the

treatment of laser link acquisition in this thesis. Moreover, the photocurrent is depending

on the power of the LO beam and the power of the RX beam impinging on the active

area of the segment q as well as the heterodyne efficiency ηq for the interference on

segment q.

The heterodyne efficiency was defined in equation (2.1.8) as the value of the normalised

overlap integral of the electric field of the LO and the RX beam over the segment’s

surface. The phase of the heterodyne signal, φq, was defined as the argument of the

overlap integral in equation (2.1.11). The beatnote frequency fb was defined as the

difference of the frequency of the LO beam and the RX beam.

The remaining step is to combine the heterodyne signal of the two redundant segments

into a channel. However, in order to simplify the treatment, it is assumed that during

the combination of the two segments the phase of the signals is not changed and also

the electric field on the segment surface is identical.

Adding up the signals of the two redundant segments results in the following signal for

a single channel, sc, which differs from the single segment signal only by an amplitude

that is twice as high,

sc(t) = 2 sq(t) (3.3.2)

= 4 ρPD g(fb)
√
PLO,q PRX,q ηq cos(2πfbt+ φq) (3.3.3)

= 2 ρPD g(fb)
√
PLO,c PRX,c ηc cos(2πfbt+ φc). (3.3.4)

In going from the second to the last line the phase, φc, heterodyne efficiency, ηc, local

oscillator power, PLO,c and received power, PRX,c are defined as follows:

φc = φq, (3.3.5)

ηc = ηq, (3.3.6)

PLO,c = 2PLO,q, and (3.3.7)

PRX,c = 2PRX,q. (3.3.8)

Equation (3.3.4) defines the heterodyne signal in a single channel, which will from now

on be used.

The next sections will discuss the individual quantities in the expression for the het-

erodyne amplitude found above and most importantly their dependence on the tilt of

the beam axis.
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Figure 3.5.: Left: Local misalignment angles as the relative beam axis tilt between the LO
and the RX beams in QPD coordinates of spacecraft 1. Right: TX beam misalignment of
spacecraft 1 in inertial frame.

3.3.2. Effective Received Power

The general form of the AC part of the photocurrent of a single channel, c, of a hetero-

dyne measurement was given in equation (3.3.4) which can be written as,

sc(t) = Ac cos(2πfbt+ φc).

Here, Ac, is the heterodyne amplitude

Ac = 2 ρPD g(fb)
√
PLO,c PRX,c ηc . (3.3.9)

The quantities appearing in the above expressions are the same as defined before for

equations (3.3.1) and (3.3.4).

The amplitude of the heterodyne signal will in general depend on the alignment of the

RX beam to the LO beam through the heterodyne efficiency, and also on the alignment

of the TX beam which is transmitted from the remote spacecraft through the received

power.

The left panel in Figure 3.5 shows the relative misalignment angles, α1 and β1, for a

misalignment of the LO beam with respect to the RX beam in horizontal and vertical

direction in the QPD coordinate system of spacecraft 1. The local oscillator beam

is generally not aligned orthogonal to the QPD surface. This alignment is chosen to

simplify the drawing.

The right panel in Figure 3.5 explains the alignment angles, α1 and β1, of the TX beam
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that is transmitted by spacecraft 1 for the case of a horizontal and vertical misalignment,

relative to the LOS. These two angles determine the light power received by the limiting

aperture on the optical bench of spacecraft 2.

Thus, the heterodyne amplitude measured by spacecraft i = 1, 2 can be given as

Ac,i(αi, βi, αj , βj , fb) = 2 ρPD g(fb)
√
PLO,c PRX,c(αj , βj) ηc(αi, βi) . (3.3.10)

Here, i, j = 1, 2 with i 6= j. The angles αi and βi are the relative wavefront tilts be-

tween the LO and RX beam for horizontal and vertical misalignment, in the photodiode

coordinate system. This is illustrated in the left panel of Figure 3.5. αj and βj are the

horizontal and vertical misalignment angles of the axis of the beam transmitted by the

remote spacecraft relative to the LOS in the inertial reference frame. This is depicted

in the right panel of Figure 3.5.

The heterodyne efficiency is only depending on the relative alignment of the LO beam

to the RX beam and it is independent of the alignment of the TX beam transmitted

by the remote spacecraft. This is due to the fact that the wavefronts are approximately

spherical at the receiving spacecraft. Hence, a tilt of the transmitted beam does not

change the phasefront of the received beam, thus the phasefronts are always perpen-

dicular to the LOS and the heterodyne efficiency is not changed. Most importantly,

maximising the heterodyne efficiency means aligning the LO beam to the LOS. For a

perfect TMA which routes the LO to the distant spacecraft, this implies that also the

TX beam is automatically aligned to the LOS. However, for a TMA coalignment error

γTMA 6= 0, the TX beam is misaligned from the LOS by γTMA.

In order to combine the tilt dependence in a single quantity, the effective received

power, P̂RX,c, is defined as

P̂RX,c(αi, βi, αj , βj) = PRX,c(αj , βj) ηc(αi, βi), (3.3.11)

as function of the received power in channel, c, and the heterodyne efficiency ηc. The

tilt dependence of these two quantities will be investigated in the next two sections.
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Figure 3.6.: Left: Heterodyne efficiency of quadrant A as a function of relative misalignment
between interfering tophat beam with radius ra = 0.5 mm and Gaussian LO with waist radius
of w0 = 0.3125 mm on a QPD with radius of RPD = 0.5 mm and slit width of δs = 20µm.
Right: Heterodyne efficiency of quadrant B. The heterodyne efficiency for the quadrant C is
a horizontally mirrored version of the image of quadrant A, and quadrant D is horizontally
mirrored version of B.

3.3.3. Heterodyne Efficiency

The heterodyne efficiency is a measure of the interference quality and defined as the nor-

malised power of the overlap integral over the active area Bq of the considered quadrant:

ηq = |Oq|2

=

∣∣∣∫∫Bq
eLO(r, t) eRX(r, t) eiδψ(r,t) d2r

∣∣∣2∫∫
Bq
|eLO(r, t)|2d2r

∫∫
Bq
|eRX(r, t)|2d2r

(3.3.12)

See equation (2.1.8) for the definition of the symbols appearing in the above expression.

As defined before in equation (3.3.6) the single quadrant heterodyne efficiency is assumed

to be equal to the single channel heterodyne efficiency, ηq = ηc. Though here, for clarity

it is mentioned as the single quadrant heterodyne efficiency.

The heterodyne efficiency is constrained between zero and one (0 ≤ ηq ≤ 1), where it is

1 for identical wavefronts, interfering perfectly. Any deviation from perfect interference,

such as wavefront errors or beam shape mismatch and most importantly, relative tilts

between the LO and RX beam wavefronts, decrease the heterodyne efficiency. Takenaka

et al. [TTF78] computed the dependence of the heterodyne efficiency for a single element

detector as a function of the relative wavefront tilt for interference of two Gaussian beams
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and two plane waves, whereas Tanaka et al. [TO87] include a square aperture in the

input plane.

The layout of the optical bench for the case of the laser ranging interferometer on

GRACE Follow-On, see Figure 3.2, is such that the field in the receive aperture is

imaged onto the QPDs and therefore no diffraction effects should be visible at the plane

of the detector. The imaging system consisting of the two lenses is designed to image

a tilt in the receive aperture into a pure tilt at the photodetector with no beam walk.

Hence, for a perfect alignment of the imaging system the transverse profile of the received

beam over the active area of the QPD is a plane wave tilted around the centre of the

QPD.

On the other hand, the LO is approximately a Gaussian beam with 2.5 mm waist

radius whose waist position is imaged onto the QPD surface. The object plane of the

image system for the Gaussian beam is roughly located at the surface of the fine-steering

mirror, such that a tilt of the LO at the FSM is mapped to a tilt at the QPD. The imaging

system will decrease the spot size of the incoming beam in the receive aperture and the

Gaussian beam by the same amount that it will magnify the tilt angle between both

beams. The heterodyne efficiency, as defined by equation (3.3.12), is invariant under

such transformations for small tilt angles, which can easily be verified.

Hence, the heterodyne efficiency can either be calculated over the imaged fields at the

photodiode or by calculating the overlap integral Oq over the RX beam in the receive

aperture and the Gaussian beam at the FSM. Only the integration regions have to be

scaled by the magnification of the imaging system. The normalised electric fields of the

RX beam in the receive aperture and the Gaussian LO at the FSM will here be defined

by

ERX =

√
1

π

1

ra
exp(−ikxα− ikyβ), and (3.3.13)

ELO =

√
2

π

1

w0
exp

(
−x

2 + y2

w2
0

)
. (3.3.14)

With the values for the receive aperture of radius ra = 4 mm, k = 2π/λ for the wave-

length of λ listed in Table 3.1 and w0 = 2.5 mm, the heterodyne efficiency was calculated

for various tilt angles α, β of the received beam for the segments of the QPD. The ef-

fective QPD slit width was chosen as 20µm. The results for the upper two segments, A

and B, are shown in Figure 3.6.

The asymmetry of the pattern for rotation around the centre is due to the geometry

of a single quadrant. Another obvious feature of the heterodyne efficiency pattern is
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the cross shape, which means that the decrease in heterodyne efficiency for only vertical

or horizontal tilts is less than in diagonal direction. The peak value of the heterodyne

efficiency is reached for zero tilt. For a tophat beam and a local oscillator with the

given parameters the maximum value is ηq(0, 0) = 0.699. Symmetry arguments give the

pattern of the bottom segments, C and D, as mirrored horizontally. The heterodyne

efficiency limits the field of view of the detector for local beam misalignments. A factor

of 10 decrease in the single segment signal power due to local beam misalignments is

reached at roughly 250µrad.

3.3.4. Received Power

The second quantity in the single channel effective received power, P̂RX,c, is the received

power in a channel, PRX,c, which is proportional to the power in the limiting receive

aperture, PRX, and the losses in the optical path from the receive aperture to the QPD

of ρrx. It is further assumed that the incoming beam is imaged perfectly onto the centre

of the QPD and the received power is the same in each channel.

If the separation of the spacecraft is large, the intensity of the transmitted beam,

ITX, can be treated as constant over the receive aperture of radius, ra. Hence, the total

received power, PRX, can be given as

PRX = ρrx ITX · πr2
a. (3.3.15)

The losses in the optical path are due to absorption in optical components, diffraction

effects, finite reflectivity at beamsplitters and also the loss due to the finite width of the

inactive slits of the QPD. All these effects are combined in ρrx. The received power in a

channel, PRX,c, will be defined by

PRX,c =
PRX

nc
, (3.3.16)

where nc is the number of channels. The power passing through the receive aperture is

depending on the alignment of the beam transmitted by the remote spacecraft. If the

transmitted beam is aligned to the LOS maximum light power is received.

The beam sent to the other spacecraft is tapped off the LO beam by the beamsplitter

and routed through the TMA to the exit aperture of the optical instrument. Due to the

fact that the LO beam is delivered to the optical bench through an optical fibre, the

true beam shape will not be a perfect Gaussian beam. Thus, different far-field intensity

patterns are analysed. On the one hand, the propagated fiber mode of Section 2.5
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Figure 3.7.: Left: Power in receive aperture, PRX, for Gaussian beams with different waist
radii and beam quality factor M2 = 1. Right: Power in the receive aperture, PRX, for
a Gaussian beam with waist radius w0 = 2.5 mm and beam quality factors M2 = 1 and
M2 = 1.2 to the propagated fibre mode from equation (2.5.18). The parameters for the
fibre mode are: α = 0.78, r0 = 2.43 mm and V = 1.967, which compares to the small core
case of Table 2.1.

defined by equation (2.5.18). The parameters used for this beam type are the ones listed

under small-core case in Table 2.1, because the resulting beam resembles more closely

the nominal Gaussian beam. The Gaussian beam fitted to the field distribution at the

end-face of the fibre-coupler has a waist radius of roughly 2.5 mm.

The second type of beam considered, is a Gaussian beam with a beam propagation

factor, M2 6= 1, which will increase the divergence of the beam compared to the perfect

Gaussian beam. The intensity of the Gaussian beam with arbitrary M2-factor will de-

pend on the distance between the spacecraft, DS/C, the transmitted power, PTX, and the

waist radius of the Gaussian beam, w0. With the horizontal and vertical misalignment

angles, α and β, of the TX beam relative to the LOS, it can be approximated by [Sie93]:

ITX(α, β,DS/C) ' 2PTX

π

1

w2(DS/C)
exp

(
−2

(
α2 + β2

)
D2

S/C

w2(DS/C)

)
, and (3.3.17)

w(DS/C) = w0

√
1 +

(
λDS/CM2

πw2
0

)2

. (3.3.18)

Since the LO beam waist will roughly be located at the photodiode of its spacecraft,

the M2-factor will not significantly influence the heterodyne efficiency but will affect the

far-field intensity pattern of the transmitted beam at the distant spacecraft.
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Figure 3.8.: DWS signal caused by horizontal misalignment of the RX and LO beam axes at
the QPD by an angle δα. The misalignment causes a phase difference, δφ, in the heterodyne
currents of the left and right half of the QPD in the plane of incidence.

A plot of the total received power PRX as a function of the tilt angle γ =
√
α2 + β2

is given in the left plot of Figure 3.7 for different waist radii of the Gaussian beam.

It shows how the beam divergence increases for smaller waist radii. The right plot in

Figure 3.7 compares the beam models used in the analysis. Shown is the received power

of the fiber-mode, a Gaussian beam with waist radius of 2.5 mm and beam quality factor

of M2 = 1 as well as M2 = 1.2. The divergence, θM , of the Gaussian beam with M2 6= 1

is equal to θM = M2 θ0, where θ0 = λ/(πw0) is the divergence angle of the Gaussian

beam with M2 = 1. The on-axis intensity, γ = 0, of the Gaussian beam with M2 6= 1 is

reduced by a factor of 1/(M2)2.

A factor of 10 reduction in the signal power for a tilt of the remote beam axis is already

reached between 150µrad for the fibre-mode and the Gaussian beam with M2 = 1, as

well as about 180µrad in case of the Gaussian beam with M2 = 1.2.

3.3.5. Differential Wavefront Sensing

The last important signal generated from the heterodyne measurement which is briefly

mentioned here, is the differential wavefront sensing (DWS) signal. It was already in-

troduced in Section 2.1.2 and here just the expressions for the signal combinations are

given. For more details the reader is referred to the previous discussion. The horizontal

and vertical DWS signals can be defined by

DWShor = (φA + φC)− (φB + φD), (3.3.19)

DWSver = (φA + φB)− (φC + φD), (3.3.20)

where the phases φA to φC are the phases of the heterodyne signal of the individual

channels as were given in equation (3.3.4). Figure 3.8 illustrates the change of the phase

of the heterodyne signal due to a tilt in horizontal direction.
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The beams interfering on the optical bench in GRACE Follow-On will be a Gaussian

beam and a tophat beam, due to clipping at the receive aperture. The DWS signal

on GRACE Follow-On will be used to automatically align the LO beam to the RX

beam, once the phasemeter is locked, thus it acts as a tracking sensor. The goal of the

autonomous laser link acquisition is to decrease the misalignment of the transmitted

beams sufficiently, such that the phasemeter can lock and the DWS signal is available

to automatically track the signal.

3.4. Noise Sources

For now only the heterodyne signals in absence of noise were discussed. To complete the

introduction, the most important noise sources are now presented. Two types of noise

sources have to be distinguished. These are on the one hand noise sources which can

be treated as additive to the heterodyne photocurrent and on the other hand variations

of the heterodyne photocurrent that are due to changes in the beam pointing and thus

enter in a non-linear fashion. At first the additive noise sources are discussed and later

the most important non-additive noise sources are given.

3.4.1. Additive Noise Sources

The most important additive noise sources that enter into the measurement of the het-

erodyne signal are photon shot-noise, detector equivalent input current noise and laser

intensity noise. Quantisation noise introduced by the ADCs is considered negligible. In

general, these noise sources are not white. Laser intensity noise dominates at frequencies

below about 3 MHz–4 MHz but rapidly decreases for higher frequencies [NC12]. Detector

equivalent input current noise is assumed to increase towards higher frequencies of the

detection bandwidth and flattens out at lower frequencies. Shot noise can be considered

as white Gaussian noise, as shown for example by Barber et al. [BDSE13].

For the analysis presented in this thesis the additive noise sources are treated as white,

Gaussian processes. The used values for the power spectral densities (PSD) correspond

to an assumed worst case over the measurement band. All PSDs given here are one-

sided and are first given for a single photodiode segment, before they are combined into

channels. The PSD of electronic noise, S̃2
e,q, is just given in terms of the noise equivalent

current (NEI) by

S̃2
e,q = NEI2, (3.4.1)
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whereas the PSD of shot noise, S̃2
s,q, is proportional to the square root of the light power

at the photodiode. For a strong local oscillator and weak measurement beam the light

power at the photodiode is approximately equal to the local oscillator power, PLO,q. For

this case the shot noise amplitude spectral density can be approximated by

S̃2
s,q = 2 qe ρPD PLO,q, (3.4.2)

with the electron’s charge qe and the photodiode responsivity ρPD. The PSD of laser

intensity noise is proportional to the power of the local oscillator and can be given in

terms of the relative intensity noise PSD (RIN) by

S̃2
i,q = (ρPD PLO,q RIN)2 . (3.4.3)

The values for the noise equivalent current and the relative intensity noise assumed for

the analysis in this thesis are given in Table 3.2.

The total noise PSD, S̃2
q , for a single quadrant is easily obtained by the sum of the

PSDs of the individual noise sources as they are uncorrelated on a single segment,

S̃2
q = S̃2

e,q + S̃2
s,q + S̃2

i,q. (3.4.4)

If the noise for a sum of segments is desired, the different correlation properties of the

different noise sources have to be taken into account. Detector electronic noise and shot

noise are uncorrelated between the segments, but laser intensity noise is correlated. In

terms of the single segment PSDs of the individual noise sources the total PSD, S̃2
CS, for

the sum of n photodiode segments, also called the coherent sum, is given by,

S̃2
CS = n(S̃2

e,q + S̃2
s,q) + n2S̃2

i,q. (3.4.5)

The noise PSD in a single channel, S̃2
c , can be obtained by setting n = 2, in equa-

Table 3.2.: Noise equivalent current (NEI) of single QPD segment and relative intensity
noise (RIN), for one-sided power spectral densities.

Item

Description Symbol Value Unit

noise equivalent current NEI 5 pA/
√

Hz

relative intensity noise RIN 3 · 10−8 1/
√

Hz
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tion (3.4.5), resulting in

S̃2
c = 2(S̃2

e,q + S̃2
s,q) + 4S̃2

i,q. (3.4.6)

For a sampling frequency of fs for the case of zero-mean Gaussian noise, the variance of

the noise, σ2, in a single channel can be computed by

σ2
c =

fs

2
S̃2
c . (3.4.7)

As a first application, a noise equivalent effective received power NEPRX is defined for a

single channel as well as the coherent sum of nc channels. The NEPRX corresponds to the

effective received power required for a signal-to-noise ratio of 1 for a given bandwidth.

This requires that the noise variance is equal to the RMS squared of the heterodyne

amplitude which is equivalent of having a SNR of unity, hence

SNR = 1 ⇔ A2
c

2
=
fs

2
S̃2
c (3.4.8)

This equation can then be solved for the effective received power in Ac, using equa-

tion (3.3.9). Under the assumption of a perfect photodiode response g(fb) = 1, and

normalised by the sampling frequency the NEPRX,c in a single channel can be computed

by

NEPRX,c =
S̃2
c

8 ρ2
PD PLO,q

. (3.4.9)

Here, the local oscillator power in a single channel was exchanged by the local oscillator

power per photodiode segment, PLO,c = 2PLO,q.

For the coherent sum of the quadrants one can also compute the noise equivalent effec-

tive received power NEPRX,CS. However, in order to do so the coherent sum heterodyne

amplitude, ACS, has to be defined. This will be done in detail in Section 6.3.1. To antic-

ipate a result obtained in equation (6.3.7), the coherent sum amplitude can be written

in analogy to the single channel heterodyne amplitude and can be given for g(fb) = 1 as

ACS = 2ρPD

√
PLO P̂RX,CS . (3.4.10)

which depends on the total local oscillator power collected on all segments, PLO =

nseg PLO,q. With this one can find the noise equivalent effective received power for the

coherent sum of nseg segments by also inserting the coherent sum noise PSD S̃2
CS from
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Figure 3.9.: Left: Single channel noise equivalent effective received power as a function of
the local oscillator power. Right: noise equivalent effective received power for the coherent
sum of eight QPD segments, as a function of the local oscillator power. For the noise PSDs
of Table 3.2 and photodiode responsivity of ρPD = 0.6 A/W.

equation (3.4.5),

NEPRX,CS =
S̃2

CS

4 ρ2
PD nsegPLO,q

. (3.4.11)

The found expressions for the noise equivalent power as a function of the LO power on

a single quadrant are plotted in Figure 3.9. It should be noted that the PSDs of the

noise in a single channel and of the coherent sum of the channels are depending on the

local oscillator power which is not explicitly shown in equations (3.4.9) and (3.4.11).

The left plot shows the equivalent power for a single channel also broken down into the

contributions of the individual noise sources. It is seen that the effective received power

mimicked by the total noise is largely independent of the local oscillator power. The

location of the minimum, however, is clearly visible by the location of the intersection

between the curves for the detector noise and the laser intensity noise. The right plot

in Figure 3.9 shows the noise equivalent power for the sum of eight segments, here the

optimum is much more pronounced and at lower local oscillator powers. Though still,

the change in the effective received power is small, while increasing the local oscillator

power.

The algorithm used to process the data, for detecting the heterodyne signal will contain

discrete Fourier transforms, as will be discussed in the next chapter. The noise floor in

the frequency bins of the Fourier transform, due to the additive noise sources discussed
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here, can be estimated by multiplying the noise equivalent effective received power by

the bandwidth of the DFT. For a sampling frequency of fs, and a DFT computed from

NDFT samples, the DFT bandwidth is given by δfDFT = fs/NDFT. The effective received

power mimicked by noise, P̂ noise
RX , in the frequency bin is then computed by

P̂ noise
RX = δfDFT · NEPRX. (3.4.12)

Table 3.3 lists the effective received power due to noise for some LO powers and DFT

sample sizes for the CS of the channels and the single channel. However, in practice the

considered noise sources are not white and the optimum local oscillator will depend on

the frequency.

3.4.2. Non-Additive Noise Sources

Important non-additive noise sources are pointing noise and frequency noise. Frequency

noise enters into the heterodyne signal through the frequency response of the photodiode

as well as the frequency dependence of the data processing. In the next chapter, the

detection algorithm is discussed which uses an FFT to estimate the frequency of the

Table 3.3.: Noise floor, P̂ noise
RX , in the DFT frequency bins of width δfDFT, due to the

presented additive noise sources, in terms of the effective received power. The assumed
values for the detector electronic noise and the laser intensity noise are given in Table 3.2
and the sampling frequency is assumed to be fs = 38 MHz. The effective received power
due to noise, P̂ noise

RX , is given for different DFT sizes, NDFT, and local oscillator powers per
photodiode channel, PLO,c.

Item

Signal Type PLO,q / µW P̂ noise
RX / fWrms

NDFT 512 1024 2048 4096 8192
δfDFT / kHz 74.2 37.1 18.6 9.28 4.64

100 26.13 13.07 6.53 3.27 1.63
Single Channel 150 23.51 11.75 5.88 2.94 1.47

200 23.03 11.52 5.76 2.88 1.44
400 26.49 13.24 6.62 3.31 1.66

100 36.2 18.1 9.0 4.5 2.3
Coherent Sum 150 38.5 19.3 9.6 4.8 2.4
of Channels 200 43.1 21.5 10.8 5.4 2.7

400 66.6 33.3 16.6 8.3 4.2
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Figure 3.10.: Left: Time series of assumed residual pointing errors due to the orbit prop-
agator on board the GRACE Follow-On satellites. Right: Linear power spectral density
of the time series, shown on the left. Processed GRACE data from Feb. 2012 (private
communication B. Klipstein, NASA/JPL, 2012).

signal. The frequency response of the FFT is not homogeneous and frequency changes

directly couple to the heterodyne amplitude via this mechanism. An analysis of this is

postponed to the corresponding chapter.

Pointing noise enters through the heterodyne efficiency and the received power into

the photocurrent measurement. The time scale on which the different processes vary can

be grouped into three types based on time scales important for acquisition. The initial

unknown misalignment biases due to launch misalignments, or sensor biases are static

errors which do not change considerably later. These biases determine the initial spatial

uncertainty cone that has to be scanned.

Then there are dynamic biases which vary on time scales of minutes to hours. The

duration of spatial scans over the initial uncertainty cone will have similar length and

thus the dynamic biases will not significantly distort the scan pattern, but will change

the location of the scan area for each spatial scan. If an acquisition scheme is used that

uses an initial LOS calibration and an autonomous link acquisition later over remaining

uncertainties, the pointing changes due to dynamic biases add to the uncertainties for

a successive laser link acquisition. The dominant noise source for this time scale is the

orbit prediction error that changes on periods similar to the orbital revolution period.

Each of the GRACE satellites have an orbit predictor running on board that predicts

the angular position of the remote spacecraft based on orbit ephemiris uploaded to the

satellite. For a successor mission like GRACE Follow-On the assumed residual pointing
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error due to the orbit predictor is shown in Figures 3.10, where a time series is shown

on the left and a spectrum computed from the time series on the right. The time

series is generated from GRACE data of Feb. 2012 (private communication B. Klipstein,

NASA/JPL, 2012) and is shown for the radial and cross track directions. The residual

pointing error has a large periodic component of the period of one orbit revolution. The

maximum error is about 120µrad in radial direction and 50µrad in cross-track direction.

For scans longer than the orbital time, the orbit prediction error adds to the uncertainty,

while for fast scans of some minutes it is negligible.

The last group, jitter, are changes over time scales smaller than the time for a single

spatial scan of the satellites. These will distort the spatial scan pattern and have to be

taken into account when setting the resolution of the spatial scan. The only considered

process on these times scales is star-camera assembly (SCA) noise. The star-camera

assembly estimates the attitude of the spacecraft in the inertial reference frame. See

for example [DBF+03]. The pointing noise due to the SCA is assumed to be 10µrad

(1σ) in pitch and yaw, based on performance specification for GRACE [DBF+03]. The

specification in roll is given as 80µrad which only adds a negligible additional error in

the important directions for acquisition, yaw and pitch, and will be neglected for this

analysis. Here, additionally the noise is assumed to be Gaussian distributed.

As long as the DWS signal is not used to automatically align the beam axis, the

SCA noise is added every 0.1 s to the current FSM position which will distort a running

scanning pattern or lead to signal loss in certain stages of an autonomous link acquisition.

3.5. Beatnote Frequencies

The beatnote frequency of the heterodyne signal is equal to the frequency difference

between the frequency of the local oscillator (LO) and the received beam (RX) which

was derived in equation (2.1.7). The frequency of the received beam is Doppler shifted

to the frequency of the transmitted beam, as the two spacecraft move relative to each

other. Figure 3.11 shows how the beatnote frequencies are composed.

With the relative velocity, vrel, and the absolute frequency of the transmitted light,

fTX, the Doppler shift is given by

fD = −vrel

c
fTX. (3.5.1)
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Figure 3.11.: The Doppler shift fD results in different beatnote frequencies on the two
spacecraft. The difference in the beatnote frequencies is twice the Doppler shift.

The frequency of the received light, fRX, is thus,

fRX = fTX + fD. (3.5.2)

The frequency of the transmitted light is the absolute frequency of the lasers of the two

spacecraft, which will here be denoted as fm and fs for the master and the slave laser

respectively. With this, the beatnote frequency measured on the master spacecraft fm
b

and the slave spacecraft f s
b can be calculated by

fm
b = fm − (fs + fD) and (3.5.3)

f s
b = fs − (fm + fD). (3.5.4)

The sign of the frequencies is not measurable and hence, what the phasemeter really

sees is the modulus of the above frequencies,

|fm
b | = |fm − (fs + fD)| and (3.5.5)

|f s
b| = |fm − (fs − fD)|. (3.5.6)

The difference in the absolute value of the beatnote frequencies of the master and the

slave spacecraft is thus, twice the one-way Doppler shift. The relative speed between

the satellites is, based on GRACE data, assumed to be |vrel| ≤ 2.5 m s−1, resulting in

one-way Doppler shifts of maximally fD = ±2.35 MHz. The difference in the beatnote

frequencies due to the Doppler shift might reach up to 4.7 MHz which is more than a
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fourth of the complete photodiode bandwidth.

Hence, large Doppler shifts might lead to situations during an acquisition scan, where

the beatnote on one of the spacecraft is well within the photodiode bandwidth but is

out of band on the other spacecraft, prohibiting a detection.

3.6. Acquisition Schemes

Starting from a large initial uncertainty, different acquisition strategies are possible.

On the one hand, a direct acquisition approach, where the scans over the spatial and

frequency uncertainty space is stopped as soon as a detection was made. Starting from

the frequency and beam alignment at the time of the detection, the satellites try to lock.

On the other hand, an initial line-of-sight calibration scan can be performed which is

used to scan the total uncertainty space for the maximum occurring heterodyne signal

amplitude and use the angular position and frequency at which the maximum occurred

as best estimates. A subsequent autonomous laser link acquisition is done over a much

smaller uncertainty space to subsequently lock the satellites.

The principal advantage of the direct link acquisition is the possibility that the scan

can be stopped once a signal has been detected. On average, the time until a detection is

made and the satellites acquire is half the time for a scan over the complete uncertainty

space. An initial line-of-sight calibration scan always scans the full uncertainty space

and the average time is equal to the worst case time of the direct acquisition approach.

Ales et al. [AGJB13] studied guidance algorithms and acquisition algorithm sequences

for a GRACE Follow-On type laser ranging interferometer, where they investigate a

direct link acquisition. However, a line-of-sight calibration scan is generally thought

of as being more robust, as the satellites scan their uncertainty space independently

of the other satellite. In a direct link acquisition the satellites need to stop the scan

once a detection was made without the certainty that the other spacecraft will ever

detect a signal. Situations in which only one spacecraft will detect a signal include

large Doppler shifts, as mentioned in the previous section, but also large differences in

the heterodyne signal amplitude for local and remote beam axis tilts. Additionally, the

TMA coalignment error might steer the beam out of the field-of-view of the remote

spacecraft, though locally a detection was made.

In this thesis laser link acquisition is studied for an initial line-of-sight calibration scan

over the complete uncertainty space. The steering-mirror position and frequency at the

time the maximum occurred are used as best estimates for a subsequent autonomous

laser link acquisition. A successful experimental demonstration of such an acquisition
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scheme was carried out by D. Wuchenich et al. [WMS+on] in which the authors modelled

the LRIs of the two spacecraft and the inter-satellite link in a bench top experiment.

The design of the experiment was partly based on the analysis that is presented in this

thesis.

3.7. Conclusions

In this section the absence of dedicated acquisition hardware was identified as the main

difference between laser link acquisition for GRACE Follow-On and laser link acquisi-

tion as studied in the past. Such dedicated hardware are for example, beam shaping

mechanisms or wide field-of-view detectors that decouple the sensor output from the

alignment of the beam that is transmitted to the distant spacecraft.

After this, the laser ranging interferometer for the GRACE Follow-On mission is pre-

sented with a focus on the subsystems important for acquisition. These are, for example,

the fine-steering mirror, the triple-mirror assembly and the photodiodes. Subsequently,

the heterodyne signal as the sensor signal that is used for acquisition was introduced

for the case of a hot-redundant pair of quadrant photodiodes. In the following, the

dependence of the heterodyne signal amplitude on misalignments of the beam axes is

investigated. For this case, the effective received power was introduced as the product of

the power passing through the receive aperture, the power loss in the receive path and

the heterodyne efficiency. The effective received power depends on the alignment of the

beam transmitted by the distant spacecraft via the received power. At the same time it

depends on the alignment of the local oscillator with respect to the received beam, due

to the heterodyne efficiency.

Thereafter, the most important additive and non-additive noise sources are reviewed.

For the additive noise sources which are electronic noise, laser shot noise and laser inten-

sity noise, the dependence on the local oscillator power was given. Some values for the

RMS of the noise in terms of the effective received power over bandwidths corresponding

to FFTs of 512 to 8192 points are given.

As the most important non-additive noise sources, pointing noise and frequency noise

are presented. The most important sources of pointing noise are the star-camera assem-

bly attitude jitter, varying on frequencies of 10 Hz and the orbit prediction error that

varies on time scales of the orbital period. Finally, some acquisition schemes were dis-

cussed. Among those, the combination of an initial line-of-sight calibration scan with a

pick-max search and a subsequent autonomous laser link acquisition over reduced uncer-

tainties was chosen as the baseline for the analysis presented in the following chapters.
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4. Detection Algorithm, Signal- and Noise

Distributions

In this chapter, an algorithm will be introduced for estimating the frequency and am-

plitude of the measured heterodyne signal. The detection algorithm is based on the

computation of fast Fourier transforms (FFT) of sequential non-overlapping chunks of

data. The maximum value in a power spectrum will be used as an estimate for the

heterodyne amplitude, whereas the index of the frequency bin is an estimate of the

heterodyne frequency.

The four data channels from the quadrant photodiodes can be combined to yield

higher signal-to-noise ratios. Two distinctly different combinations, the coherent and

incoherent sum of the channels, are presented. Based on the design of the algorithm,

the distributions of the returned estimates are derived.

At first, the distribution of the power in a single frequency bin of the discrete Fourier

transform for a heterodyne signal of constant amplitude and frequency is presented.

Initially the distribution is given for a single data channel and after this the result is

generalised to the case of the coherent and incoherent sum. Thereafter, the distribution

of the maximum value in the power spectrum is given. This is the distribution of the

output of the detector.

Furthermore, in a pick-max scan during the initial line-of-sight calibration, the max-

imum output of the detector over a complete acquisition scan is determined. For both

data combinations an estimate of the maximum detector output for the case of no signal

at the input of the detector is given, depending on the number of computed estimates.

The obtained result will eventually allow to set lower limits on the resolution of the

spatial scan.

In the last part of this chapter, the influence of frequency noise and a constant rate

frequency sweep on the distribution of the detector output is investigated by means of

numerical simulations.
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4.1. Detection Algorithm

The signal to be detected is a sinusoid in additive, white, stationary Gaussian noise. For

the definition of stationarity, the reader is referred to [WZ71] or similar literature.

However, the exact parameters of the signal, i.e. the amplitude, phase, frequency

and arrival time, are unknown. The detector that is used to decide whether the signal

is present or not should accommodate this lack of knowledge and still perform close

to optimal, i.e. maximising the probability of detection for a fixed probability of false

alarm.

An approximately optimal estimator for the initial line-of-sight calibration scan is

deduced from the maximum likelihood estimator (MLE) of the arrival time, while a

nearly optimum detector can be realised with the generalised likelihood ratio test. The

derivation of the MLE and optimal detector is outlined in many books about detection

or estimation theory and is rather standard, see for example [Kay09, WZ71, Kay93]

or [KPK81]. The basic approach is based on the work of Neyman and Pearson from

the year 1928 [NP28a, NP28b] or a subsequent article published in 1933 [NP33]. The

Neyman-Pearson approach is chosen because no prior information on the value of any of

the unknown parameters is given. The following sections will give a short introduction to

the detection theory to give enough background to motivate the decision for the chosen

detector implementation. For a deeper insight the reader is referred to the corresponding

literature. The following derivation is adapted from [Kay09, Kay93].

4.1.1. Maximum Likelihood Estimator for the Heterodyne Signal

Parameters

In this section the maximum likelihood estimator for the heterodyne amplitude and the

heterodyne frequency are given. In order to simplify the derivation, the amplitude and

frequency of the heterodyne signal are assumed to be constant and only the heterodyne

signal of a single data channel is considered.

The heterodyne signal, measured in a single channel, was defined in equation (3.3.4)

as the coherent sum of two photodiode segments. If the amplitude of the heterodyne

signal is denoted by Ac, the beatnote frequency by fb, and the phase by φc, then the

heterodyne signal, sampled at the discrete times tn = n/fs, can be written as

sc(tn) = Ac cos(2πfbtn + φc) + Ic(tn) (4.1.1)

= Ac cos(φc) cos(2πfbtn)−Ac sin(φc) sin(2πfbtn) + Ic(tn). (4.1.2)
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Here, Ic(tn) is the noise in a single channel measured at time tn. In Section 3.4.1, the

power spectral density of the noise in a channel was defined by the coherent sum of the

noises of a single photodiode segment. The most dominant noise sources were given by

shot noise, detector electronic noise and laser intensity noise. The noise is treated as

white Gaussian noise, for which samples I(tm) and I(tn) at different times tm and tn

are identical and independently distributed (IID) normal random variables with constant

variance σ2
c , i.e. Ic(tn) ∼ N (0, σ2

c ). With the one-sided power spectral density of the

combined noise sources in a single channel, S̃2
c , which was given in equation (3.4.6), one

can compute the noise variance in the single channel by equation (3.4.7) as

σ2
c =

fs

2
S̃2
c . (4.1.3)

The probability distribution function (PDF) p(x;µ, σ) of the normal distributed random

variable X ∼ N (µ, σ2) with mean µ and variance σ2 is defined as [Gut09]

p(x;µ, σ) =
1√

2π σ
exp

(
− x2

2σ2

)
. (4.1.4)

Hence, if the noise is distributed with a Gaussian distribution of zero mean, the prob-

ability density function p(s;Ac, φc, fb) for a given realisation of the data plus noise is

given by

p(sc;Ac, φc, fb) =
1

(2πσ2
c )
N/2

exp

(
− 1

2σ2
c

N∑
n=0

(
sc(tn)−Ac cos(2π[fb/fs]n+ φc)

)2)
.

(4.1.5)

The PDF for a fixed realisation of the data as a function of the signal parameters Ac,

φc and fb is called the likelihood function. The maximum likelihood estimator Âc, φ̂c

or f̂b, for a signal parameter maximises the PDF of the data, as a function of the

parameter. For the case considered here, it can be shown that the MLE of the signal

parameters are unbiased estimators for which the variance is equal to the Cramer-Rao

bound [Kay93, Cra74]. The Cramer-Rao bound is a lower bound on the variance of any

unbiased estimator for a parameter of a deterministic signal.

Rigorous analysis shows [Kay93], that the maximum likelihood estimator for the am-

plitude Âc, of a sinusoidal signal in white Gaussian noise is the absolute value of the

discrete Fourier transform of the data at the signal frequency. The MLE of the phase, φ̂c,

is the argument of the discrete Fourier transform. If additionally to the amplitude and

phase, the frequency of the signal is unknown, the MLE of the signal frequency, f̂b, has
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4. Detection Algorithm, Signal- and Noise Distributions

to be determined by calculating the DFT for different frequencies until the maximum is

found. Due to limited computational power, it is impossible to compute the DFT of all

possible frequencies, and hence the MLE is generally not found.

However, fast-Fourier transforms (FFT) [CT65] provide good coverage of a limited

frequency band and are computationally efficient. In order to determine the arrival time

of the signal, FFTs of sequential non-overlapping chunks of data can be computed. The

time of the FFT, for which the maximum amplitude within a spectrum is found, is an

estimate for the arrival time of the signal.

In this thesis, the DFT of size NDFT of a time domain input signal, s(t), sampled at

times tn = n / fs, with n = 0, . . . , NDFT − 1, is defined as

F [s](k) :=

√
2

NDFT

NDFT−1∑
n=0

s(tn) exp

(
−2πi

k

NDFT
n

)
. (4.1.6)

To ease notation the shorthand, s̃(k) := F [s](k), will be used in the following. Here,

k = 0, . . . , NDFT − 1 is the frequency bin index of the DFT and the central frequencies

of the frequency bins are given by

fk = k
fs

NDFT
. (4.1.7)

Generally, it is assumed that the DFT is normalised by
√

2 /NDFT. Provided that the

frequency of the heterodyne signal is equal to one of the central bin frequencies, fb = fk,

the amplitude of the k-th frequency bin in the spectrum is equal to the root-mean square

value of the input signal and it is independent of the number of samples, NDFT.

4.1.2. Detector for the Heterodyne Signal

In 1928/33, Neyman and Pearson laid the foundations for the modern detection theory in

their publications [NP28a, NP28b, NP33]. Good discussion of the detection problem can

be found in [Kay09, WZ71], while additional information on parameter estimation are

given in [Kay93, WZ71]. The detector specified here, is a general detector for a sinusoidal

signal in white Gaussian noise with unknown amplitude, phase, frequency and arrival

time. This system is widely used in signal detection of all sorts, [KPK81, Hol93].

Prior knowledge of the signal parameters is limited and restricted to the size of the

spatial uncertainty cone and frequency uncertainty interval. The probability density

function for the parameters in their uncertainty regions is assumed to be flat. This is why

the Neyman-Pearson approach is favoured over the Bayesian approach [WZ71, Kay93].

92



4.1. Detection Algorithm

−4 −2 0 2 4 6
detector output / s.u.

0.0

0.1

0.2

0.3

0.4

0.5

P
D

F
of

d
et

ec
to

r
ou

tp
u

t
/

(s
.u
.)
−

1 threshold

PFA

PD

H1

H0

0.0 0.2 0.4 0.6 0.8 1.0
probability of false alarm

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
ab

ili
ty

of
d

et
ec

ti
on

threshold
increases

µ/σ = 2

µ/σ =
√

2

µ/σ = 1

µ/σ = 0

Figure 4.1.: Explanation of some of the important quantities for a detection problem. Left:
Two normal PDFs representing the PDF for a random variable under test for the case of two
hypotheses, H0 and H1. The probabilities of detection, PD, and false alarm, PFA, depend
on the chosen detection threshold. Right: For a given PDF of the test statistic, the PD as a
function of PFA will give a performance estimate of the detector. This plot is called receiver
operating characteristic. It is shown on the right for different variances of the test statistic.
The higher the detection probability for a given false alarm probability, the stronger curved
the plot and the better the detector. The dashed diagonal line is for a detector that just
guesses with 50 % chance for a correct answer.

The detection problem consists of deciding on whether the measured data consists of

only noise or the sum of noise and the heterodyne signal. It can be stated mathematically

as

H0 : sc(tn) = I(tn)

H1 : sc(tn) = Ac cos(2πfbtn + φc) + I(tn), (4.1.8)

for, n = 0, . . . , NDFT − 1, and c = 1, . . . , nc

with the two hypothesis H0, if only noise is present (null hypothesis) or H1, if the signal

is also present in the data (alternative hypothesis). In the following it is assumed that if

the signal is present, it is present in all nc data channels simultaneously.

In analogy to the last section, a combination of data samples is sought that in some

way optimises the decision process between the two hypotheses. This combination is

called the detector in the following and the output of the detector will be denoted by

D. Due to the noise, each of the measured data samples is a random variable, and has a

certain probability distribution function. Also, the detector output, D, will be a random
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variable but with a different PDF.

The PDF of the detector will differ for the two hypotheses, H0 and H1. Figure (4.1)

shows a simple example of such a change in the PDF due to the change of the mean of a

normal random variable. This corresponds, for example, to the detection of a DC offset

in white Gaussian noise, for the case that the test statistic is only a single measurement.

The plot on the left shows two normal PDF with variance σ2 = 1 and mean values

µ = 0 if no signal is present and µ = 2 if a signal is present. It is natural to introduce

a threshold and decide for H0 if the detector output for the measured data is below the

threshold and for H1 if it exceeds the threshold. Two types of errors can be made in

the detection which is a false alarm if D exceeds the threshold, though no heterodyne

signal is present at the input of the detector, and a false dismissal if a signal is present

but the detector output is smaller than the threshold. The probability of a false alarm,

PFA, and a false dismissal, PFD = 1− PD, depend on the threshold and the PDF of the

data under test. Here, PD is the probability of detection.

The right plot in Figure 4.1 shows the receiver operating characteristic (ROC). The

ROC is a plot of the detection probability as a function of the false alarm probability.

The curve is parametrised by the threshold used to decide on a detection. ROCs strongly

depend on the PDF of the detector output which is clear from the above plots. The

stronger curved the ROC is, the higher is the probability of detection for a given false

alarm probability and the better is the used detector. A straight diagonal line corre-

sponds to a detector that has equal probability of deciding H0 or H1, independent of

the chosen threshold. This is equivalent to guessing. The ROC thus gives a performance

estimate of a given detector.

The great advantage of the Neyman-Pearson approach to signal detection is that it

gives a rule, how to find the best combination of the measured data to achieve the highest

probability of detection for a given false alarm probability, independent of the threshold.

The ROC for this detector will be the one with the strongest curvature and lies above

all other detectors, for all false alarm probabilities. However, this is only true for the

case that all signal parameters are known and is only asymptotically true for N → ∞,

for the case of unknown parameters.

The Neyman-Pearson theorem now says that for a deterministic signal with unknown

parameters in noise, the maximum detection probability, PD, for a given false-alarm

probability, PFA, is achieved, if a detection is claimed when:

L(s) =
p(s; Âq, φ̂q, f̂b, n̂0,H1)

p(s;H0)
≥ G. (4.1.9)
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Figure 4.2.: Proposed implementation of the algorithm for detecting the heterodyne signal.
The power spectrum of the heterodyne signal is computed and the maximum value in any of
the frequency bins, indexed by k, is determined. Frequency bins containing excess noise are
vetoed (B.V.). To increase the signal to noise ratio, the coherent sum and incoherent sum of
the data channels are formed. Right: Further processing of the detector output D. For the
case of a line-of-sight calibration scan, the maximum detector output over the time, t, of the
complete calibration scan is determined, whereas for an autonomous laser link acquisition
the detector output is compared against a threshold G.

where L(s) is called the generalised likelihood ratio, p(s; Âq, φ̂q, f̂b, n̂0,H1) is the like-

lihood of the data under the hypothesis H1 (the signal is present) and p(s;H0) is the

likelihood of the data if no signal is present. The likelihood for the case considered

here, was defined in equation (4.1.5). The signal parameters, i.e. the amplitude, phase,

frequency and arrival, are replaced by their MLEs. This test is generally referred to as

the generalised likelihood ratio test. The threshold G is determined by the desired false

alarm probability and the PDF of the detector.

It can be shown that the optimal detector for the case of a sinusoidal signal in additive,

white Gaussian noise is the absolute value of the discrete Fourier transform of the data.

In theory, the optimum threshold is determined by the desired false-alarm probability,

though for the analysis in this thesis the detection threshold is set based on a minimum

required power of the heterodyne signal. This is further discussed in Chapter 7.

The left panel in Figure 4.2 summarises the previous discussion and shows a schematic

of the proposed implementation of the detection algorithm which is extended to include

combinations of the four available data channels. The data from the quadrant pho-

todiodes (QPD) is first digitised by analogue-to-digital converters (ADC) before it is

further processed. To increase the signal-to-noise ratio two combinations of the data

can be formed which are denoted the coherent sum (CS) and the incoherent sum (ICS)
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in Figure 4.2. For the case of the CS the data channels are summed up and afterwards

a power spectrum is computed by means of a FFT. For the case of the ICS a power

spectrum is computed from the data of each channel before the individual power spectra

are added. Frequency bins of the power spectra that are known to contain high noise

powers are vetoed (B.V.) before the maximum value contained in any of the frequency

bins is determined. Following are mathematical definitions of the detector outputs for a

single channel Dc, the coherent sum DCS and the incoherent sum DICS:

Dc = max
k
|s̃c(k)|2, (4.1.10)

DCS = max
k

∣∣∣∣∣
nc∑
c=0

s̃c(k)

∣∣∣∣∣
2

, (4.1.11)

DICS = max
k

nc∑
c=0

|s̃c(k)|2 , (4.1.12)

where the frequency bin index k runs over all non-vetoed frequency bins. The right panel

in Figure 4.2 shows the subsequent processing of the output of the detection algorithm.

For the initial line-of-sight calibration, the maximum detector output over the time

of the complete calibration scan is determined, whereas for the autonomous laser link

acquisition the detector output is compared against the threshold G.

4.2. Signal and Noise Distributions

In this section, the distribution of the detector output, D, is derived. At first, the

distribution of the power in a single frequency bin of the power spectrum is given for

the case of a single data channel. Subsequently, the result is generalised for the case of

the coherent and incoherent sum of the data channels. The final step is the derivation of

the distribution of the detector output, D, which is the maximum value in the frequency

bins found in the power spectrum.

For the purpose of this section it is assumed that the beatnote frequency, fb, of the

heterodyne signal is equal to the central frequency, fj , of the j-th frequency bin, with

j = 0, . . . , NDFT/2 − 1. The central bin frequencies were given in equation (4.1.7) as

fk = kfs/NDFT. Furthermore, the amplitude and phase of the heterodyne signal are

assumed to be constant.
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4.2.1. Distribution of a Single Channel

If the heterodyne signal of a single data channel can be approximated by a sinusoidal

signal with constant amplitude and frequency, the DFT of the input signal can easily

be calculated analytically. The time series of the heterodyne signal photocurrent sc(tn)

in a single channel was given in equation (4.1.1). If the beatnote frequency is set to the

central frequency of the j-th frequency bin with help of equation (4.1.7) and tn = n/fs,

it can be given as

sc(n) = Ac cos

(
2π

j

NDFT
n+ φc

)
+ Ic(n). (4.2.1)

Here, Ac and φc are the amplitude and phase of the heterodyne signal photocurrent and

Ic is the time series of the noise in the channel. If the DFT as defined in equation (4.1.6),

is applied to the time domain signal, sc(n), and the linearity of the DFT is exploited,

the frequency content from the signal and the noise can be treated separately:

s̃c(k) = AcF
[
cos

(
2π

j

NDFT
n+ φc

)]
(k) + F [Ic](k). (4.2.2)

The DFT of a sinusoidal input signal with constant amplitude and frequency can be

computed analytically by using the following relation:

F
[
cos

(
2π

j

NDFT
n+ φc

)]
(k) =

eiφc√
2
δj,k +

e−iφc√
2

δNDFT−j,k. (4.2.3)

Here, δj,k is the Kronecker delta defined by

δj,k =

1, if i = j,

0, if i 6= j.
(4.2.4)

Hence, the DFT of a constant amplitude sinusoidal input signal with frequency fj has

a peak at j = k and has zero response in any other frequency bin. The amplitude of

the signal in the frequency bin is given by the RMS amplitude of the input signal. The

phase is equal to the phase of the input signal φc. The second peak at k = NDFT − j in

equation (4.2.3) is due to the symmetry of the DFT for a real valued input signal. As

the upper half of the DFT bins does not contain any additional information, they will

be omitted from now on.

The second term in equation (4.2.2) can be solved by statistical means. The distri-

bution is given in many text books on detection theory, for example in [Kay09]. The
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result is, that the real and imaginary parts of the DFT of additive, white Gaussian noise

with variance σ2
c , are normal distributed random variables with zero mean and variance

σ2
c/NDFT. If the DFT of the time series of the noise in the channel is denoted by Ĩc(k)

for any k = 0, . . . , NDFT − 1, the real and imaginary parts can be given by

R(Ĩc(k)) ∼ N (0, σ2
c/NDFT) and I(Ĩc(k)) ∼ N (0, σ2

c/NDFT). (4.2.5)

The functions R(x) and I(x) return the real and the imaginary part of the complex vari-

able x. With equation (4.2.2) the amplitude in a single frequency bin can be formulated

by

s̃c(k) =


Ac cosφc /

√
2 +R(Ĩc(k))

+ i [Ac sinφc /
√

2 + I(Ĩc(k))] if k = j,

R(Ĩ(k)) + i I(Ĩ(k)) if k 6= j.

(4.2.6)

The distributions of the real and imaginary part can be given in terms of the heterodyne

signal amplitude and phase, the noise variance and the sample size of the DFT. For the

case that the bin frequency corresponds to the signal frequency, k = j, the real and

imaginary parts are normally distributed:

R(s̃c(k)) ∼ N
(
Ac√

2
cosφc,

σ2
c

NDFT

)
and I(s̃c(k)) ∼ N

(
Ac√

2
sinφc,

σ2
c

NDFT

)
.

(4.2.7)

If the signal frequency is not equal to the DFT bin frequency, k 6= j, the mean value is

zero and the distribution is that of the DFT of noise alone which was already written

down in equations (4.2.5).

In the following, the distribution of the frequency bins in the power spectrum is

presented. The power spectrum |s̃c(k)|2 is calculated from the DFT output by simply

taking the modulus squared of each frequency bin. Calculating the power spectrum from

equation (4.2.6) yields:

|s̃c(k)|2 =


(
Ac√

2
cosφc +R(Ĩ(k))

)2
+
(
Ac√

2
sinφc + I(Ĩ(k))

)2
if k = j,

R(Ĩ(k))2 + I(Ĩ(k))2 if k 6= j.

(4.2.8)

Looking at equation (4.2.8), one notices that for both cases, k = j and k 6= j, the content
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Figure 4.3.: Probability density function and cumulative distribution function of the χ2-
distribution with d = 1, 2, 3, 4 degrees of freedom as defined by equation (4.2.9).

of the frequency bin is of the form X2+Y 2, where X and Y are normal random variables.

For the case that k 6= j, the mean of the Gaussian normal distribution is zero, whereas

for k = j, the mean values µ1 and µ2 equal µ1 = Ac cosφc/
√

2 and µ2 = Ac sinφc/
√

2 .

For both cases, the distribution of X2, respectively Y 2, is well known and some details

can be found for example in [Kay09]. If X ∼ N (0, σ2) with zero mean, the resulting

distribution of Z = X2/σ2 is a χ2-distribution with one degree of freedom or short

Z ∼ χ2(1). The PDF p(z; d) of the χ2-distribution with d-degrees of freedom is given

by:

p(z; d) =
zd/2−1e−z/2

2d/2Γ (d/2)
, if z ≥ 0 and p(z; d) = 0, if z < 0, (4.2.9)

where Γ is the well known Gamma function.

An interesting feature of the χ2-distribution is that the sum of two IID χ2 random

variables Z1 and Z2 with d1 and d2 degrees of freedom is also χ2-distributed with d =

d1 + d2 degrees of freedom. Figure 4.3 shows the PDF and the cumulative distribution

function (CDF) of the χ2-distribution for different degrees of freedom.

However, the above PDF is only valid for the square of a standard normal distributed

random variable and needs to be transformed to the more general case of a normal

distributed variable with variance σ2 6= 1. The transformation can formally be described

by a transformation of the random variable, Z, to a new random variable Y = σ2 Z. After

the variable transformation the PDF needs to be scaled such that the total probability
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is conserved. For this case, the probability density function p(y; d, σ2) of the sum of

squared IID normal random variables Y =
∑d

i=1X
2
i , where the Xi ∼ N (0, σ2) is given

by:

p(y; d, σ2) =
1

σ2

( y
σ2 )d/2−1e−y/(2σ

2)

2d/2 Γ(d/2)
, for y ≥ 0 and p(z; d, σ2) = 0, for y < 0.

(4.2.10)

To denote that a random variable Y is distributed according to the PDF given in equa-

tion (4.2.10), Y ∼ χ2(d, σ2) will be written in the following.

The power in a frequency bin of the power spectrum of a single data channel for the

case of k 6= j, was given in equation (4.2.5). Using the result for the general case of

the scaled χ2-distribution of equation (4.2.10), the PDF of the power in a frequency bin

|s̃c(k)|2 is χ2(2, σ2
c/NDFT)-distributed and the PDF is given explicitly by

p(y; 2, σ2
c/NDFT) =


NDFT

2σ2
c

exp

(
−NDFT

2σ2
c

y

)
if y ≥ 0,

0 if y < 0.

(4.2.11)

This type of distribution is also known as exponential distribution.

The derivation of the PDF for the case of the frequency bin containing the signal power,

k = j, follows the same pattern such that redundant steps are left out. As mentioned

before, the content of the signal bin is the sum of two squared normal random variables

Z = X2 + Y 2, where X ∼ N (µ1, σ
2) and Y ∼ N (µ2, σ

2).

If Xi ∼ N (µi, σ
2) are IID normal random variables with mean µi and variance σ2

the distribution of the sum of the scaled variables Ẑ =
∑d

i=1X
2
i /σ

2 is known as non-

central χ2-distribution with d degrees of freedom and noncentrality parameter λ. The

distribution will be denoted by χ̂2(d, λ) and the noncentrality parameter will be defined

as

λ =

√√√√ d∑
i=1

(µi
σ

)2
. (4.2.12)

The PDF p(z; d, λ) of a noncentral χ2-distributed variable Ẑ ∼ χ̂2(d, λ) is defined as:

p(z; d, λ) =

1
2 e
−(z+λ2)/2

(
z
λ2

)(d−2)/4
Id/2−1 (λ

√
z ) if z ≥ 0,

0 if z < 0,
(4.2.13)

100



4.2. Signal and Noise Distributions

0 20 40 60 80
y

0.00

0.03

0.06

0.09

0.12

0.15

P
D

F
(y

)

λ = 0

λ = 2

λ = 4

λ = 6

0 20 40 60 80
y

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(y

)

λ = 0

λ = 2

λ = 4

λ = 6

Figure 4.4.: Left: Probability density function of the noncentral χ2-distribution with d = 2
degrees of freedom and noncentrality parameter λ = 0, 2, 4 and 6 as defined by equa-
tion (4.2.13). Right: The corresponding cumulative distribution functions.

where In(x) is the modified Bessel function of the first kind of order n [AS64]. For λ→
0, the noncentral χ2-distribution approaches the central χ2-distribution, as expected.

Figure 4.4 shows the PDF and the CDF of the non-central χ2-distribution of d = 2

degrees of freedom for different non-centrality parameter.

The variable transformation z = y/σ2 carried out to parametrise the PDF by also

the variance of the Gaussian noise σ2, works exactly the same as for the case of the χ2-

distribution, such that the general PDF for a scaled noncentral χ2-distributed random

variable Ŷ ∼ χ̂2(d, λ, σ2) with d degrees of freedom and noncentrality parameter λ is

equal to:

p(y; d, λ, σ2) =

 1
2σ2 e

−(y/σ2+λ2)/2
( y
σ2 λ2

)(d−2)/4
Id/2−1

(
λ
σ

√
y
)

if y ≥ 0,

0 if y < 0.
(4.2.14)

In order to get the specific distribution of the power in a frequency bin, containing

the heterodyne signal and the noise for a single channel, the PDF is re-parametrised.

Obviously, the distribution has two degrees of freedom, d = 2. The noncentrality

parameter can be simplified and in fact is simply the signal-to-noise ratio of the het-

erodyne signal in a frequency bin. This can be seen by inserting the previously defined

mean values µ1 and µ2 and variance as given in equation (4.2.7) into the definition of
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the noncentrality parameter of equation (4.2.12):

λ =

√
µ2

1

σ2
c/NDFT

+
µ2

2

σ2
c/NDFT

=

√
NDFT

σc

|Ac|√
2
. (4.2.15)

The result of the above equation is nothing else than the RMS of the heterodyne signal

amplitude |Ac|/
√

2 divided by the standard deviation of the noise in the frequency bin

of the DFT. This is equal to the signal-to-noise ratio (SNR) of the measured signal over

the bandwidth of the FFT. Hence:

λ = SNR. (4.2.16)

Inserting everything into equation (4.2.14) the following result for the probability density

function p(y; d, λ, σ2
c ) of the power in a single channel, |s̃c(k)|2 ∼ χ̂2(d, λ, σ2

c/NDFT), in

the frequency bin containing the heterodyne signal is obtained:

p(y; 2, λ, σ2
c/NDFT) =


NDFT
2σ2

c
exp

(
−yNDFT/σ

2
c+λ2

2

)
·I0

(√
y NDFT

σ2
c

λ
)

if y ≥ 0,

0 if y < 0.

(4.2.17)

The mean value, E[|s̃c(k)|2], can be easily derived from the mean of the non-central

χ2-distribution. The result for the scaled noncentral χ2-distribution is:

E
[
s̃2
c(k)

]
=

σ2
c

NDFT
(2 + λ2)

= 2
σ2
c

NDFT
+
|Ac|2

2
. (4.2.18)

For signal to noise ratios SNR � 1, the mean is approximately given by the square of

the root mean square of the heterodyne signal amplitude.

4.2.2. Distributions of the Coherent Sum of Photodiode Segments

In this section, the previously derived distributions for the case of a single data channel

are generalised to the coherent sum of the channels. The data of the coherently combined

channels, sCS(tn), is just the sum of the data in the individual channels which was given

102



4.2. Signal and Noise Distributions

in equation (4.2.1). It can be given as

sCS(n) =

nc∑
c=1

sc(n) =

nc∑
c=1

[
Ac cos

(
2π

j

NDFT
n+ φc

)
+ Ic(n)

]
. (4.2.19)

The linearity of the DFT eases the computation of the power spectrum of the coher-

ently added segments, as the results from the last sections can be reused. With equa-

tions (4.2.3) and (4.2.5) this gives:

s̃CS(k) =

nc∑
c=1

F [sc](k) =

nc∑
c=1

(
Ace

iφc

√
2

δj,k + Ĩc(k)

)
(4.2.20)

=
ACS√

2
δj,k + ĨCS(k). (4.2.21)

Here, the coherent sum amplitude, ACS, and the coherent sum of the noise of the indi-

vidual channels, ĨCS, are defined as

ACS =

nc∑
c=1

Ac e
iφc , and ĨCS(k) =

nc∑
c=1

Ĩc(k). (4.2.22)

The power spectral density of the noise in the coherent sum of nc photodiode channels

can be given with equation (3.4.5) for the coherent sum of photodiode segments, by

using that a channel is made up out of the coherent sum of two segments. It reads:

S̃CS =
√

2nc(S̃2
e,q + S̃2

s,q) + 4n2
c S̃

2
i,q . (4.2.23)

Here, the one-sided power spectral densities of the shot noise S̃s,q, the detector elec-

tronic S̃e,q noise and the laser intensity noise S̃i,q were used. They are defined in equa-

tions (3.4.2),(3.4.1) and (3.4.3). The variance, σ2
CS, of the coherent sum of the noises in

the frequency bin of the power spectrum can be computed with help of equation (3.4.7)

by multiplying the power spectral density with the sampling frequency, fs, as

σ2
CS =

fs

2
S̃2

CS (4.2.24)

Hence, the power spectrum of the CS follows the same distribution, as the single channel

signal. Only the effective amplitude of the CS and its variance, which were calculated in

equations (4.2.22) and (4.2.24), need to be taken into account. The mean value of the
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power in the power spectrum of the CS can be given, in analogy to equation (4.2.18) by

E
[
s̃2

CS(k)
]

= 2
σ2

CS

NDFT
+ δj,k

|ACS|2
2

. (4.2.25)

4.2.3. Distribution of Incoherently Summed Channels

While the distribution of the coherently combined data streams was shown to be normal

distributed with a combined variance, this is not true for the distribution of the inco-

herent sum. Instead, the resulting random variable, which is the incoherent sum, will be

a quadratic form of correlated Gaussian random variables. A closed form expression for

the PDF could not be found, though there are a closed form solutions for the moment

generating function and the characteristic function from which the PDF can in theory

be calculated by taking its Fourier transform. An expression for the mean of the dis-

tribution exists and is given at the end of this section. A comprehensive treatment of

quadratic forms in random variables can be found in [MP92].

In order to derive expressions for the incoherent sum of the channels the correlation

of the noise sources between different channels has to be considered correctly. For the

case of the noise sources considered here, shot noise and electronic noise are uncorrelated

between the channels but laser intensity noise is fully correlated. In order to simplify the

following derivation, the uncorrelated noise sources will be combined into the variable

(4.2.26)

where Ie,c(n) and Is,c(n) are the shot noise and the electronic noise samples in channel c

that are measured at time tn = n/fs. They are the coherent sums of the noise samples

of the two hot redundant segments of a single channel. The one-sided power spectral

density of Iucor,c can be given in terms of the power spectral densities of the single

segment electronic noise S̃2
e,q and shot noise, S̃2

s,q, by

S̃2
ucor,c = 2(S̃2

e,q + S̃2
s,q). (4.2.27)

Additionally, the coherent sum of the laser intensity noise for the two segments of a

channel is defined as, Ii,c which has a on-sided power spectral density of

S̃2
i,c = 4 S̃2

i,q. (4.2.28)
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The single channel heterodyne signal using the above terminology is then

sc(n) = Ac cos

(
2π

j

NDFT
n+ φc

)
+ Iucor,c(n) + Ii,c(n). (4.2.29)

Here again, as in the previous sections, Ac is the constant amplitude of the heterodyne

signal, fj = j fs/NDFT with j = 0, . . . , NDFT/2 − 1, φc is a constant phase. tn are the

times at which the signal is sampled tn = n/fs, with n = 0, . . . , NDFT − 1. From the

definition of the incoherent sum detector that was given in equation (4.1.12) one can

define the incoherent sum of the channels (ICS) by

s̃2
ICS(k) =

nc∑
c=1

|s̃c(k)|2 =

nc∑
c=1

∣∣∣∣Aceiφc√
2

δj,k + Ĩucor,c(k) + Ĩi,c(k)

∣∣∣∣2 . (4.2.30)

To simplify the notation, the real and imaginary parts of the single channel heterodyne

signal s̃c(k) = xc(k) + i yc(k) will be treated as separate normal random variables. The

real part xc(k) and the imaginary part yc(k) are uncorrelated. The incoherent sum can

then be written as

s̃2
ICS(k) =

nc∑
c=1

|xc(k)|2 + |yc(k)|2 = xt(k) Λx(k) + yt(k) Λy(k), (4.2.31)

with Λ = 1nc being the (nc×nc)-identity matrix and x(k) = (x1(k), . . . , xnc(k))t as well

as y(k) = (y1(k), . . . , ync(k))t being the vectors of the real and imaginary parts of the

Fourier transformed heterodyne signal in the channels.

The term on the left is a sum of two quadratic forms in the normal random vari-

ables xc(k) and yc(k) which could be combined into a single quadratic form. A closed

form PDF is not available. However, the joined probability distribution function of the

random vectors can be given as a multivariate normal distribution with mean vectors

µx/y(k) = (µx/y,1(k), . . . , µx/y,nc
(k)) and variance-covariance matrices Σx/y. The mean

of a quadratic form in random variables can generally be given as [MP92]

E[xtΛx] = tr(Λ Σx) + µtxΛµx. (4.2.32)

The variance-covariance matrices, Σx/y, are identical for the real and the imaginary part,

such that here the definition for the real part is given as an example. The element in

the c1-th row and c2-th column of the variance-covariance matrix for the random vector
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x is defined as

(Σx)c1,c2 = Cov[xc1 , xc2 ] = E[(xc1 − µx,c1)(xc2 − µx,c2)]. (4.2.33)

Inserting the definitions of equations (4.2.29) and (4.2.26), one can easily calculate the

variance-covariance matrix to be

(σx/y)c1,c2 =
1

NDFT
(σ2

ucor,c δc1,c2 + σ2
i,c). (4.2.34)

Here, δ is the Kronecker delta and the variances of the uncorrelated noise sources, σ2
ucor,c,

and of the laser intensity noise, σi,c, are defined in analogy to equation (4.2.24) by

σ2
ucor,c =

fs

2
S̃2

ucor,c and σ2
i,c =

fs

2
S̃2
i,c. (4.2.35)

Finally, the mean of the incoherent sum can be formulated with the above calculations

E[s̃2
ICS(k)] = E[xt(k) Λx(k) + yt(k) Λy(k)] (4.2.36)

= tr(Σx) + tr(Σx) + |µx|2 + |µy|2 (4.2.37)

=
2nc
NDFT

(σ2
ucor,c + σ2

cor,c) + δj,k
1

2

nc∑
c=1

|Ac|2. (4.2.38)

The lack of the actual form of the PDF makes it difficult to actually comment on the

detection and false alarm probability of the incoherent sum of the channels. However,

for high SNR the mean value of the power in a frequency bin for the ICS combination

of the channels is approximated by

E[s̃2
ICS(k)]

SNR�1
= δj,k

A2
ICS

2
. (4.2.39)

The amplitude of the ICS combination, AICS, that is used in the last line, was defined

by

AICS =

√√√√ nc∑
c=1

|Ac|2 . (4.2.40)

106



4.3. Distribution of the Detector Output

4.3. Distribution of the Detector Output

In the first part of this section, the probability distribution for the detector output, D,

is derived. An analytical expressions for the case of the detector that uses the coherent

sum of the channels, DCS, is given. For the detector output of the incoherent sum DICS

no analytical distribution could be found. The expressions for the detector output were

defined in equations (4.1.11) and (4.1.12).

In the second part of this section, the noise root mean square (RMS) of the detector

output is derived, for the case of the coherent and incoherent sum. This, at the same

time, yields the noise RMS of the maximum of the detector output over a complete

line-of-sight calibration scan.

In this section it is assumed that only the lower half of the frequency bins are con-

sidered, as the DFT of length NDFT of a real valued time series, has the following

symmetry:

s̃(k) = s̃∗(NDFT − k), (4.3.1)

where s̃∗(k) is the complex conjugate of s̃(k). Hence, the upper half of the DFT of a

real input signal does not contain additional information.

Furthermore, the veto of certain frequency bins has to be taken into account. However,

in this thesis the frequency response of the photodiode is assumed to be flat and the noise

sources were introduced as white such that the signal amplitude and the noise power

in the DFT are independent of the index of the frequency bin. The results derived in

the following section will only depend on the number of the frequency bins that are not

vetoed. The number of non-vetoed frequency bins will be denoted by Nb.

4.3.1. Probability Distribution of the Detector Output

In this section the general form of the PDF of the detector output is given and subse-

quently the expression for the case of the coherent sum of the channels is derived. The

value of the detector output D is the maximum power in any of the non-vetoed Nb fre-

quency bins for which expressions are given in equations (4.1.10) to (4.1.12). Hence, the

PDF of the detector output is the PDF of the maximum power in these Nb frequency

bins. A general expression for the PDF of the detector output pD(y) can be derived

from its CDF, PD(y), by

pD(y) =
d

dy
PD(y). (4.3.2)
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The CDF of the detector output PD(y), is the probability that the value of the detector

output is less than or equal to y,

PD(y) = P(D ≤ y). (4.3.3)

For the case considered here, this is equal to the probability that the power in all

frequency bins of the power spectrum is less than or equal to y, i.e.

PD(y) = P
(
s̃2(k1) ≤ y ∧ s̃2(k2) ≤ y ∧ · · · ∧ s̃2(kNb

) ≤ y
)
, (4.3.4)

where s̃2(ki) is the ki-th frequency bin of the power spectrum of either the single channel,

the coherent sum or the incoherent sum and i indexes the non-vetoed frequency bins.

As it was assumed that the noise in the frequency bins is independently distributed, the

joined probability which is defined in equation (4.3.4) can be written as a product of the

CDFs of the individual frequency bins as

PD(y) =

Nb∏
i=1

P
(
s̃2(ki) ≤ y

)
. (4.3.5)

The general result of the CDF of the detector output as defined by equation (4.3.5) can

be used to determine the CDF of the detector for the case of the two hypotheses, H0

and H1. The two hypotheses were defined in equation (4.1.8).

At first, the distribution of the detector under the null hypothesis, H0, is derived.

As it was assumed that the noise sources are identical and independently distributed,

equation (4.3.5) can be simplified to

PD(y;H0) = Pn
(
s̃2(k) ≤ y

)Nb . (4.3.6)

Here Pn
(
s̃2(k) ≤ y

)
is the cumulative distribution function of the k-th frequency bin,

while k just stands representative for any of the Nb frequency bins. The subscript n is

used to indicate that the frequency bin contains only noise.

If equation (4.3.6) is inserted into equation (4.3.2) the PDF for the detector output is

obtained with the the PDF of the power in a single frequency bin, pn(y), as

pD(y;H0) =
d

dy
Pn
(
s̃2(k) ≤ y

)Nb = Nb pn(y) Pn
(
s̃2(k) ≤ y

)Nb−1
. (4.3.7)

Equation (4.3.7) is valid for any of the signal combinations. However, for the case of the

incoherent sum an analytic expression for the PDF of a single frequency could not be
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found. For the coherent sum of the channels the solution can be given explicitly with the

PDF presented in equation (4.2.11) and the variance of the coherent sum of the channels

that was defined in equation (4.2.24).

The CDF of the power in the single channel of the coherent sum of the channels for

the case of negligible heterodyne amplitude can be computed by

PCS,n(y) =

∫ y

0
pCS,n(y) dy = 1− exp

(
−NDFT

2σ2
CS

y

)
. (4.3.8)

And the distribution of the detector output for the case of the coherent sum of the

channels for negligible heterodyne amplitude can be given as

pDCS
(y;H0) = Nb

NDFT

2σ2
CS

exp

(
−NDFT

2σ2
CS

y

) [
1− exp

(
−NDFT

2σ2
CS

y

)]Nb−1

. (4.3.9)

The PDF of the detector output for the case of the alternative hypothesis, H1, can be

derived in analogy to equation (4.3.4). The difference now is that one of the frequency

bins additionally contains the heterodyne signal and thus the power in the frequency

bin is distributed according to a noncentral χ2-distribution. The PDF for the case of

the single channel was given in equation (4.2.17). If the heterodyne amplitude and noise

variance for the single channel are exchanged for the heterodyne amplitude and noise

variance of the coherent sum, which were given in equations (4.2.22) and (4.2.24), the

noncentrality parameter, as defined by equation (4.2.15), can be defined for the CS by

λCS =

√
NDFT

σCS

|ACS|√
2
. (4.3.10)

The CDF of the power in a single frequency bin of the coherent sum of the channels is

then given by

PCS,s(y) :=

∫ y

0
p(y; 2, λCS, σ

2
CS/NDFT) dy. (4.3.11)

And with this the CDF of the output of the coherent sum detector for the case of a

heterodyne signal in one frequency bin, can be given as

PDCS
(y;H1) = PCS,s(y) PCS,n(y)Nb−1. (4.3.12)

The PDF of the detector output can be computed with help of equation (4.3.2) and the
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Figure 4.5.: Left: PDF of the maximum found in Nb frequency bins if the amplitude of the
heterodyne signal is zero, H0, for the case of the coherent sum or incoherent sum detector.
The distribution is given in equation (4.3.9). Right: PDF of the maximum found in Nb

frequency bins for the case of a heterodyne signal in one of the frequency bins, H1. The
distribution in the frequency bin is shown for different noncentrality parameters of λ = 4, 6, 8.
It is determined by equation (4.3.14). For both plots σ2/NDFT = 1.

PDF of the CS detector output pCS,s(y) = p(y; 2, λCS, σ
2
CS/NDFT), as

pDCS
(y;H1) =

d

dy

[
PCS,s(y) PCS,n(y)Nb−1

]
(4.3.13)

= pCS,s(y) PCS,n(y)Nb−1

+ (Nb − 1)pCS,n(y)PCS,s(y) PCS,n(y)Nb−1. (4.3.14)

All of the terms occurring in the PDF of the detector output above are already known

except for the CDF for the frequency bin containing the heterodyne signal, PCS,s(y). The

integral over the PDF cannot be solved by elementary functions, but it can be defined

in terms of the Marcum Q-function which is given in the appendix in equation (B.1.6),

as

PCS,s(y) = 1− NDFT

σ2
CS

Q1

(
λCS,

√
NDFT

σ2
CS

y

)
. (4.3.15)

The left plot in Figure 4.5 shows the PDF of the detector output for different values of

Nb, for the case that the input signal only consists of noise. The right plot in Figure 4.5

compares the PDF of the detector output for the case that a heterodyne signal is present
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4.3. Distribution of the Detector Output

in one of the frequency bins. The PDF is shown for different values of the noncentrality

parameter and the number of non-vetoed frequency bins, Nb. While the peak value of

the distribution for the case of H0 shifts to higher values if the number of non-vetoed

frequency bins is increased, it is constant for the case of H1 and a high SNR or λ,

respectively.

The distributions here were derived for the case of the coherent sum detector. However,

for the case of a heterodyne signal with high SNR, the detector output for the ICS will

likely be drawn from the frequency bin that contains the heterodyne signal. The general

observation that the signal distribution is constant for high SNR input signals is thus

also true for the ICS of the channels.

4.3.2. Noise RMS of the Detector Output

During the initial line-of-sight calibration scan, the maximum detector output that oc-

curs over the course of a complete scan is used to estimate the initial alignment and

the frequency bias. The detector output is generated at a rate of δfDFT = fs/NDFT

which is the time that is necessary to sample the data for a complete FFT. If the sub-

sequent detector outputs during the line-of-sight calibration scan are denoted by Di,
where i = 1, . . . , Ne with the maximum number of estimates of Ne, then the maximum

detector output D̂ can be defined as

D̂ := max(D1,D2, . . . ,DNe). (4.3.16)

In this section, expressions for the RMS of D̂ under the null hypothesis are given. At

first, an analytical expression for the case of the CS is derived. The detector returns the

maximum power of Nb computed frequency bins and during the line-of-sight calibration

the maximum of Ne detector outputs is determined. Under the assumption that the noise

is identically and independently distributed during the complete line-of-sight calibration

scan, the PDF of D̂ is equivalent to the PDF of the detector output under the null

hypothesis pD(y;H0), which was given in equation (4.3.7). The only difference is that the

number of frequency bins over which the maximum is determined is equal to Nt = NeNb

such that the PDF of the maximum detector output for the case of the coherent sum,

D̂CS, can be given as

pD̂CS
(y,Nt;H0) = Nt

NDFT

2σ2
CS

exp

(
−NDFT

2σ2
CS

y

) [
1− exp

(
−NDFT

2σ2
CS

y

)]Nt−1

. (4.3.17)
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The RMS of the detector output under, H0, can be defined as the square root of the

second raw moment of the above PDF,

RMS[D̂CS](Nt) =

[∫ ∞
0

y2 pD̂CS
(y,Nt;H0) dy

]1/2

. (4.3.18)

The integral in equation (4.3.18) can be calculated explicitly. For Nt � 1 a simple

approximation can be given that is suitable for calculating the RMS of the maximum

detector output for arbitrary Nt. Introducing the definition

σ̃2
CS =

σ2
CS

NDFT
, (4.3.19)

the noise RMS of the maximum detector output can be given by

RMS[D̂CS](Nt) ≈ σ̃2
CS

[
2

3
π2 + 4(γ + lnNt)

2

] 1
2

(4.3.20)

Here, γ is the Euler-Mascheroni constant. The first few digits can be given by γ ≈
0.57722.

Figure 4.6 shows a comparison between the approximation given in equation (4.3.20)

and numerically computed results for some values of Nt and σ̃2
CS = 1. The numerical

results have been computed from pseudo-random numbers generated by the MT19937

algorithm of the GSL library [MN98]. The agreement between the analytical formula

and the numerical values is excellent over the whole range of considered values of Nt.

For the case of the ICS of the channels the power in a single frequency bin is distributed

according to a quadratic form in correlated Gaussian random variables and an explicit

form of the PDF could not be found.

In order to, nevertheless, deduce a functional dependence between Nt and the RMS of

the maximum detector output, the expression that was obtained for the CS, was fitted

to numerically computed data from generated pseudo-random numbers. To carry out

the fit, a specific ratio of the covariance to the variance has to be assumed. Here, a hot

redundant pair of QPDs is assumed and the ratio between the covariance and variance

in a single channel was chosen to,

σ̃2
i,c

σ̃2
i,c + σ̃2

ucor,c

= 0.30.

This corresponds to the case of GRACE Follow-On with the current estimates of noise

levels. The result is plotted in Figure 4.6 which shows a comparison between the fit and
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Figure 4.6.: Normalised noise RMS of the maximum of Nt noise samples of the CS and ICS
of four channels. The ICS RMS is normalised by the variance of the real part of the noise in
a frequency bin of the amplitude spectrum of a single channel. It is assumed that the ratio
of the covariance between the noise of two different channels and the variance is equal to
0.30. The CS RMS is normalised to σ̃2

CS which is given in equation (4.3.19). The analytic
expression and the fit are given in equations (4.3.20) and (4.3.22). The numerical RMS
values are calculated by generating pseudo-random numbers with the MT19937 algorithm
[MN98].

numerically computed data of the normalised noise RMS of the detector output, for the

case of the incoherent sum combination. The RMS is normalised by the variance in a

single channel

σ̃2
c =

σ̃2
c

NDFT
=
σ2

ucor,c + σ2
i,c

NDFT
. (4.3.21)

The fit function is given by

RMS[D̂ICS](Nt) ≈ σ̃2
c

([
5.89 + 14.6(γ + lnNt)

2
] 1
2 + 5.90

)
. (4.3.22)

The analytic expressions for the RMS of the returned maximum can be used to find the

RMS of the detector for an initial line-of-sight calibration scan. The time for a complete

calibration scan is given by the time for a complete scan of the four dimensional spatial

uncertainty space, TS, multiplied by the number of scan points in the frequency scan, Nf .

The rate at which new detector outputs are generated is equal to the FFT bandwidth

δfDFT = fs/NDFT, such that the total number of calculated detector outputs, Ne, is
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given by

Ne = TSNf
fs

NDFT
. (4.3.23)

The total number of processed frequency bins, from which the maximum is found is

given by Nt = NbNe. For the following example a sampling frequency of fs = 38 MHz,

a DFT size of NDFT = 4096 is assumed and only the lower half of the frequency bins

are used Nb = 2048. If a complete four-dimensional spatial scan takes about TS = 200 s,

then for a single spatial scan, Nf = 1, the number of processed DFT frequency bins is

Nt = 3.8 · 109. This corresponds to the last calculated value in the plot of Figure 4.6.

The brute force computation of the random numbers for the ICS combination took

about 3.3 h on a 16 core Intel Xeon E5620 for the CS combination about 0.5 h for the

case of Nt = 3.8 · 109. Since the computation time is linear in Nt, calculating the RMS

for the complete calibration with 100 frequency scan points is impractical. However,

with help of the analytical expressions for the two cases the RMS can be computed.

Table 4.1 shows the normalised values computed with equation (4.3.20) and (4.3.22).

In order to compute the specific RMS for given noise sources, the normalised values

in Table 4.1 have to be multiplied by the variance of the coherent sum σ̃2
CS defined by

equation (4.3.19) or respectively the variance of the noise in a channel σ̃2
c , which was

defined in equation (4.1.3), if the ICS noise RMS should be computed.

Table 4.1.: Normalised noise RMS of the maximum detector output, D̂, for the case of the
CS and ICS of the channels. The total number of processed DFT bins, Nt, is computed
from the total scan time with equation (4.3.23) under the assumption that fs = 38 MHz,
NDFT = 4096 and Nb = 2048.

Item

Sum Type Total Scan Time, Nf TS / s Nt normalised RMS

20 000 3.8 · 1011 54.5
CS 200 3.8 · 109 45.3

108 · 10−6 2 048 16.6
53.9 · 10−6 1 024 15.2

20 000 3.8 · 1011 109
ICS 200 3.8 · 109 91.9

108 · 10−6 2 048 37.3
53.9 · 10−6 1 024 34.6
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4.4. Distribution of the Detector Output for Time Dependent

Frequency

In the last sections, rigid assumptions were imposed on the signal frequency to simplify

the derivation of the distributions of the detector output. Here, the frequency will be

freely varied within the bandwidth of the FFT. The results that are presented in this

section are obtained by means of numerical computations of power spectra.

At first the frequency will assumed to be constant. Thereafter, the effect of frequency

noise on the distribution of the detector output will investigated. Finally, the effect

of a constant rate frequency sweep on the detector distribution will be discussed. The

analysis is carried out for the distribution of the CS detector output, though the general

conclusions are valid for the ICS combination as well.

4.4.1. Constant Arbitrary Frequency

In general, the frequency will not be constant but vary due to frequency noise or a

linear frequency sweep that is used to scan the frequency over the frequency uncertainty

interval. If, however, the variation of the frequency over one FFT is small compared

to the FFT bin width, the frequency can be treated as constant. The difference to the

former sections is, that the frequency can have an arbitrary offset from one of the central

bin frequencies of the FFT. This case will be studied here in more detail.

If the frequency of the heterodyne signal is not fixed to one of the central bin fre-

quencies, but is allowed to have any value within the considered frequency band, part of

the signal power will be distributed over the complete FFT bandwidth, however, most

of the power will be shared between two neighbouring bins. Thus, the signal power in

a single frequency bin will decrease if the signal frequency is different from one of the

central bin frequencies. This effect is called scalloping loss [Har78]. The size of the scal-

loping loss is depending on the window function applied to the data before calculating

the spectrum [SCMC99]. For the following analysis, a rectangular window is assumed.

In the following, the frequency of the heterodyne signal will be written as

fb = (j + δb)
fs

NDFT
, (4.4.1)

where j is the index of one of the frequency bins and δb is the offset of the signal frequency

from the central frequency of the j-th bin in terms of the bin width. The width of the

frequency bin in the FFT is given by the ratio between the sampling frequency fs and

the size of the FFT, NDFT. The n-th sample of the time series of the coherent sum
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Figure 4.7.: Left: Normalised amplitude response of a DFT as a function of the offset from
the central frequency, δb. The normalised amplitude response was defined in equation (4.4.4).
Right: Normalised amplitude response of adjacent frequency bins. The envelop of the joined
response of the frequency bins gives the amplitude response for an arbitrary frequency of the
heterodyne signal. The minimum amplitude response occurs if the signal frequency is halfway
between two bins. Here the amplitude is only about 64 % of the maximum amplitude.

signal sCS(n) can then be written as

sCS(n) =

nc∑
c=1

ACS cos

(
2π
j + δb

NDFT
n+ φc

)
+ ICS(n). (4.4.2)

The DFT of a sinusoidal signal with frequency, fb = (j+δb)fs/NDFT, can be calculated

analytically. Moreover, it is possible to define a scaling function l(k, j + δb,NDFT), that

describes the response of a DFT of size NDFT to that sinusoidal signal, as a function of

the frequency bin index k. For the case of δb = 0, the DFT of the coherent sum was

given in equation (4.2.21). However, for the case of δb 6= 0 the DFT yields

s̃CS(k) ≈ ACS√
2
l(k, j + δb,NDFT) + ĨCS(k). (4.4.3)

It is safe to assume that the frequency bin index k is not close to the DC bin, k = 0, or

the Nyquist bin, k = NDFT/2, as those bins will be vetoed in the detection algorithm.

For this case the scaling function can be approximated by

l(k, j + δb, NDFT) ≈ 1

NDFT

(
e−2πi(k−(j+δb)) − 1

e2πi(k−(j+δb))/NDFT − 1

)
. (4.4.4)
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Figure 4.8.: Left: Histogram of the coherent sum detector output, DCS, for the case that the
frequency of the signal is chosen randomly for each DFT. As a comparison the distributions
for fixed frequencies with zero offset from the bin centre and with δb = 0.5 are shown. Right:
CDF of the detector output under the hypothesis of a present heterodyne signal, H1, for three
values of the effective received power per a channel. Additionally, the right tail probability of
the detector output under the null hypothesis H0, i.e. the signal amplitude is zero, is shown.
The distributions are well separated for 3 pW per channel effective received power. The other
parameters that were used to compute the distributions are: NDFT = 4096, Nb = 2048,
PLO,c = 700µW.

The left plot in Figure 4.7 shows the scaling function, or normalised amplitude response,

of the DFT as a function of the frequency offset from the central bin frequency. The

amplitude response is maximal for zero frequency offset from the central frequency and

drops quickly for increasing offset. The right plot in Figure 4.7, shows the overlapping

response of adjacent frequency bins. The envelop of the response of all frequency bins

determines the amplitude response of the DFT for a given frequency.

For the case that the frequency is in the middle between two bins, δb = 1/2, the

response is minimal and the two neighbouring bins will contain equal power. Hence, the

detector output will vary For a constant amplitude signal that varies in frequency.

The left plot in Figure 4.8 shows numerically computed histograms of the maximum

power in an FFT if the signal frequency is drawn from a uniform distribution over the

considered frequency band. The resulting distribution is compared to the distribution

for a frequency fixed to the centre of a bin and in the middle between two bins. The

distribution of the maximum power is much wider if the frequency of the signal is varied

than for the case of a fixed frequency. The difference between the highest and lowest

sample in the histogram is approximately equal to the scalloping loss, that can be seen
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4. Detection Algorithm, Signal- and Noise Distributions

in the right plot of Figure 4.7.

The right plot in Figure 4.8 shows the CDF of the coherent sum detector output for

three values of the effective received power in a channel. The effective received power

was defined in equation (3.3.11) as the product of the received power that reaches the

photodiodes and the heterodyne efficiency. This is compared to the right tail probability

(RTP) of the distribution of the detector output for the case of negligible heterodyne

amplitude, H0. The RTP is defined by RTP(x) = 1− CDF(x).

The CDF of the detector output under H1 can be interpreted as the probability of

missed detections if the horizontal axis is interpreted as the threshold above which a

detection is claimed. The RTP of the detector output under H0 is the probability of

false alarm if the horizontal axis is the detection threshold.

For the case of only P̂RX,c = 100 fW effective received power per channel, a compromise

has to be made by either accepting false alarms with high probability or sacrificing some

of the possible detections. For example if the threshold is set at 4·10−16A2 the false alarm

probability is still around 1 % but the probability to miss a detection is already 10 %.

For the case of P̂RX,c = 3 pW effective received power per channel, the distributions are

well separated and it is possible to reduce false alarms to a negligible amount, whereas

the probability of detection is kept at almost 100 %.

4.4.2. Distribution of the Detector Output with Frequency Noise

The last section discussed the distribution of the coherent sum detector output for the

case of a constant arbitrary frequency. This assumption holds if the frequency variations

over a DFT are smaller than the width of the frequency bin δfDFT = fs/NDFT. If the

variations are larger, e.g. due to frequency noise of the free-running laser or a frequency

sweep, this assumption does not hold anymore.

This section discusses the change of the distributions for different FFT lengths, NDFT,

if the beatnote frequency varies due to frequency noise. Increasing the length of the DFT

decreases the width of the frequency bins, δfDFT, as can be seen by

δfDFT =
fs

NDFT
. (4.4.5)

On the one hand, decreasing the frequency bin width increases the SNR for a heterodyne

signal for the case of a constant frequency, as the variance of the noise σ̃2
CS in the

frequency bins is proportional to δfDFT. This is generally true but here given explicitly
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Figure 4.9.: Left: Amplitude spectral density of the frequency noise with shape defined by
equation (4.4.7) for two different amplitudes at 1 Hz. Right: A set of computed time series,
for the case of |S̃ν(1 Hz)| = 200 kHz.

for the coherent sum of the channels. Hence,

σ̃2
CS =

δfDFT

2
S̃2

CS =
fs S̃

2
CS

2NDFT
, (4.4.6)

where S̃2
CS is the one-sided power spectral density of the noise in the coherent sum of

the channels, which was defined in equation (4.2.23). On the other hand, the SNR is

decreased, if the bin width is smaller than the variation of the beatnote frequency due

to frequency noise which would distribute the signal power over several frequency bins.

The actual shape of the frequency noise power spectral density will strongly depend

on the type of laser used. However, the requirements set on the laser performance in

terms of frequency and amplitude noise, as well as its applicability in space missions

limits the range of possible laser types. The most promising candidate for a mission in

the near future is a Nd:YAG non-planar ring oscillator (NPRO) [KB85]. The Nd:YAG

NPRO has been extensively studied as light source for the Laser Interferometer Space

Antenna (LISA) by Troebs et. al. [TeF05, TeF+06, TBM+09] and for the use in ground

based gravitational wave detectors such as GEO600, Laser Interferometer Gravitational-

Wave Observatory (LIGO) by Willke, Heurs and others [WBD+00, HQW+04]. Numata

et al. investigated the noise behaviour of several laser types that can be used in laser

interferometer space missions [NCKS10, NC12].

The frequency noise of the Nd:YAG NPRO approximately follows a 1/f -slope for a

range of frequencies which is here assumed from 100µHz up to frequencies of about
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Figure 4.10.: Left: Histogram of the detector output for a heterodyne signal with effective
received power of P̂RX = 3 pW per channel. The distribution is compared for different sample
sizes of the DFT. Right: Cumulative distribution function of the distribution of the detector
output under hypothesis H1, compared to the right tail probability of the distribution for the
case of only noise, H0. Here frequency noise with |S̃ν(f = 1 Hz)| = 200 kHz was used.

100 kHz. Measurements by Kullmann [Kul12] show that the frequency noise flattens

out at a level of 0.5 Hz/
√

Hz for frequencies above 100 kHz, up to the end of the mea-

surement band of 20 MHz. However, to allow for some margin on the performance the

frequency noise level in the following analysis is assumed to have a worst case amplitude

spectral density. The amplitude spectral density of the measured frequency noise S̃ν(f)

is assumed to have the following shape:

|S̃ν(f)| = c

√(
1 +

f2

f2
1

)−1(
1 +

f2

f2
2

)(
1 +

f2

f2
3

)−1

(4.4.7)

where the pole frequencies are f1 = 100µHz and f3 = 30 MHz. The frequency of the

zero, f2, is chosen such that for a given factor c, a noise floor of 0.5 Hz/
√

Hz is created,

as was measured in [Kul12]. The factor c is adapted to get |S̃ν(f = 1 Hz)| = 200 kHz for

the first and |S̃ν(f = 1 Hz)| = 100 kHz for the second case. The two resulting curves are

shown in the left plot of Figure 4.9.

To quantitatively estimate the effect of the frequency noise on the distribution of the

detector output a numerical signal generator was developed that computes the signal
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4.4. Distribution of the Detector Output for Time Dependent Frequency

with realistic amplitudes and noise sources as defined by:

sCS(n) = ACS cos

(
2π
fb

fs
n+

2π

fs

n∑
i=0

δf(i) + φCS

)
+ ICS(n), (4.4.8)

where ACS is the amplitude and φCS the phase of the coherent sum heterodyne signal,

fb is the beatnote frequency and δf(n) is the time series of the frequency noise. The

time series of the additive noise source is ICS(n). The time series of the frequency noise

was generated by a random number generator that produces random numbers with the

spectra defined by equation (4.4.7). The noise generator was created by LISO [Hei99].

From the computed time series of the coherent sum heterodyne photocurrent, as given

by equation (4.4.8), the power spectrum was calculated and the maximum power in any

of the frequency bins was determined. The distribution of the found maxima is shown

in Figure 4.10 for different DFT lengths. For the computations the frequency noise with

the larger spectral density was used, |S̃ν(f = 1 Hz)| = 200 kHz. The results for the case

of |S̃ν(f = 1 Hz)| = 100 kHz were found to be not significantly different. They are not

additionally plotted here.

The decrease of the overall power for larger FFT sample sizes is apparent from the left

plot in Figure 4.10 which shows a histogram of the found maxima. However, increasing

the FFT size from 1024 to 4096 points reduces the width of the distribution, whereas

starting from 8192 upwards the values of the found maxima decrease drastically. The

FFT length of NDFT = 4 096 points seems to be an optimum for the assumed frequency

noise levels. In the right plot of Figure 4.10 the right tail probability for the case of

negligible heterodyne amplitude, H0, is shown in comparison to the CDF for the case

of H1. The peak value of the distribution of the detector output for the case of only

noise decreases while increasing the number of samples in the FFT. This is due to the

reduction in the width of the frequency bin which was given in equation (4.4.5).

Increasing the sample size to 4 096 points gives a big improvement over the case

of 1 024 points, as the noise variance decreases by a factor of 4. If the DFT sample

size is further increased, the separation between the signal and noise distribution stays

approximately constant. Hence, increasing the number of samples above 4 096 points

results in no further improvement of the detection probability compared to the false

alarm probability. This can be understood by looking at the time series of the frequency

noise shown in Figure 4.9. For an FFT of 4 096 points which corresponds to 108µs the

maximum variation in the noise is less then the DFT bin width δfDFT = fs/NDFT that

is δfDFT = 9.28 kHz for 4 096 points sampled at 38 MHz. For 8 192 samples the DFT

bin width is δfDFT = 4.64 kHz but the frequency variation reaches up 10 kHz over the

121



4. Detection Algorithm, Signal- and Noise Distributions

0.5 1.0 1.5 2.0 2.5 3.0
(photocurrent RMS amplitude)2/10−14A2

0

500

1000

1500

2000

2500

3000

fr
eq

u
en

cy
(t

ot
al

=
10

5 )

0 Hz/s

100 MHz/s

300 MHz/s

500 MHz/s

1 GHz/s

3 GHz/s

10−2 10−1 100

(photocurrent RMS amplitude)2/10−14A2

10−5

10−4

10−3

10−2

10−1

100

101

S
ig

n
al

:
C

D
F

an
d

N
oi

se
:

R
T

P Noise only Signal present

Figure 4.11.: Left: Histograms of the distribution of the detector output for different fre-
quency sweep rates vs. The DFT size is NDFT = 4096 for each of the computed distributions
and the effective received power of the heterodyne signal was set to P̂RX,c = 3 pW per chan-
nel. Additionally frequency noise with |S̃ν(f = 1 Hz)| = 200 kHz was introduced. Right:
RTP function of the distribution of the detector output for the case of only noise, H0, and
the CDF of the distribution under H1 for the same sweep rates. The LO power per QPD is
350µW.

time the data for the DFT is sampled.

The signal power is thus distributed over several frequency bins which reduces the

maximum power found in one bin. For smaller frequency noise levels, larger DFT sample

sizes can be realised before the signal power per bin is reduced.

4.4.3. Distribution of the Detector Output with a Linear Frequency Sweep

In this section, the distribution of the detector output will be discussed for the case of

a linear frequency sweep. During the calibration scan and the autonomous acquisition

the frequency needs to be scanned, since unknown frequency offsets in the reference

cavity or the free-running laser results in an unknown beatnote frequency. To estimate

the scan speed for which significant loss of SNR has to be expected, power spectra of

the heterodyne signal with frequency noise and an additional frequency sweep with a

constant sweep rate vs were computed. From the maximum values, histograms were

calculated to estimate the distribution of the detector output DCS.

For the analysis in this section, the FFT length is fixed to 4 096 points, and frequency

noise with |S̃ν(f = 1 Hz)| = 200 kHz was used for the generation of the heterodyne signal

time series. For the additive noise sources, the LO power was set to 700µW per channel,
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whereas the effective received power per channel was set to P̂RX,c = 3 pW. The initial

frequency prior to the sweep was varied in side the measurement band but it was assured

that the signal frequency stays within the frequency band for the complete FFT. The

mathematical expression of the signal with frequency noise and a constant rate frequency

sweep can be given by:

sCS(n) = ACS cos

(
2π
fb

fs
n+ π

vs

f2
s

n2 +
2π

fs

n∑
i=0

δf(i) + φCS

)
+ ICS(n), (4.4.9)

where the variables have the same meaning as in the previous sections. The results

are shown in Figure 4.11 for different frequency sweep rates. For vs ≤ 100 MHz the

distribution does not change significantly for the used FFT size. This corresponds to a

frequency change of roughly 10.8 kHz during one FFT, which is about one frequency bin

width

δfDFT =
fs

NDFT
. (4.4.10)

For higher sweep rates the frequency sweeps over more than one FFT bin and hence,

the power of the signal will be distributed over several frequency bins, decreasing the

maximum possible SNR.

The maximum scan rate for which the frequency does not sweep over more than a

frequency bin during one DFT can be calculated by

v̂s =
δfDFT

tFFT
= δf2

DFT. (4.4.11)

However, even for sweep rates of 1 GHz/s the separation between the distribution of DCS

for the case of only noise and the case of a present signal is sufficient to guarantee small

false alarm probabilities, while the detection probability remains close to 100 %.

Table 4.2 lists the maximum scan speeds for different DFT lengths and a sampling

frequency of fs = 38 MHz, computed by equation (4.4.11). The maximum scan speed

calculated by equation (4.4.11) for the case plotted in Figure 4.11 is v̂s ≈ 86 MHz/s while

the plot shows that for 100 MHz/s the distribution only slight changes. The margin on

the value of the maximum scan speed as computed by equation (4.4.11) seems rather

large.

123



4. Detection Algorithm, Signal- and Noise Distributions

4.5. Conclusions

In this chapter, an algorithm for estimating the frequency and heterodyne amplitude was

presented. The algorithm is based on sequentially computed discrete-Fourier transforms

of non-overlapping chunks of data. In order to enhance the signal-to-noise ratio, the

coherent and incoherent sum combinations were presented.

At first, the distribution of the power in a single frequency bin of the power spectrum

was given. Initially, the distribution is given for the case that only a single data channel

is used as input to the detector. Subsequently, the result is generalised to the case of

the coherent sum of the channels. For the incoherent sum combination no analytical

distribution could be found, but an expression for the mean value is given.

Henceforth, for the case of the coherent sum of the data channels, the distribution of

the detector output was derived which is the maximum power in any of the frequency

bins of the power spectrum. Thereafter, the obtained distribution of the detector output

for the coherent sum combination is used to derive an analytical expression for the

maximum detector output depending on the number of returned estimates. For the case

of the incoherent sum the expression for the coherent sum could be fitted to numerically

computed values, yielding excellent agreement.

Finally, the distribution of the detector output for the case of a single channel is

investigated for the case of a time dependent signal frequency. At first, the effect of

frequency noise is investigated for different sample sizes of the discrete Fourier transform.

After that a constant rate frequency sweep is added to the frequency noise, and the effect

on the distribution of the detector output for different sweep rates is investigated.

The main results of this chapter are the expressions of the mean value of the detec-

tor distribution for the cases of the coherent and incoherent sum of the data channels.

These are given in equations (4.2.22) and (4.2.40). Also, the analytical expressions for

the root-mean square value of the maximum detector output for the two signal com-

Table 4.2.: Bin width, δfDFT , sampling time, tFFT, and maximum frequency sweep rate,
v̂s, for FFTs of different size, NDFT. The sampling frequency is fixed to fs = 38 MHz.

NDFT δfDFT / kHz tFFT / µs v̂s / MHz/s

512 74.23 13.47 5510
1024 37.11 26.95 1380
2048 18.56 53.90 344.3
4096 9.277 107.8 86.07
8192 4.639 215.6 21.52
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binations are important results. The derived expressions are later on used to estimate

the minimum spatial scan resolution for an initial line-of-sight calibration. These ex-

pressions are given in equations (4.3.20) and (4.3.22) and some selected values are given

in Table 4.1. They are especially useful as the generation of numerical estimates is

computationally expensive.

The numerically simulated detector outputs for random frequencies show that the

scalloping loss introduced due to the rectangular windowed discrete Fourier transform

broadens the distribution as compared to the case for a fixed frequency. The width of the

distribution is roughly equal to the scalloping loss, which reaches up to 60 %. However,

for the noise variance assumed here 500 pW effective received power in a single data

channel are sufficient to reduce false alarm rates to a negligible level.

If frequency noise is present, the distribution of the detector output depends on the

sample size NDFT of the discrete Fourier transform. The signal-to-noise ratio is reduced

if the width of the frequency bin δfDFT = fs/NDFT is smaller than the change of the

frequency, during the time data is taken for the Fourier transform. For the frequency

noise spectral density of S̃ν(f = 1 Hz) = 200 kHz/
√

Hz which was used to generate the

spectra the optimal sample size was found to be NDFT = 4096 samples.

A frequency sweep also reduces the signal-to-noise ratio, if the change of the frequency

is larger than the width of the frequency bins. Table 4.2 lists frequency sweep rates that

correspond to frequency changes of one frequency bin during a Fourier transform. For

sample sizes of NDFT = 4096 and 2048 samples the maximum sweep rates are of the

order of 100 MHz s−1.
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5. High-Fidelity Simulation of the GRACE

Follow-On Laser Ranging Interferometer

In the previous chapters, the current design of the laser ranging interferometer for

GRACE Follow-On, the expected signal and noise models and a data processing chain

to detect the heterodyne signal were discussed. In order to test acquisition strategies,

such as an initial line-of-sight (LOS) calibration and an autonomous laser link acquisi-

tion, a computer simulation was developed that includes the discussed signal and noise

models, as well as a model of the detection algorithm. Additionally, realistic dynamics

of the fine-steering mirror (FSM), laser frequency and a differential wavefront sensing

(DWS) signal based control loop for the FSM were implemented. A simple model for a

phasemeter was used to decide whether DWS is available to enable the control loop.

An important goal of the simulation was to gather statistics about the calibration

accuracies and about success and failure rates, as well as timing of an autonomous

acquisition, for a broad range of parameters. In order to achieve this goal multiple

instances of the simulation code were run in parallel on the ATLAS computing cluster

in the scope of a detailed parameter study.

In this chapter, an overview of the concepts used in the simulation is given, which

is followed by a presentation of the models for the laser, the FSM and phasemeter, as

well as the FSM-DWS control loop. Subsequently, the heterodyne signal computation

is explained and finally the implementation of a model for the detection algorithm is

discussed.

5.1. Overview

The simulation is realised as a discrete time-domain simulation. In Figure 5.1 a schematic

overview is given of the components and dependences that need to be accounted for in

the model, in order to achieve a sufficient degree of realism. These components are: the

laser, the FSM, the measurement of the heterodyne signal at the quadrant photodiodes

(QPD) and the phasemeter. Also, feed-back of the DWS signal and feed-forward of the

line-of sight estimate and spatial scan coordinates to the FSM need to be included.

The heterodyne signal needs to be continuously computed for the current alignment
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5. High-Fidelity Simulation of the GRACE Follow-On Laser Ranging Interferometer

Figure 5.1.: Overview of the alignment angles of the transmitted (TX) and received (RX)
beam, the coordinate systems, and fine-steering mirror alignment commands. Redundancy
of the QPDs is implemented into the simulation, but not shown here.

of the involved beams. Additionally, a model of the complete data processing chain that

is used to detect the heterodyne signal needs to be implemented, taking realistic noise

models into account.

At each time step, the laser frequencies and subsequently the beatnote frequencies

for the two spacecraft are updated. After this, the new steering mirror alignment is

set and the beams are retraced through the optical bench based on the new steering

mirror position. Based on the updated frequency and alignment of the beams, the

heterodyne amplitudes and phases are calculated for each channel. From the calculated

amplitude and phase the power spectrum is derived for the predefined summation mode,

i.e. coherent or incoherent sum, also taking the additive noises into account.

This approach, however, assumes that the variation of the amplitude is small enough,

such that the amplitude during one FFT can be considered constant. Additionally,

a second method following a different approach was implemented. This alternative

method is based on the computation of the FSM and beam alignment, as well as the

corresponding heterodyne signal at additional, i.e. intermediate times. The additional

samples of the heterodyne signal are used to enhance the quality of the power spectrum

estimate, at the expense of increased computational effort.

In the following sections, the implemented models for the mentioned components are

explained and the algorithm designed to simulate the detection algorithm is discussed.
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5.2. Model of the Laser Ranging Interferometer

Figure 5.2.: Optical bench layout implemented into the discrete-time simulation. Left:
Triple-Mirror Assembly (TMA) and origin of spacecraft coordinate system. Right: Optical
bench with fine-steering mirror (FSM), beamsplitter (BS), compensation plate (CP), receive
aperture (AP), local oscillator beam (LO) and nominal received beam (RX). The exact
coordinates and normal vectors, in the spacecraft coordinate system, are given in Table 5.1,
while the reference position and direction of the normal vectors are marked by the dot
respectively the arrow at each component.

5.2. Model of the Laser Ranging Interferometer

In this section the model of the laser ranging interferometer (LRI) and its subsystems

is presented. This includes the layout of the optical bench, the fine-steering mirror, the

laser, the phasemeter, the FSM DWS loop, as well as a model of the frequency response

of the quadrant photodiodes.

5.2.1. Optical Bench Layout

The optical bench layout, modelled with the discrete-time simulation, is shown in Fig-

ure 5.2. The coordinates of the components’ reference points and normal vectors as given

in the spacecraft reference frame are summarised in Table 5.1. The reference points and

normal vectors are marked by the black dots and arrows in Figure 5.2. The origin of

the coordinate system coincides with the vertex of the mirrors’ surface planes of the

perfectly aligned triple-mirror assembly (TMA).

The layout of the optical bench slightly differs from the layout shown in Figure 3.2, for

which the location of the fibre injector and the photodiodes are swapped. This introduces

a change of sign of the angle of the incoming beam at the photodiode, whereas the sign
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for a tilt of the steering mirror is the same. The presented optical layout has been

implemented as an IfoCad [WHK+12] model and the beam axes of the local oscillator

and the received beam are determined by ray tracing.

However, neither the imaging system nor the photodiodes were included into the ray

tracing model. The ray tracing model is used to compute the angles of the transmitted

beam after passing through the TMA, to calculate the power received by the remote

spacecraft and it is furthermore used to compute the angles of the local oscillator and

the received beam at the beamsplitter. These angles are then handed over to the signal

calculation procedure, which calculates the heterodyne signals for a redundant pair of

QPDs and a perfect imaging system which matches the size of the imaged received beam

to the radius of the active area of the QPDs. It is further assumed that the imaging

system is designed such that the plane through the rotation point of the steering mirror

perpendicular to the beam axis is imaged perfectly onto the QPD detector surface. Also,

the plane of the receive aperture is imaged onto the detector surface, such that a pure

tilt of the wavefront across the imaged planes is transformed into a pure tilt at the QPD

surface. The signal calculation is discussed in more detail in Section 5.3.

5.2.2. Fine-Steering Mirror

The fine-steering mirror on the optical bench serves to track the incoming signal in

nominal operation to zero the wavefront tilt between the local oscillator and the received

Table 5.1.: List of the main optical components of the optical bench model that is im-
plemented into the simulation. The reference positions and normal vectors are given in
spacecraft coordinates. The reference point for each component is marked by a black dot in
Figure 5.2.

Item Centre Coords. Normal Vector Coords.

Description Abbr. xSF ySF zSF xSF ySF zSF

Fine-Steering Mirror SM 500 -330.662 24 1/
√

2 1/
√

2 0
Beamsplitter BS 500 -302.184 24 − 1/

√
2 − 1/

√
2 0

Compensation Plate CP 480 -302.184 24 1/
√

2 − 1/
√

2 0
TMA Mirror 1 M1 300 -300 24 1/

√
2 1/

√
2 0

TMA Mirror 2 M2 300 266.059 24 1/2 − 1/2 − 1/
√

2

TMA Mirror 3 M3 333.941 300 -24 1/2 − 1/2 1/
√

2

Receive Aperture AP 532.564 -300 24 -1 0 0
Local Oscillator LO 550 -330.662 24 -1 0 0
Nominal RX Beam RX 532.564 -300 24 -1 0 0
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beam. This is achieved via closed loop control of using DWS signal. During acquisition

the FSM is used for steering the local oscillator (LO) and simultaneously the transmitted

beam (TX) according to the desired scan pattern. Additionally, the attitude and orbit

control system (AOCS) actuates on the FSM using a feed-forward of the current line-of-

sight estimate which is based on star camera data and orbit predictions. See Figure 5.1

for a schematic overview of the steering mirror input.

The attitude estimates of the AOCS are assumed to be given in spacecraft coordinates

thus they are equivalent to the alignment of the estimated line-of-sight LOS relative to

the nominal local oscillator beam axis for zero FSM tilt. The scan pattern is also defined

in terms of the LO beam angles. The DWS signal depends on the relative tilt between

the local oscillator and the received beam at the photodiode. See Section 2.1.2 for details

on DWS. Hence, corrections computed from the DWS signal are also given as angles in

the spacecraft frame, or optical angles.

The following equations for the desired horizontal and vertical alignment of the local

oscillator beam in spacecraft coordinates, αop and βop, summarises the above:

αop = α0 + αscan + αAOCS + αDWS (5.2.1)

βop = β0 + βscan + βAOCS + βDWS, (5.2.2)

where α0 and β0 are constant offsets from the estimated LOS, αscan and βscan are the

current coordinates of the spatial scan and αAOCS and βAOCS are the alignment angles

of the estimated LOS. They are the sum of the star-camera assembly (SCA) noise and

the initial alignment bias, αBIAS and βBIAS,which are attempted to be determined by

the acquisition procedure:

αAOCS = αSCA + αBIAS (5.2.3)

βAOCS = βSCA + βBIAS. (5.2.4)

The angles αDWS and βDWS are corrections to the local oscillator alignment based on

the DWS signal of the phasemeter.

The local oscillator beam, coming from the fiber outcoupler, is reflected off the fine-

steering mirror under 45° incidence. Thus, the desired optical angles have to be converted

to tilt angles of the steering mirror. The transformation up to second order in the optical
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Figure 5.3.: Left: Bode plot of the fine-steering mirror transfer function implementation
as IIR filter, one-pole 100 Hz low pass. Right: Step response of the steering mirror in one
dimension, for a step of 100µrad.

angles can be expressed by

βFSM,com = − βop√
2

(5.2.5)

αFSM,com =
αop

2
−
β2

op

4
. (5.2.6)

These angles represent the new desired orientation of the FSM. However, the response

of the steering mirror’s real alignment angles, βFSM(tn) and βFSM(tn), at time, tn, to a

change in the commanded angle is not instantaneous but subject to a transfer function,

TF,

βFSM(tn+1) = TF(βFSM,com(tn), βFSM(tn)) (5.2.7)

αFSM(tn+1) = TF(αFSM,com(tn), αFSM(tn)). (5.2.8)

The transfer function, assumed for the analysis in this thesis is a simple one-pole low

pass, with a pole frequency of fpole = 100 Hz. Figure 5.3 shows the Bode plot of the

single-pole transfer function on the left, and the step response, for a step of 100µrad of

the steering-mirror command, in the right plot. Typically, the new desired alignment of

the FSM is reached after 10 ms.

The settling time of the steering mirror, from here on denoted by τFSM, is used as a

parameter to control the behaviour of the algorithm in the simulation. For example, ev-
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5.2. Model of the Laser Ranging Interferometer

Figure 5.4.: Block diagram of the implemented control loop, to control the beam alignment
using the differential wavefront sensing signal from the phasemeter as error signal to the
fine-steering mirror. The set point is r[n] = 0 and the gain of the integrator is set to
KI = 1.5 · 10−2. The AOCS correction to the LOS estimates are forwarded to the steering-
mirror via the additional correction factor g[n].

ery time the steering-mirror is stepped, e.g. in a discretely stepped spatial scan pattern,

a flag is set for a time of τFSM, indicating that the FSM position is invalid. While this

flag is set, a possible detection, claimed by the detection algorithm (see Figure 4.2 or

6.11), will not be considered and the timer for controlling the spatial scan is stopped.

This is done to ensure that a detection is made only if the FSM is in a well-defined state.

5.2.3. FSM DWS Control Loop

Once the effective received power of the heterodyne signal is large enough, the internal

phasemeter phase-locked loops (PLL), can lock to the incoming signal and the DWS

signal is made available.

Figure 5.4 shows the block diagram of the implemented control loop using an integral

controller to compute the control signal, which is fed to the steering-mirror. Additionally,

the AOCS correction, g[n], is added to the correction signal applied to the FSM. The

fine-steering mirror actuates on the alignment of the local oscillator beam whose angle

is sensed by the QPD, relative to the received beam. The phasemeter computes the

phase, φc, of the heterodyne signal channel and the horizontal and vertical DWS signal

is calculated by subtracting the signals one from another as given in equation (2.1.17).

In the simulation, however, the phase of the heterodyne signal is computed from the

overlap integral which was given in equation (3.3.6). Also, the DWS signal can, likewise,

be defined in terms of the overlap integral. Here at least two definitions are possible
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which are given below. First, it can be defined as

DWShor = arg

[OAOC

OBOD

]
(5.2.9)

DWSver = arg

[OAOB

OCOD

]
, (5.2.10)

where Oq is the overlap integral between the local oscillator and the received beam on

the QPD segment q which is the same for the two corresponding segments of a channel.

The other possible definition is equivalent to the definition before in equation (2.1.17).

It reads:

DWShor = argOA + argOC − (argOB + argOD), (5.2.11)

DWSver = argOA + argOB − (argOC + argOD). (5.2.12)

The DWS signal computed from the overlap integral of a tophat beam and a Gaussian

local oscillator is shown in Figure 5.5. The first method of equations (5.2.9) and (5.2.10)

suffers from wrapping at tilt angles of ±100µrad and additional zero crossings occur in

the DWS signal at ±220µrad. The control loop cannot distinguish between these zero

crossings and the zero crossing at zero tilt angle and will eventually lock to the false zero

crossings if the loop is closed for tilt angles above 100µrad.

In the simulation, however, the second method given in equations (5.2.11) and (5.2.12)

is used which does not suffer from phase jumps, as can be seen in the left plot of

Figure 5.5. The top left plot of Figure 5.5 shows the time evolution of the steering-

mirror position, the steering-mirror command as well as the control signal, u[n], if the

control loop is closed at t = 0 s. The DWS signal approaches zero, as can be seen in the

bottom left plot. Here, a DWS signal of zero does not correspond to the steering-mirror

being aligned to its nominal position, because the incoming beam is tilted by roughly

70µrad due to a misalignment of the spacecraft. Additionally, the SCA noise accounts

for about 30µrad in the opposite direction.

The control loop, implemented in the simulation, settles after about 10 ms to 15 ms.

5.2.4. Laser

The laser model provides the current absolute frequency of the laser light and the far-

field intensity distribution of the beam transmitted to the distant spacecraft. It is also

used to store all parameters that characterise the laser such as the local oscillator power

at the photodiode, the power transmitted to the remote spacecraft, the laser frequency
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Figure 5.5.: Left: DWS signal computed from the overlap integral between a Gaussian local
oscillator and a tophat beam. The DWS signal is computed with the two methods given in
equations (5.2.9) and (5.2.10) denoted by Method 1, and equations (5.2.11) and (5.2.12)
denoted by Method 2. Right: Time series of the horizontal FSM position, the commanded
position and the control signal at the top and the DWS signal at the bottom. The control
loop is closed at t = 0 s.

scan rate, as well as the lower and upper bound of the frequency scan.

The momentary absolute frequency is used as the frequency of the local oscillator

and as the frequency of the beam transmitted to the remote spacecraft. The current

frequency of the laser, νi, with i = m, s, consists of the nominal laser frequency, ν0 = c/λ,

the momentary realisation of frequency noise, δfi, and a laser frequency tuning, fi, which

is the output of a filter function modelling the thermal actuator of the laser.

Here, c is the vacuum speed of light and λ the nominal laser wavelength, λ = 1 064 nm.

Hence, the frequency of the laser in the simulation is

νi = ν0 + δfi + fi. (5.2.13)

Since only the difference of the frequencies is measured in a heterodyne setup fb =

±(νm− νs), the constant, nominal laser frequency, ν0, is set to zero, and only deviations

from ν0 are considered.

The frequency noise, δfi, is computed by a noise generator that provides random

numbers with a given spectral density. The source code for the noise generator was

generated by LISO [Hei99]. The spectral density assumed for the frequency noise,

which was used for the analysis in this thesis, is presented in Section 4.4.2 and the

corresponding pole-zero model is given in equation (4.4.7). The spectral density, as
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Figure 5.6.: Left: Bode plot of the thermal actuator frequency response. Right: Step
response of the thermal actuator model. The pole-zero model of the frequency response is
given in Table 5.2.

well as several time series of the produced frequency noise, are shown in the plots in

Figure 4.9.

The frequency tuning, fi, is used to simulate dynamic changes of the laser frequency

which are assumed to be controlled by the thermal actuator on the laser crystal. Thus,

the frequency tuning is the output of a filter that models the evolution of the laser

frequency in the time domain, which depends on a commanded frequency, fcom, and the

current internal state of the thermal actuator,

fi = fi(fcom). (5.2.14)

The commanded frequency is the desired frequency of the laser. The change of the laser

frequency due to a commanded frequency scan or discontinuous changes in the desired

frequency are modelled with fi. A discontinuous change happens for example during an

autonomous laser link acquisition, when the beatnote frequency on the slave spacecraft

is moved into the centre of the frequency band, once a signal has been detected. Another

reason for a discontinuous frequency change is the initialisation of the frequency sweep,

where the laser frequency of the free running slave laser is set to the lower boundary of

the frequency uncertainty interval.

The pole-zero model of the used thermal actuator is listed in Table 5.2. It is im-

plemented in the simulation as an infinite-impulse response filter (IIR) which was also

generated with the aid of LISO [Hei99]. Figure 5.6 shows a Bode plot on the left and
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the step response for a 10 MHz step of the frequency command on the right. After a

time of t = 2 s after the step input, the desired frequency is reached within an error of

approximately 5 %. Therefore, in the analysis of an autonomous laser link acquisition

given in Chapter 7, the laser settling time is defined as τL = 2 s.

The models of the far-field intensity of the transmitted beam, provided by the laser

data structure, are the Gaussian beam with beam quality factor, M2 ≥ 1, as defined in

equation (3.3.17), and the propagated fibre mode defined by equation (2.5.18).

5.2.5. Phasemeter

A simple model of a four-channel phasemeter is implemented into the simulation, to

decide whether the DWS signal is available and whether the steering-mirror control can

be handed over to the DWS control loop. The state diagram of the model is shown in

Figure 5.7.

Each phasemeter contains four PLLs, one for each channel. The state diagram of a

PLL is shown in the left panel of Figure 5.7. The state machine representing each of

the PLL consists of four states, i.e. the Default state, represented by the black circle,

a Not Locked state as well as the Locking and Locked states.

The phase-locked loop makes the transition from Not Locked to Locking once the

effective received power in the channels is above a set threshold of 3 pW. On entry into

the Locking state a timer is started that counts the elapsed time since entering the state.

If the time spent in the Locking state exceeds 1 ms and the effective received power in

the channel does not drop below 2 pW, the phase-lock loop transitions to the Locked

state or else back to Not Locked. If the effective received power in a channel is less than

1 pW while the phase-lock loop of the channel is locked, the state machine transitions

back to the Not Locked state.

The phasemeter has three states, which are the Default state and the ones labelled:

DWS Not Available and DWS Available. The phasemeter starts in the state where

Table 5.2.: List of the poles and zeros of the model for the thermal actuator of the lasers,
used in the simulation, (private communication G. Heinzel, AEI, 2013)

Type Frequency / Hz Q-Value

Pole 0.25 ∞
Zero 1.15 ∞
Pole 4.42 2.33
Pole 5 ∞
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Figure 5.7.: Left: State diagram of a phase-lock loop of a single phasemeter channel.
Right: State diagram of the complete phasemeter, showing the two important states for
acquisition, signalling if DWS signal is available or not. The two states are composite states,
each containing the state machines of four single channels, shown on the left.

DWS is not available and transitions to the state DWS Available, if the PLLs of all

channels are in the Locked state. The phasemeter on each spacecraft is assumed to

have four channels, corresponding to the four segments of a QPD. See Figure 3.4 for

an overview of the segment and channel labelling of a QPD. If the phasemeter is in the

state DWS Available, the FSM DWS control loop can be closed. The control loop is

automatically opened if one of the PLLs of the phasemeter transitions out of the Locked

state. The phasemeter then returns to DWS Not Available.

5.2.6. Frequency Response of the Quadrant Photodiodes

The frequency response of the quadrant photodiodes, g(fb), is assumed to be limited by

a lower bound, flow, and an upper bound, fup, where the upper bound is smaller than

the Nyquist frequency, fs/2, in order to prevent aliasing of the heterodyne signal into

the photodiode bandwidth. The functional form of, g(fb), is chosen as

g(fb) =


exp

(
− (f2b−fup)2

2w2

)
if fb ≥ fup,

1 if flow < fb < fup,

exp
(
− (f2b−flow)2

2w2

)
if fb ≤ flow.

(5.2.15)

The frequency response is thus, flat and equal to 1 for all frequencies between flow and

fup. It drops with a Gaussian profile to zero for frequencies above fup and below flow.

The width of the transition region is determined by the parameter w which is chosen as

w = 1 MHz for the analysis in this thesis.
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5.3. Signal Calculation

The important signals that need to be computed in the simulation are the amplitudes

and phases of the heterodyne signal in the four channels of the redundant photodiode

pair.

Expressions for the heterodyne signal in a single channel were given in equation (3.3.4)

provided that the received power is the same for each QPD segment of a single channel

and that no additional phase offsets are introduced before adding the signals of the two

corresponding segments. The amplitude of the heterodyne signal in a channel denoted

by Ac, is just twice the single segment amplitude, Aq, and the phase is the same for the

combined heterodyne signal φc and the individual segments φq,

sc(t) = 2 sq(t)

= 2Aq cos(2πfbt+ φq)

= Ac cos(2πfbt+ φc). (5.3.1)

This also implies that the heterodyne efficiency for the sum of the two corresponding

segments, ηc, is equal to the heterodyne efficiency of a single segment, ηq. Hence,

Ac = 2Aq, φc = φq, and ηc = ηq. (5.3.2)

The amplitude of the single channel heterodyne signal, Ac, depends on the received

power PRX, the heterodyne efficiency ηc, and the beatnote frequency fb. It is calculated

similar to equation (3.3.9) by

Ac =
2 ρPD g(fb)

nc

√
PLO PRX ηc . (5.3.3)

The beatnote frequencies for each spacecraft are computed using the formulas given in

equations (3.5.4). With the indices m for the master spacecraft and s for the slave

spacecraft, they are repeated here as follows:

fm
b = fm − (fs + fD) and (5.3.4)

f s
b = fs − (fm + fD). (5.3.5)

See equation (5.2.13) for how the laser frequencies, fm and fs, are computed. The

Doppler shift, fD, is randomly chosen and constant for a complete simulation run.

The power received by the distant spacecraft is computed from equation (3.3.16) for
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either the far-field intensity of the Gaussian beam with quality factor, M2, from equa-

tion (3.3.17) or the propagated fiber mode defined by equation (2.5.18). The spacecraft

separation is fixed at the start of the simulation. The tilt of the remote beam is com-

puted from the angles of the transmitted beam after passing the TMA and adding the

TMA coalignment error to the beam axis alignment computed by ray tracing. After

that, the direction of the TX beam is transformed from spacecraft coordinates into the

inertial reference frame.

In order to compute the heterodyne efficiency, ηc, and the phase of the heterodyne

signal, φc, as a function of the relative misalignment of the local oscillator and received

beam, the normalised overlap integral, Oq from equation (2.1.8), has to be calculated

each time the alignment of the beams changes. Alignment fluctuations during a spatial

scan or just due to SCA noise may require re-computing the alignment for each simu-

lated time step. Hence, directly integrating the electric field at the photodiode will be

computationally too expensive.

The beam parameters, however, are assumed to be fixed and for this reason the overlap

integral is precomputed on a grid of relative alignment angles with a side length of

2 mrad and a resolution of 5µrad. Points in between are interpolated, using bilinear

interpolation. For angles greater than 1 mrad the overlap integral is set to zero. The

heterodyne efficiency is then computed as ηc = |Oq|2 and the phase as φc = argOq.
The relative misalignment between the local oscillator and the received beam is com-

puted from the alignment angles of the local oscillator transmitted through the beam-

splitter and the received beam reflected off the beamsplitter. The definitions of the

horizontal and vertical alignment angles in the photodiode’s reference frame are shown

in the left panel of Figure 3.5. For each beam the angles with the (x, z) and (y, z)-planes

are calculated at the beamsplitter from which the relative misalignment angles are com-

puted as the difference of the angles in the two orthogonal directions. These two angles

are then passed to the interpolation function, which returns the phase and heterodyne

efficiency for this particular misalignment.

5.4. Detection Algorithm

The detection algorithm proposed before, computes fast Fourier transforms (FFT) of

the heterodyne signal, measured with a sampling frequency of fs = 38 MHz. Computing

the full time series of the data and calculating the FFTs is too expensive. Based on the

results obtained in Chapter 4 a model of the output of the algorithm was developed.

At each simulated time step a power spectrum of the noisy heterodyne signal, for

140



5.4. Detection Algorithm

either the coherent or incoherent sum, is computed and the maximum power in any

of the non-vetoed frequency bins, as well as the index of the frequency bin containing

the maximum, is returned. The maximum power is used as an estimate of the received

power and the bin index is used as an estimate of the beatnote frequency.

5.4.1. Detection Algorithm for Constant Amplitude

In Chapter 4 the probability distributions for the power in a single frequency bin is given

for a heterodyne signal of constant amplitude and frequency, as well as for a frequency bin

containing only noise. For a heterodyne signal of constant amplitude and frequency, the

power spectrum can be simulated by drawing random numbers from these distributions

for each frequency bin that is not vetoed.

If the beatnote frequency, fb, is not equal to one of the central bin frequencies of the

FFT, i.e. fb 6= j fs/NDFT with j = 0, . . . , NDFT − 1, the power in the heterodyne signal

is distributed over two neighbouring bins and hence two signal bins exist. The lower

index, j1, and the higher index, j2, of the signal bins are computed from the sampling

frequency, fs, the sample size of the FFT, NDFT, and the beatnote frequency as

j1 =

⌊
fb

fs
NDFT

⌋
(5.4.1)

j2 = j1 + 1, (5.4.2)

where bxc is the floor operation, returning the largest integer value smaller than x, or

x if x is an integer. If any of the two bin indices is vetoed it is not considered in the

search for the maximum.

The amplitude of the heterodyne signal in the two signal bins was given in equa-

tion (4.4.3). The power in the frequency bins for the the coherent sum can be given in

analogy, with the coherent sum amplitude, ACS, defined by equation (4.2.22) or equiva-

lently by

ACS =

∣∣∣∣∣
nc∑
c=1

Ac e
iφc

∣∣∣∣∣ , (5.4.3)

which is implemented in the simulation using the computation of the single channel

amplitudes from equation (5.3.2). The power in the signal bins, s̃2
CS(ji), can then be
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computed by

s̃2
CS(ji) ≈

A2
CS

2
|l(ji, j1 + δb,NDFT)|2. (5.4.4)

The scaling function, l(k, j + δb,NDFT), is given in equation (4.4.4), where the offset

of the beatnote frequency from the central bin frequency in FFT bin widths, δb, is

computed by

δb =
fb

fs
NDFT − j1. (5.4.5)

The power in the frequency bin is distributed according to a noncentral χ2-distribution

with two degrees of freedom, as given by equation (4.2.17). For the case of the coherent

sum detector the parameters used for the distribution of the lower and upper signal bin

are, with i = 1, 2,

λi =

√
NDFT

σCS

ACS |l(ji, j1 + δb,NDFT)|√
2

, and σ2 = σ2
CS. (5.4.6)

For the definition of the variance of the coherent sum, σ2
CS, see equation (4.2.24). The

remaining frequency bins are assumed to contain only noise and hence, for all frequency

bins with indices between klow and kup which are no signal bins, a random number is

drawn from the χ2-distribution with two degrees of freedom, given in equation (4.2.11).

Here again, the variance used has to be the coherent sum variance, σ2
CS, given above.

For the generation of χ2-distributed random variates the MT19937 algorithm [MN98]

is used which is part of the GNU Scientific Library [GDT+03]. The generation of non-

central χ2-distributed random variates, Z, with two degrees of freedom can be done by

making use of the addition rule for non-central χ2-distributed variables by defining

Zi = X2
i + Y, (5.4.7)

where Xi is Gaussian distributed with mean λi and variance 1, Xi ∼ N (λi, 1) and Y

is χ2-distributed with one degree of freedom. The random variate for the power in the

signal bin with index ji is then

s̃2
CS(ji) =

σ2
CS

NDFT
Zi. (5.4.8)

To generate the power spectrum of the heterodyne signal of the coherent sum, only a

single call to the χ2 random number generator has to be made for the frequency bins
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that contain only noise, and only one call to the χ2 and one additional to a Gaussian

random number generator, for each of the two signal bins.

For the incoherent sum of the channels, no analytic distribution was found. In order to

simulate the power spectrum for the ICS, the power spectrum of the individual channels

is computed using the approach presented above, whereas the coherent sum amplitude

and variance are exchanged for the amplitude and variance in the individual channels,

Ac and σ2
c , given in equations (3.3.9) and (3.4.7). The spectra generated for the channels

are then summed up to get the spectrum of the incoherent sum.

5.4.2. Detection Algorithm for Varying Amplitude

If the amplitude of the heterodyne signal over the course of an FFT is not constant, the

simplified approach has to be modified. The DFT of the heterodyne signal with varying

amplitude can be written in terms of a discrete circular convolution, ?, between the DFT

of the time varying amplitude and the DFT of the cosine-term by making use of the

convolution theorem. It reads:

F [sc(tn)](k) = F [Ac(tn) cos(2πfbtn + φc)](k) (5.4.9)

= (F [Ac(tn)] ? F [cos(2πfbtn + φc)]) (k). (5.4.10)

It is assumed that the beatnote frequency is of the form fb = (j1 + δb) fs/NDFT, with j1

being the index of the lower signal bin and 0 ≤ δb ≤ 1 being the frequency offset from

the centre frequency of the j1-th frequency bin. The DFT of the cosine-term is then

the scaling function l(k, j1 + δb,NDFT) which was already given in equation (4.4.4). By

writing Ãc instead of F [Ac(tn)] the convolution can be given by

F [sc(tn)](k) =

k∑
κ=0

Ãc(κ) l(k − κ, j1 + δb,NDFT)

+

NDFT−1∑
κ=k+1

Ãc(κ) l(NDFT + k − κ, j1 + δb,NDFT). (5.4.11)

The dependence of the scaling function on the frequency offset from a fixed frequency bin

is shown in Figure 4.7. It can be seen that it is strongly localised around the signal bin.

The DFT of the time varying amplitude will be localised around the DC bin, k = 0, for

all amplitude variations encountered during acquisition. For the signal bin with index
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k = j1, the above equation can be rewritten as

F [sc(tn)](k) =

j1∑
κ=0

Ãc(κ) l(j1 − κ, j1 + δb,NDFT)

+

NDFT−j1−1∑
κ=1

Ãc(NDFT − κ) l(j1 + κ, j1 + δb,NDFT). (5.4.12)

Here, the DFT of the amplitude time series around the DC bin, is multiplied by the DFT

response to the cosine-term around the signal bin, j1. As was said before, theses terms

are strongly localised, such that the terms for large κ do not contribute, significantly, to

the result and hence, the sum can be limited to a few nb terms. This gives

F [sc(tn)](k) ≈
nb∑
κ=0

Ãc(κ) l(j1 − κ, j1 + δb,NDFT)

+

nb∑
κ=1

Ãc(NDFT − κ) l(j1 + κ, j1 + δb,NDFT). (5.4.13)

Still, this assumes an FFT of an amplitude time series that is sampled with the full

sampling frequency of 38 MHz and would be expansive to compute. The frequency bin

width of an FFT, δfDFT = fs/NDFT, however, is invariant under a simultaneous scaling

of the sampling frequency fs and the number of samples NDFT by a factor a. This is

equivalent to leaving the sampling time for a single FFT constant. Hence, for such a

scaling the central bin frequencies for bins of the same index are identical. Thus, the

number of samples of the amplitude time series, that are taken to calculate its spectrum

can be reduced to N ′ = aNDFT

The new number of samples N ′ should not be chosen too small, as aliasing will increase

due to the reduced sampling frequency. The N ′-point Discrete Fourier transform of the

amplitude time series is

Ã′c(k) =

√
2

N ′

N ′−1∑
n=0

Ac(tn) exp

(
−2πi

k

N ′
n

)
. (5.4.14)

The amplitude time series consists of real numbers and hence,

[Ã′c(k)]∗ = Ã′c(N
′ − k). (5.4.15)

The approximation of the DFT given in equation (5.4.13) can now be rewritten with the
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DFT of the amplitude time series for the reduced sampling rate by

F [sc(tn)](k) ≈
nb∑
κ=0

Ã′c(κ) l(j1 − κ, j1 + δb,NDFT)

+

nb∑
κ=1

[Ã′c(κ)]∗ l(j1 + κ, j1 + δb,NDFT). (5.4.16)

This approximation is used in the simulation to compute the FFT, if amplitude variations

over a single FFT should be considered. In the above equation it was implicitly assumed

that,

Ã′c(N
′ − κ) ≈ [Ã′c(κ)]∗, (5.4.17)

which is true as can be seen by plugging in the indices N ′ − κ and NDFT − κ, into the

definition of the DFT. See equation (4.1.6) and (5.4.14) and using equation (5.4.15),

Ã′c(N
′ − κ) = Ã′c(−κ) = [Ã′c(κ)]∗ (5.4.18)

Ãc(NDFT − κ) = Ãc(−κ) = [Ãc(κ)]∗. (5.4.19)

In order to find appropriate values for N ′ and nb, numerical simulations were made using

possible sweep rates for the spatial scan, as well as realistic signal and noise levels, see

next chapter. The amplitude time series was computed for a given sampling frequency of

38 MHz for a fixed number of samples of NDFT, and the maximum power in the spectrum

was compared against the approximation given in equation (5.4.16) for various N ′ and

nb.

It was found that for the considered cases, the maximum in the power spectrum of

the fully sampled DFT and the approximation deviates by less than 3 % for N ′ = 64 and

nb = 6. For most cases, the difference in the value of the maximum deviates by less than

1 %. It is important to mention, that the maxima computed with the approximation,

are always smaller than the maximum computed with the fully sampled DFT. For this

reason, the level of accuracy is assumed to be sufficient.

5.5. Conclusions

The simulation that was described in this chapter, implements realistic models of the

subsystems that are important for acquisition such as the optical bench, the laser, the

fine-steering mirror, the DWS control loop as well as the photodiodes. Moreover, realistic
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beam models to compute the far-field intensity are implemented as well as functions

yielding accurate values of the heterodyne efficiency depending on the current alignment

of the laser beams.

The included noise sources constitute an assumed worst case spectral density which

is assumed to be white over the bandwidth of the photodiode. The implemented simu-

lation of the detection algorithm, efficiently computes random variates of the expected

distribution of the detector output depending on the frequency, phase and amplitude.

Also, time variations of the amplitude over a single FFT can be approximated with high

accuracy.

In the following the methods provided by the simulation are used to study the initial

line-of-sight calibration, as well as to test a proposed algorithm for an autonomous laser

link acquisition.
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In this chapter an initial line-of-sight (LOS) calibration scan is analysed for the case of

the GRACE Follow-On laser ranging interferometer (LRI). The initial LOS calibration

is a scan over the complete uncertainty space during which the optimal alignment of

the beam axis and tuning of the laser frequency is estimated from the time when the

maximum detector output was recorded.

In the first section, possible scan patterns are presented and their properties are evalu-

ated with respect to uncertainty cone coverage and applicable scan speeds. Subsequently,

the frequency scan is discussed and the order of the scans is reviewed. The final result of

this section is an estimate of the total time of the line-of-sight calibration scan depending

on the scan resolution.

This is followed by a review of the coherent and incoherent sum combinations of

the detection algorithm and an investigation of their tilt dependence. Furthermore,

variations of the tilt dependence for changes of the beam width, additional phasefront

curvature errors or different photodiode slit widths are determined.

The obtained results are henceforth used to estimate the allowable simultaneous mis-

alignment of the transmitted beam with respect to the line-of-sight and of the local

oscillator beam with respect to the received beam, in order to guarantee a signal that is

large enough to be unambiguously above the noise.

In the last section of this chapter, the spatial distribution of line-of-sight estimates are

computed with help of the high-fidelity simulation that was discussed in the previous

chapter.

6.1. Spatial Scan Patterns for the Initial LOS Calibration

In this section, suitable scan patterns to cover the spatial uncertainty cones of the master

and the slave spacecraft are discussed. As the speed of the scans will be significantly

different on both spacecraft, the scan pattern does not necessarily have to be the same.

The following analysis assumes a special order of the scans which has the frequency scan

as the slowest scan and the spatial scan of the master spacecraft as the fastest scan:
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Slow Scan Intermediate Scan Fast Scan

Frequency scan → Slave Spatial scan → Master Spatial scan

The reason for this particular order is given in a separate section once estimates for

the spatial scan times are obtained. In principle, the total spatial scan over the spatial

uncertainty space of both spacecraft is a search in four dimensions. In the following a

scan of the four dimensional uncertainty space is called a complete spatial scan. The

full spatial uncertainty space is covered, if the slow spatial scan on the slave spacecraft

dwells on a single scan point at least as long as the fast scan needs to completely cover

its uncertainty cone. The scan time for the fast scan will be denoted by T1, whereas the

number of scan points in the slow spatial scan will be denoted by N2. The total time

for a complete spatial scan, TS, is then given by

TS = N2 td ≥ N2 T1. (6.1.1)

Here, td is the dwell time of the slave spacecraft on a single scan point. The notion of

a scan point is clear for a discretely stepped scan, such as the hexagonal scan which is

discussed below, but it needs some clarification for a continuous scan pattern. However,

this is done later in Section 6.1.4.

The spatial scan has to be carried out multiple times for each of the scan points in

the frequency scan. Hence, it is obvious that some analysis of the scan patterns that

are applied to search the spatial uncertainty cone, is valuable to find efficient patterns,

given the restrictions imposed by the instrument. These restrictions are for example, a

limited scan speed and finite control loop bandwidth of the fine-steering mirror (FSM)

as well as a limited detector field-of-view.

This section will start with presenting and discussing a small list of possible scan pat-

terns; all having different properties. It will continue with a discussion of scan patterns

for the slow scan and for the fast scan. Eventually, the frequency scan is discussed and

the scan sequence is reviewed. A summary of the discussion with estimates of the total

spatial scan time is given at the end.

6.1.1. Scan Patterns

The following section discusses scan patterns that are considered for implementation in

the GRACE Follow-On satellites, though there are others discussed in the context of

inter-satellite laser communication or constellation control of micro-satellites [SKA01].
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6.1. Spatial Scan Patterns for the Initial LOS Calibration

Figure 6.1.: Left: Uncertainty cone of radius Ruc around the estimated LOS. The true LOS
is expected to be located at a random position within the uncertainty cone. The spatial
scan determines the scan track on which the beam axis is swept over the uncertainty cone.
The maximum separation between two neighbouring parts of the scan track is denoted by
d̂. Right: Close up around the beam axis. The LOS penetrates the spatial capture cone at
the LOS-to-scan-track separation, h. The spatial capture cone radius, rcap, is determined
by the desired minimum signal power that the recorded maximum should have.

Here, scan patterns based on a hexagonal grid, an Archimedean spiral and Lissajous

figures are being discussed.

The type of scan pattern can drastically decrease or increase the time needed for a

complete spatial scan of the whole uncertainty cone. On the one hand, the scan pattern

itself can be more efficient in covering the uncertainty cone with less overlap between

neighbouring scan points. On the other hand, the scan has to be carried out by the

FSM that is mounted on the optical bench of the LRI. The finite bandwidth of the

FSM control-loop limits the time, the FSM needs to settle to a commanded position and

its transfer function introduces deviations of the real steering mirror position from the

commanded value. Hence, when talking about a suitable scan pattern, the properties of

the scan pattern and the restrictions imposed by the instrument have to be taken into

account.

In analysing spatial scan patterns, some quantities are of interest which are explained

in Figure 6.1. The left panel shows the uncertainty cone of radius Ruc around the

estimated line-of-sight. The beam axis is swept along the scan track in order to scan

the complete uncertainty cone, in which the true line-of-sight is located at an unknown,

random position; this is where the other spacecraft is. The separation between two

adjacent parts of the scan track is denoted by d and the maximum separation occurring
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Figure 6.2.: Left: Hexagonal scan pattern for an uncertainty cone of radius Ruc = 1 mrad.
The desired capture range is rcap = 140µrad. Right: Zoomed in version of the scan
pattern. The scan points are distributed on vertices of equilateral triangles with side lengths
of d̂ =

√
3 rcap, whereas the intersection points of the scan points form hexagons.

for any point along the scan track by d̂.

The right panel in Figure 6.1 shows a close up of the region around the beam axis, with

the spatial capture cone drawn around it. The radius of the spatial capture cone rcap

is determined by the minimum signal power that is desired for the maximum recorded

signal during the pick-max scan. It is also called the spatial capture range. Hence, the

spatial scan should be set up such that the LOS remains within the spatial capture cone

for at least the required dwell time td. Generally, rcap is not required to be the same

for the master and the slave spacecraft, though this is assumed for the analysis in this

chapter, because it significantly reduces the complexity of the acquisition algorithm. In

the following section three types of scan patterns are introduced which are a hexagonal

scan, an Archimedean spiral scan and a Lissajous raster scan.

Hexagonal Scan

The most efficient coverage of the plane with circles uses a hexagonal pattern, where

every scan point lies in the centre of a hexagon. The hexagonal scan is a discretely

stepped scan for which the scan track consists of individual, separated points. The

separation between any two points is identical, d = d̂. The maximum deviation of the

true LOS from the closest scan point is equal to d̂/
√

3 . Thus, for a desired capture
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range of rcap, the scan point separation should be chosen such that

d̂ =
√

3 rcap. (6.1.2)

This allows for the least overlap between neighbouring scan points. The scan points can

be visited in a kind of spiral pattern starting from the centre and continuing outwards,

until the whole uncertainty cone is covered. Reinitialisation requires either reverting the

scan or jumping back to the central starting point. To fully exploit the optimality of the

hexagonal scan a discrete stepping has to be applied.

The left plot in Figure 6.2 shows an example of an uncertainty cone of radius Ruc =

1 mrad, covered by a hexagonal scan with a desired capture range of rcap = 140µrad that

uses 85 scan points. The right plot shows a close up of the central region to highlight

that the scan points are located at the vertices of equilateral triangles with a side length

of
√

3 rcap. Also shown are the hexagons around the centre of a scan point which are

formed by the intersection points of the capture cones of neighbouring scan points. Scan

points for which all of the vertices of the surrounding hexagon lie outside the uncertainty

cone are excluded, as they either redundantly cover parts of the uncertainty cone or have

no intersection region with it at all.

Archimedean Spiral Scan

A continuous spiral scan can be realised by scanning the uncertainty cone with an

Archimedean spiral, starting also from the centre of the uncertainty cone and spiralling

outwards until it is fully covered. The Archimedean spiral is special in the way that the

spiral arm separation, d, and the angular sweep rate are constant, except for a small

period at the centre where the angular accelerations are much larger. The coordinates

for the scan track can be computed by the following formula:

r(t) =
d

2π
φ(t)

cosφ(t)

sinφ(t)

 ,where φ(t) = 2π
rmax

d

√
t

T
. (6.1.3)

Here, T is the scan time for a complete coverage and rmax is the maximum radius of the

spiral. The maximum scan track separation is equal to the arm separation, d̂ = d, as

the arm separation is constant. The true LOS is farthest away from any point on the

scan track if it lies directly in between two adjacent spiral arms. Hence, the maximum

possible separation between the LOS and the scan track is ĥ = d/2. The spiral arm
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Figure 6.3.: Left: Archimedean scan pattern for an uncertainty cone of Ruc = 1 mrad
and a desired capture range of rcap = 140µrad that is indicated by the drawn circles.
Right: Zoomed in version of the scan pattern that shows the geometric length scales of the
Archimedean spiral.

separation, d, should generally be chosen such that

ĥ =
d

2
< rcap, (6.1.4)

due to the continuous movement of the beam axis along the scan track. The details

on this are given in Section 6.1.2. The left plot in Figure 6.3 shows an example of an

Archimedean spiral scan for an uncertainty cone of radius Ruc = 1 mrad and a desired

capture range of rcap = 140µrad. The right plot shows the introduced quantities, such as

the arm separation, d, the maximum LOS-to-scan-track separation, ĥ, and the maximum

scan radius rmax. The maximum scan radius, rmax = Ruc + d/2, is chosen larger than

the uncertainty cone radius by half the arm separation to achieve full coverage of the

uncertainty cone.

The scan speed of the Archimedean spiral is large at the centre but rapidly approaches

a nearly constant sweep rate which can be given in terms of the maximum scan radius,

the arm separation and scan time as follows:

varch =
rmax

2 d T

√
4π2r2

max + d2
T

t

t→∞≈ π

T

r2
max

d
. (6.1.5)
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Figure 6.4.: Left: Lissajous raster scan for an uncertainty cone radius of Ruc = 1 mrad and
a frequency ratio of n = 12, resulting in a worst case misalignment of ĥ = 129µrad. Right:
Close up of the Lissajous figure shown in the left plot, showing the distance between the
central zero-crossings, dz, and the central turning points, dt.

Lissajous Scan

Also a Lissajous raster scan can be performed, for which the two orthogonal axes of the

steering mirror are driven by sinusoidal signals with constant frequencies. A raster scan

implies a higher frequency, f̂ , in one of the axis and a lower frequency, f̌ , in the other

direction to scan over the two dimensional uncertainty cone. An important quantity to

characterise Lissajous patterns is the frequency ratio

n = f̂/f̌ . (6.1.6)

The scan pattern is equal to a closed Lissajous figure if the ratio of the frequencies in

the two axes is a rational number, n ∈ Q. Then the scan is periodic with a period of

T = f̌−1 = n f̂−1. (6.1.7)

However, here the discussion is restricted to integer frequency ratios. The coordinates

of the scan track can be calculated with help of the following formula:

r(t) = Ruc

(
sin
(
2πf̂t+ φn

)
sin
(
2π(f̂/n)t

) ) , with φn =

0 , if n is even,

π/2 , if n is odd.
(6.1.8)

153



6. Initial Line-of-Sight Calibration

0 5 10 15 20 25 30 35 40 45 50 55 60
frequency ratio, n = f̂/f̌

0

50

100

150

200

250

m
ax
.

L
O

S
sc

an
tr

ac
k

se
p
.,
ĥ
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Figure 6.5.: Maximum LOS-to-scan-track separation, ĥ, during a Lissajous scan, as a func-
tion of the frequency ratio n, for different uncertainty cone radii, Ruc. Computed using
equations (6.1.11) and (6.1.9).

Ruc is again the radius of the uncertainty cone. The additional phase shift, φn, is

necessary to avoid patterns which repeat after a time t = 1/(2f̌) and have a coarser

uncertainty cone coverage.

Figure 6.4 shows a Lissajous raster scan with a frequency ratio of n = 12 which results

in a maximum scan track separation of ĥ = 129µrad, for an uncertainty cone radius of

Ruc = 1 mrad. For integer frequency ratios the maximum scan track separation during

a Lissajous scan occurs either between the central zero crossings in the centre of the

uncertainty cone or at the central turning points at the edge of the uncertainty cone.

The right plot in Figure 6.4 shows the location of the maximum scan track separation

for a Lissajous scan with even frequency ratio. The separation between the central zero

crossings, dz, or the turning points, dt, can be calculated by

for odd n: dt(n) = Ruc| sinπ/n| for even n: dt(n) = 2Ruc| sinπ/2n|
dz(n) = 2Ruc| sinπ/2n| dz(n) = Ruc| sinπ/n|. (6.1.9)

And the maximum scan track separation is approximately the maximum of dt and dz:

d̂ ≈ max (dt, dz) . (6.1.10)

The point right between the two central zero-crossings or turning points is the one which

has maximum separation to the scan track, for any point in the uncertainty cone. Hence,
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the maximum separation between the LOS and the point on the scan track that closest

approaches the LOS is half the maximum scan track separation, ĥ = d̂/2. For a desired

capture range of rcap and uncertainty cone radius, the frequency ratio of the Lissajous

scan should be chosen such that

ĥ(n,Ruc) ≈
1

2
max [dt(n,Ruc), dz(n,Ruc)] < rcap. (6.1.11)

Figure 6.5 shows the maximum LOS-to-scan-track separation computed from equa-

tion (6.1.11) as a function of the frequency ratio, n, for four different uncertainty cone

radii Ruc. The sweep rates during the Lissajous scan vary periodically between the turn-

ing points and the zero crossing of the fast scan axis. The maximum sweep rate, v̂lis, can

be approximated if the fast axis frequency is larger than the slow axis frequency which

is the case for all scan patterns discussed for the calibration scan. It can be given as

v̂lis ≈ 2πRucf̂ =
2π

T
nRuc. (6.1.12)

Table 6.1 lists the maximum scan speeds of the Lissajous scan for different uncertainty

cone radii and a fast axis frequency of f̂ = 100 Hz.

6.1.2. Synchronising the Spatial Scans

An important limit to the time necessary for total acquisition arises from the need to

synchronise the spatial scans on both satellites such that the full four dimensional search

space is covered. In particular, this sets the time, T2, of the slow scan, depending on the

time, T1, to complete the fast spatial scan on the other satellite. Figure 6.6 visualises

the argument applied in the following section.

Table 6.1.: Maximum scan speeds of the Lissajous scan, v̂lis, for different uncertainty cone
radii and corresponding maximum angular range swept over during a single FFT, rd =
v̂lis tFFT, where tFFT = NDFT/fs. The fast axis frequency is set to f̂ = 100 Hz and the
sampling frequency is assumed to be fs = 38 MHz.

Ruc / mrad v̂lis / rad s−1 rd / µrad

NDFT 4096 2048 1024

0.3 0.19 20.5 10.2 5.1
1 0.63 67.9 34.0 17.0
2 1.3 140.1 70.1 35.0
3 1.9 204.8 102.4 51.2
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Figure 6.6.: Geometric relation between the spatial capture range, rcap, the separation
between the LOS and the scan track, h, as well as the angular scan rate, va. rin is the
distance the line-of-sight will stay in the spatial capture cone if the beam is swept along the
scan track by rd, with a rate of va during the dwell time td. If the LOS should remain within
the spatial capture cone for a complete FFT, the beam axis has to be swept by no more than
rin during the dwell time.

The beam axis is swept along the scan track which is determined by the chosen scan

pattern. In the figure, the scan track is locally approximated by a straight line. If the

scan pattern is dense enough, every point within the uncertainty cone will be covered by

the spatial capture cone around the beam axis. Hence, the LOS (blue dot in Figure 6.6)

will penetrate the spatial capture cone at a certain separation, h, from the scan track.

The length of the track, the LOS will propagate inside the spatial capture cone, is the

chord of the circle at separation h from the centre of the circle. The length of the chord

is easily computed by

rin = 2
√
r2

cap − h2 . (6.1.13)

The time the LOS will stay inside the worst case misalignment cone is the ratio of the

length of the chord and the angular sweep rate, va, of the beam axis at the considered

part of the scan pattern:

tin =
rin

va
. (6.1.14)

Generally, tin will be different for different points along the scan track. By choosing

the worst possible misalignment of the LOS to the scan track for each point of the scan
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track and calculating the sweep rate of the scan at this point, the minimum time that

the LOS will stay inside the worst case misalignment cone can be estimated. This time

should be chosen as the dwell time for the search and the scan speed should be adapted

if the fast scan cannot be finished during the dwell time of the slow scan.

6.1.3. Fast Spatial Scan

Given the different scan patterns above, following is a discussion on their suitability

for the fast scan on the master spacecraft. As said before, the hexagonal scan pattern

has the most efficient coverage of the uncertainty cone because it minimises the overlap

between neighbouring scan points. Despite the fact that it needs the least number of

points, it is not suitable to be used as the scan pattern for the fast spatial scan on the

master spacecraft.

This is due to the discrete stepping between scan points and the finite bandwidth of

the FSM control loop which results in a finite settling time, τFSM, onto a commanded

scan point. The full transition between scan points will take some time of the order of

some milliseconds, depending on the actual implementation of the controller. The dwell

time for each scan point of the fast scan would then compute to

td = tFFT + τFSM = tFFT

(
1 +

τFSM

tFFT

)
, (6.1.15)

where tFFT is the time necessary to take data for a single FFT, tFFT = NDFT/fs. The

time for total acquisition is thus increased by a factor of a = (1 + τFSM/tFFT). In the

previous chapter, FFTs of length 2048 or 4096 point were found to be suitable in order

to achieve high enough SNR. The time for a single FFT of 4096 points sampled at

fs = 38 MHz is of the order of 100µs.

In Figure 5.3, the step response of the steering mirror was shown for a single-pole low

pass filter with a pole frequency of fpole = 100 Hz. The resulting settling time can be

seen to be τFSM ≈ 10 ms which results in a factor of a ≈ 101. This adds unacceptable

overhead which rules out the hexagonal scan for the fast scan.

The Archimedean scan is a continuous scan pattern. It also has an efficient coverage

of the uncertainty cone, compared to the Lissajous scan. However, continuous scans will

be distorted by the steering mirror response function such that a complete coverage of

the uncertainty cone can only be guaranteed if the scan track separation is reduced to

increase the overlap of the spatial capture cone. For the Archimedean spiral this problem

mainly occurs at the centre of the spiral where the accelerations are highest. Decreasing

the arm separation, however, will increase the scan time.
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Another possibility is to measure the steering mirror response function and invert the

effect of the distortion by precomputing a spiral pattern that, when distorted by the

FSM response function, will give the desired Archimedean spiral. Though the transfor-

mation is straightforward, it needs to be computed each time the speed of the scan, the

uncertainty cone or spiral arm separation is changed.

The last scan pattern remaining in the list is the Lissajous scan pattern. Though the

FSM frequency response will also effect the Lissajous scan, the change is much simpler

to compute, because it only changes the amplitude and phase of the sinusoidal signal

supplied to the steering mirror by the gain and phase of the FSM’s transfer function at

the frequency of the input signal. The following corrections to the amplitude and phase

should be applied

r(t) = Ruc

(
|ĉyaw|−1 sin

(
2πf̂t+ φn + arg ĉyaw

)
|čpitch|−1 sin

(
2πf̌t+ arg čpitch

) )
, (6.1.16)

where the correction factors are computed from the transfer function, H̃FSM,i with i =

yaw, pitch, function by

ĉi = H̃FSM,i

(
f̂
)
, and či = H̃FSM,i

(
f̌
)
. (6.1.17)

This simple correction that involves only simple scalar correction factors is a big advan-

tage of the Lissajous raster scan. In the following, an estimate for the time needed by

a Lissajous raster scan is given, depending on the maximum LOS-to-scan-track separa-

tion, ĥ. This is a necessary intermediate result, to estimate the total time needed for

the whole calibration process.

Equation (6.1.11) gives the maximum LOS-to-scan-track separation, ĥ, of the Lis-

sajous scan, given the uncertainty cone radius, Ruc, and the frequency ratio, n. Since

the time for a full scan is given by T = 1/f̌ = n/f̂ , finding the smallest frequency ratio

for which the maximum LOS-to-scan-track separation is smaller than the desired spatial

capture range

ĥ(n,Ruc) < rcap, (6.1.18)

gives the minimum scan time for the chosen rcap and uncertainty cone radius. ĥ as a

function of the frequency ratio was given in Figure 6.5.

Figure 6.7 shows the minimum scan time for a Lissajous scan for different uncer-

tainty cone radii, depending on the desired spatial capture range, if the above rule of
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Figure 6.7.: Left: Scan time for a Lissajous raster scan with a fast axis frequency of f̂ =
100 Hz, depending on the desired spatial capture range, rcap, and different uncertainty cone
radii, Ruc, using equation (6.1.18). Right: Number of scan points needed by the hexagonal
and Archimedean scan to cover the whole uncertainty cone, depending on a desired spatial
capture range, rcap, for different uncertainty cone radii. The number of scan points needed
by the Archimedean scan is calculated by minimising equation (6.1.22). The Archimedean
scan roughly needs about 30 % more scan points than the hexagonal scan.

equations (6.1.18) or (6.1.11) is used.

6.1.4. Slow Spatial Scan

Now the scan patterns which are usable for the slow spatial scan are discussed and an

estimate of the number of scan points necessary to cover the uncertainty cone is given,

depending on the desired capture range. As said in the last section, the hexagonal scan

pattern covers the uncertainty cone most efficiently by minimising the overlap between

neighbouring scan points. The left plot in Figure 6.7 shows the number of scan points

that are necessary to fully cover the uncertainty cone, as a function of the desired spatial

capture range and for three different uncertainty cone radii. For small scan point radii

the number of points is proportional to the square of the uncertainty cone radius, as

expected.

In contrast to the fast scan, here, the dwell time on each scan point of the slow scan is

not equal to tFFT, but it is equal to the scan time of the fast scan, T1. Hence, replacing

tFFT by T1 in equation (6.1.15) and comparing the settling time to the scan time of the
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master spacecraft

td = T1

(
1 +

τFSM

T1

)
, (6.1.19)

shows that for the slow scan the additional time penalty, τFSM, is small for all realistic

scan times of the master spacecraft. For example, from Figure 6.7 the scan time, T1,

for an uncertainty cone of radius Ruc = 1 mrad and a desired spatial capture range

of rcap = 300µrad, can be found to be T1 ≈ 50 ms. For this case, the dwell time is

computed to td = 1.2T1, which adds a 20 % overhead to the dwell time, compared to

the scan time of the fast scan. However, for a more realistic case of an uncertainty cone

radius of Ruc = 3 mrad and a desired capture range of rcap = 150µrad, the scan time

for the fast scan is T1 = 0.32 s which results in a dwell time of td = 1.03T1.

Turning now to the Archimedean spiral scan, the first thing to do is to get an equivalent

for the number of scan points in the spiral scan. This will make it possible to compare

the hexagonal scan with the Archimedean spiral. In order to get complete coverage

of the uncertainty cone for the case of the slow scan, the LOS has to remain within

the spatial capture cone while the fast scanning spacecraft finishes one complete scan.

Starting from the centre of the spiral this will give a partition of the scan track which

is depending on the uncertainty cone radius, the desired spatial capture range and the

chosen arm separation.

The explanation is given in Figure 6.6. The arm separation, d, will set the maximum

separation between the LOS and the scan track to ĥ = d/2, because adjacent spiral arms

are all separated by the same distance. The worst case is if the LOS exactly lies in the

middle between two spiral arms at a distance of ĥ from the scan track. For this case

the chord through the spatial capture cone of radius rcap at a height of ĥ will give the

maximum range the scan is allowed to advance such that the LOS will stay inside the

spatial capture cone. Since the sweep rate of the Archimedean spiral is approximately

constant after a short initial period, shown in equation (6.1.5), this can be used to

partition the scan track into sections of equal length. These sections are henceforth

called scan points of the archimedean spiral or just scan points. The number of scan

points can then easily be calculated from the length of the complete spiral divided by

the length of the sections. A derivation of the number of scan points follows. The length

of the spiral, from the centre to the end point, can be given in terms of the spiral arm

separation, d, and the maximum deviation from the centre, rmax, by

L (d, rmax) =
d

4π

(
φmax

√
φmax + 1 + ln(φmax +

√
φmax + 1

)
, (6.1.20)
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where φmax is defined as

φmax = 2π

(
1

2
+
rmax

d

)
. (6.1.21)

The number of scan points, N2, necessary to cover the complete uncertainty cone, is

then given by the length of the spiral, divided by the length of the chord, rin, through

the spatial capture cone at a height of ĥ = d/2. The maximum radius of the spiral

necessary to completely cover the uncertainty cone, is chosen as rmax = Ruc + ĥ which

is shown in Figure 6.3. The number of scan points can then be calculated by the ratio

between the length of the spiral and the length of the chord, rin, through the worst case

misalignment cone, given in equation (6.1.13) as

N2 =
L
(
2ĥ, Ruc + ĥ

)
2
√
r2

cap − ĥ2
. (6.1.22)

For smaller ĥ, hence, smaller spiral arm separation, the length of the spiral increases,

whereas rin is bound by the diameter of the spatial capture cone and thus, the number of

scan points increases. On the other hand, increasing ĥ decreases the spiral length while

also rin decreases. It is equal to zero if ĥ = rcap, because for this case the chord through

the circle is equal to the tangent to the circle and the number of scan points approaches

infinity. However, it is clear that in between these two extremal points, there must be a

minimum number of scan points, necessary for complete uncertainty cone coverage. Due

to the transcendental nature of the equation, only numerical methods can be used to

find the optimum number of points for N2. In the left plot of Figure 6.7, the minimum

number of points for the Archimedean spiral is compared to the number of points needed

for a hexagonal scan. Shown is the dependence of the number of scan points for a fixed

uncertainty cone radius, but for a varying capture range. The comparison yields that

the Archimedean scan roughly needs about 30 % to 50 % percent more points than the

hexagonal scan.

Now, putting everything together, the time for the four dimensional spatial scan can

be estimated using equation (6.1.1) and assuming that the fast scan is done with a

Lissajous raster scan and the slow scan with either a hexagonal or Archimedean spiral

scan. Figure 6.8 shows the necessary time for a complete spatial scan depending on the

desired capture range, uncertainty cone radius and scan pattern, if the dwell time, td,

is set to the scan time of the master spacecraft. For a scan of a 3 mrad uncertainty

cone with a desired capture range of 150µrad, the scan time is roughly 180 s for a
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Figure 6.8.: Total scan time for a complete four dimensional spatial scan estimated using
equation (6.1.1) and assuming that the fast scan is done with a Lissajous raster scan and
the slow scan with either a hexagonal or Archimedean spiral scan. This plot combines the
results shown in Figure 6.7.

hexagonal scan and 250 s for an Archimedean spiral scan. The 30 % increased scan time

of the Archimedean spiral scan, due to the increased number of scan points, needs to be

compared to the increase in scan time of the hexagonal scan due to the additional settling

time of the steering-mirror, τFSM, that needs to be considered. With equation (6.1.19)

the time penalty of the hexagonal scan was estimated to be at most 20 %, for the case of

an uncertainty cone of radius Ruc = 1 mrad and capture range of rcap = 300µrad. This

is still less than the time needed, if an Archimedean spiral scan is used.

6.2. Frequency Scan, Scan Order and Total Acquisition Time

During the initial LOS calibration scan, the spatial uncertainty cone and also the un-

known frequency interval have to be scanned. For a fixed, desired total scan time for

the initial LOS calibration scan, the position of the frequency scan in the order of the

scans determines the frequency sweep rate. The following three orders are discussed here

where the slave spacecraft always performs the slow spatial scan and the master the fast

spatial scan:
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Slow Scan Intermediate Scan Fast Scan

(1) Frequency scan → Slave Spatial scan → Master Spatial scan

(2) Slave Spatial scan → Frequency scan → Master Spatial scan

(3) Slave Spatial scan → Master Spatial scan → Frequency scan

In the following, expressions for the total scan time and the frequency sweep rate are

derived for the first of the three cases which is the case assumed so far. The frequency

sweep rates and total acquisition times for some representative cases are given.

At the end, sweep rates and scan times are computed for the two remaining scan orders,

(2) and (3), and compared to the results obtained for the first case. The frequency scan

is assumed to be a linear ramp with a constant scan rate or sweep rate, vs, starting from

a lower bound, flow. The momentary frequency during the scan is computed by

fsweep(t) = vs t+ flow. (6.2.1)

Also the number of frequency scan points can be defined with the frequency uncertainty

interval, Fuc, and the usable photodiode bandwidth, FPD, by

Nf =
Fuc

FPD
. (6.2.2)

At first, a slow frequency scan, an intermediate spatial scan on the slave spacecraft and

a fast spatial scan on the master spacecraft is assumed:

Slow Scan Intermediate Scan Fast Scan

(1) Frequency scan → Slave Spatial scan → Master Spatial scan

In this order, a complete scan of the four dimensional spatial scan is performed while

the frequency scan advances by at most the usable frequency band of the photodiode,

FPD. The full scan time, T , for the initial LOS calibration scan is then given by the

time for a complete four-dimensional spatial scan, TS, and the number of frequency scan

points calculated from equation (6.2.2) by

T = Nf TS. (6.2.3)

For this case the maximum frequency sweep rate, vs, that needs to be applied can be

computed from the time for a complete spatial scan, TS, and the width of the usable
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Figure 6.9.: Total scan time for a five-dimensional LOS calibration scan, as a function of
the number of frequency scan points Nf . For spatial scan times of Figure 6.8.

frequency band of the photodiode, FPD by

vs =
FPD

TS
. (6.2.4)

This assumes that the beatnote frequency sweeps over the full photodiode bandwidth

once for each performed spatial scan.

The complete time for an initial LOS calibration scan can be computed from the times

for a complete spatial scan given in Figure 6.8. Choosing some representative values for

the desired spatial capture range, rcap, and the three uncertainty cone radii, the total

time, T , can be computed. Figure 6.9 shows T for some representative combinations of

Ruc and rcap as a function of the number of frequency scan points. In Figure 6.10 the

frequency sweep rates for a photodiode bandwidth of FPD = 15 MHz are shown.

For example, with FPD = 15 MHz and Fuc = 2 GHz, the number of frequency scan

points is Nf = 133. If for the fast spatial scan a Lissajous scan and for the slower spatial

scan a hexagonal scan is used, with an uncertainty cone radius of Ruc = 3 mrad and a

desired capture range of rcap = 150µrad, the complete spatial scan time is T2 = 167 s.

The total time to cover the five-dimensional uncertainty space then results in, T =

133 · 180 s = 22 211 s = 6.2 h. The plot in Figure 6.10 shows the sweep rates for the scan

times computed in the section about the spatial scan and shown in Figure 6.8. These

frequency sweep rates of less than 2 MHz s−1 are small enough such that no reduction in
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Figure 6.10.: Frequency sweep rates computed with equation (6.2.4) for the spatial scan
times shown in Figure 6.8 and a photodiode bandwidth of FPD = 15 MHz. The spatial scan
on the slave spacecraft is assumed to be a hexagonal scan, whereas the master spacecraft
performs a Lissajous raster scan.

signal-to-noise ratio, due to the finite frequency bin width of the FFT is expected. See

Figure 4.11 and Table 4.2 for maximum sweep rates for a given FFT length.

In order to show that the first scan sequence is already a good choice, the total

acquisition time and the frequency sweep rates for the two remaining sequences are

computed. The following numbers represent a scan over a large uncertainty cone and

are used for the comparison: Ruc = 3 mrad, rcap = 150µrad, FPD = 15 MHz and

Fuc = 2 GHz. At first, sequence (3) is investigated which has the frequency scan as the

fastest scan and the spatial scans as the slower scans:

Slow Scan Intermediate Scan Fast Scan

(3) Slave Spatial scan → Master Spatial scan → Frequency scan

The scan pattern of the master spacecraft can now also be chosen as a hexagonal

scan, because for this case the dwell time on each scan point is the time for a complete

frequency scan, and therefore longer than the fine-steering mirror settling time, τFSM.

The number of scan points in the hexagonal scan is here denoted by N . The total

acquisition time is then given by

T = N2 Tf , (6.2.5)

if the frequency scan time is denoted by Tf . For the case considered here, the number

of scan points in the hexagonal scan is N = 523. In order to achieve the same total
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acquisition time of T ≈ 22 000 s, the frequency scan time has to be Tf ≈ 80 ms which,

however, results in a frequency scan rate of vs ≈ 25 GHz s−1 which leads to a strongly

reduced SNR. The last option is to scan the frequency as the intermediate scan:

Slow Scan Intermediate Scan Fast Scan

(2) Slave Spatial scan → Frequency scan → Master Spatial scan

The total time for the LOS calibration for this case is given as the product of the

number of scan points in the hexagonal scan, N2, the number of frequency scan points,

Nf , and the time for the fast spatial scan on the master by

T = N2Nf T1. (6.2.6)

Again, using the example from above and using a Lissajous scan on the master with a

scan time of T1 = 0.32 s and a hexagonal scan on the slave spacecraft with N2 = 523

scan points. The total acquisition time, T , is then equal to T = 22 000 s if the frequency

scan scans over one usable photodiode bandwidth each time the fast scan is completed.

The necessary frequency sweep rate computes to vs = FPD/T1 ≈ 48 MHz s−1. For

FFT lengths of less than 8 192 points no reduction in SNR is expected for this sweep

rate. However, one has to consider that the time for the slow spatial scan on the slave

spacecraft is the total calibration time of here T2 = T = 22 000 s. On these time scales

the orbit prediction error will affect the scan pattern. In the worst case, the pointing

noise will shift the current scan position by up to 100µrad, potentially leading to gaps

in the uncertainty cone coverage.

To accommodate this huge worst case pointing noise, the separation between neigh-

bouring scan points has to be strongly reduced to increase the overlap of the spatial

capture cones. However, this also increases the scan time by increasing the number of

necessary scan points. Hence, also this scan sequence seems to have some disadvantages,

though further research is necessary.

6.3. Detector Signals for the Initial LOS Calibration

In Chapter 4, an algorithm was proposed to find the maximum heterodyne signal power

during a complete scan, based on an approximation to the maximum likelihood estimator

for the heterodyne amplitude. The data-flow diagram of the resulting algorithm is again

depicted in Figure 6.11.
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Figure 6.11.: Shows the data processing chain used to estimate the frequency and arrival
time of the signal, also showing the coherent (CS) and incoherent (ICS) sums of the channels.

The basic principle of the estimation algorithm is to continuously compute fast Fourier

transforms (FFT) of sequential, non-overlapping chunks of data, consisting of NDFT

samples, during which the fine-steering mirror (FSM) is scanning the spatial uncertainty

cone and the laser frequency is swept over the frequency uncertainty interval. For each

computed FFT the highest power occurring in any of the frequency bins is picked and

compared against previously found maxima. The time when the overall maximum was

found, yields an estimate of when the beam alignment and frequency were closest to

their optimal values.

The data streams of the individual channels can be combined either coherently (CS),

by adding the channels before the FFT is computed or incoherently (ICS), by summing

up the power spectra of the individual channels. In this section, the tilt dependence of the

CS and ICS signal combinations are determined. In order to do so, effective heterodyne

efficiencies are defined and in analogy to the approach taken in Section 3.3.2, the effective

received power is defined for the case of the coherent and incoherent sum combinations.

In the last part of this section, the coherent and incoherent sum heterodyne efficiencies

are investigated for additional wavefront errors or a change in the waist radius of the local

oscillator beam, as well as for different widths of the insensitive slits of the photodiode.

6.3.1. Effective Heterodyne Efficiency for the CS and ICS

To estimate the response of the detection algorithm for the coherent and incoherent

sum of the channels, an effective heterodyne efficiency can be defined for each case. In

Section 4.3.1 it was shown that the distribution of the maximum, found in the power
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spectrum of the heterodyne signal, approaches the distribution of the signal bin for

high signal-to-noise ratios. In Sections 4.2.2 and 4.2.3 the expected power of the signal

distributions for the CS and ICS were given in equations (4.2.25) and (4.2.39). For the

case of high SNR the mean value of the frequency bins containing the signal with a

frequency of fb = j fs/NDFT are given by

E
[
s̃2

CS(j)
] SNR�1

=
|ACS|2

2
(6.3.1)

E[s̃2
ICS(j)]

SNR�1
=

|AICS|2
2

. (6.3.2)

Where s̃2
CS(k) and s̃2

ICS(k) are the power spectra of the coherent sum and the incoherent

sum of the channels and E[x] is the expected value of x. Their signal amplitudes, ACS

and AICS, were defined by

ACS =

∣∣∣∣∣
nc∑
c=1

Ac exp(iφc)

∣∣∣∣∣ and AICS =

√√√√ nc∑
c=1

|Ac|2 , (6.3.3)

with the phase of the single channel heterodyne signal, φc. The amplitudes can be

cast into a form similar to the single channel heterodyne signal, whereas an effective

heterodyne efficiency can be defined that encapsulates the dependence on the local mis-

alignment. The single channel heterodyne amplitude, Ac, was defined in equation (3.3.9)

as

Ac = 2 ρPD g(fb)
√
PLO,c PRX,c ηc , (6.3.4)

with the photodiode responsivity, ρPD, the photodiode frequency response, g(fb), the

local oscillator and received beam powers, PLO,c and PRX,c, falling onto the photodiode

segments the channel is made up of, and the heterodyne efficiency, ηc, for the interference

on each segment of the channel. With these definitions the amplitude of the coherent

sum combination can be reformulated, given equations (6.3.3) and (6.3.4), as follows:

|ACS|2 =

∣∣∣∣∣
nc∑
c=1

2ρPDg(fb)
√
PLO,cρBSPRX,cηc exp (iφc)

∣∣∣∣∣
2

(6.3.5)

=
∣∣∣2ρPDg(fb)

√
PLOρBSPRX

∣∣∣2 ∣∣∣∣∣ 1

nc

nc∑
c=1

√
ηc exp (iφc)

∣∣∣∣∣
2

(6.3.6)

=
∣∣∣2ρPDg(fb)

√
PLOρBSPRXηCS

∣∣∣2 . (6.3.7)
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Figure 6.12.: Left: Effective heterodyne efficiency of the incoherent sum of the channels.
Right: Effective heterodyne efficiency of the coherent sum of the channels. Both are shown
as a function of vertical and horizontal relative angular misalignment of the RX and LO
beam axis. The heterodyne efficiencies are defined in equations (6.3.12) and (6.3.8). The
LO beam waist radius is w0 = 2.5 mm and the waist position is at the QPD, the RX beam
is a perfect tophat beam with flat amplitude and phase profile. The width of the inactive
slits of the QPD is 30µm. The contour lines are also shown in the colour bar on the left.

In going from equation (6.3.5) to equation (6.3.6) it was assumed that the same power

falls onto each segment, i.e. PLO,c = PLO/nc and PRX,c = PRX/nc. The purpose of the

imaging system on the optical bench is to ensure exactly this. It is designed to image

a wavefront tilt at the image plane into a pure wavefront tilt with no beam walk at

the photodiode. If the beams are aligned to the centre of the QPD and the two object

planes of the imaging system coincide with the receive aperture plane and the centre of

rotation of the FSM, there will be no beam walk on the photodiode, and each segment

will receive the same power, both from the local oscillator as well as the weak signal

beam.

Now, in order to get to the last line of equation (6.3.7), the following definition of the

coherent sum heterodyne efficiency ηCS is introduced:

ηCS =
1

n2
c

∣∣∣∣∣
nc∑
c=1

√
ηc exp (iφc)

∣∣∣∣∣
2

. (6.3.8)

For zero slit width, this is equal to the heterodyne efficiency of a single-element diode.

The right plot in Figure 6.12 shows the dependence of the CS heterodyne efficiency on

local beam axis misalignments. The plus shape, originating from the insensitive slit, can
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be easily spotted. Comparison with the single segment heterodyne efficiency shows a

more symmetric and faster drop for increasing tilt.

Similarly, with equations (6.3.3) and (6.3.4), one can formulate the ICS signal ampli-

tude with an effective incoherent sum heterodyne efficiency, ηICS, by

|AICS|2 =

nc∑
c=1

∣∣∣2ρPDg(fb)
√
PLO,cρBSPRX,cηc exp(iφc)

∣∣∣2 (6.3.9)

=
∣∣∣2ρPDg(fb)

√
PLOρBSPRX

∣∣∣2 1

n2
c

nc∑
c=1

ηc (6.3.10)

=
∣∣∣2ρPDg(fb)

√
PLOρBSPRXηICS

∣∣∣2 . (6.3.11)

In going from equation (6.3.9) to equation (6.3.10), it is assumed that PRX,c = PRX/nc

and PLO,c = PLO/nc. For the last equality in the above derivation, the following defini-

tion for the heterodyne efficiency of the incoherent sum, ηICS, is used:

ηICS =
1

n2
c

nc∑
c=1

ηc. (6.3.12)

The left plot in Figure 6.12 shows the tilt dependence of the ICS heterodyne efficiency

on the left. Compared to the coherent sum heterodyne efficiency, ηCS, the drop for

increasing tilt is much slower in any direction. Also, the wings for only horizontal and

vertical tilt are much more pronounced. However, the maximum value of the heterodyne

efficiency for zero tilt is reduced by a factor equal to the number of the segments, as

compared to the CS heterodyne efficiency, due to the exchanged order of summing and

squaring. Summarising the above and making the connection to the detection/estimation

problem: The patterns shown are analogous to the field-of-view (FOV) of the acquisition

detector for local beam axis misalignments. Hence, the radius of the FOV for local beam

misalignments of the acquisition detector, using the ICS is by about a factor of two larger,

than the FOV using the CS detector. However, this comes at a price, for the coherent

sum combination can be computed using only a single FFT, whereas the ICS uses four

FFTs to compute the spectra of all channels individually and thus, only smaller FFT

sizes could be used with the ICS for the case of limited computing resources.

Figure 6.13 shows a comparison of the heterodyne efficiencies, as computed for the

plots in Figure 6.12 for a pure horizontal or vertical tilt as well as a diagonal tilt. The

slower drop of the ICS is clearly visible, nearly doubling the possible misalignment in

vertical and horizontal direction before the heterodyne efficiency drops to 10−2. In

diagonal direction, still 50 % larger misalignments are possible. Again, the difference in
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Figure 6.13.: Cross-sectional plot of the coherent and incoherent sum heterodyne efficiencies
for interference of a tophat and a Gaussian beam on a single photodetector, as a function
of the relative wavefront tilt. Shown are plots for pure horizontal or vertical tilts as well as
a tilt in the diagonal direction. The beam and photodiode parameters are the same as were
used for the generation of the plots in Figure (6.12).

the maximum value for zero tilt is due to the exchanged order of squaring and summing,

which is a property of the detection algorithm itself and not an artefact of the definition

of the CS and ICS heterodyne efficiencies.

6.3.2. Effective Received Power for the CS and ICS

The definition of the effective heterodyne efficiencies, together with the heterodyne am-

plitudes of the CS and ICS of the channels, can be used to define an effective received

power similar to the case of the effective received power for a single channel which was

given in equations (3.3.10) and (3.3.11).

For this, the two satellites are again labelled by i, j = 1, 2, with i 6= j. For the

misalignment angles the following is agreed upon: if αi and βi are arguments to the

heterodyne efficiency, they are the local beam misalignments on spacecraft i, i.e. the

relative beam axis misalignment between the local oscillator and the received beam. On

the other hand, αi and βi are the misalignment angles relative to the LOS of the beam

transmitted by spacecraft i if they are arguments to the received power. Misalignments

of the transmitted beam on spacecraft i, lead to a loss in effective received power in the

other spacecraft, j. See Figure 6.14 for the definition of these angles.

The effective received power for the coherent sum of the channels, P̂RX,CS, is defined

with the power loss in the receive path, ρrx, and the total received beam power in the
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6. Initial Line-of-Sight Calibration

Figure 6.14.: Left: Local misalignment angles as the relative beam axis tilt in QPD co-
ordinates of spacecraft 1. Right: Transmit beam misalignment of spacecraft 1 in inertial
frame.

receive aperture, PRX, as

P̂RX,CS(αi, βi, αj , βj) := ρrx PRX(αj , βj) ηCS(αi, βi). (6.3.13)

Plugging in the definition of ηCS from equation (6.3.8), the maximum effective received

power is obtained for zero tilt and no relative phase between the channels, i.e. φc = φd

and also ηc = ηd for all c, d = 1, . . . , nc. For this case the maximum effective received

power is equal to the sum of the single channel received power, as can be seen by

P̂RX,CS = ρrx PRX
1

n2
c

∣∣∣∣∣
nc∑
c=1

√
ηc exp (iφc)

∣∣∣∣∣
2

≤ ρrx nc PRX,c ηc

= nc P̂RX,c. (6.3.14)

Here, P̂RX,c is the single channel effective received power. On the other hand, the effective

received power for the ICS, P̂RX,ICS, is defined by

P̂RX,ICS(αi, βi, αj , βj) := ρrx PRX(αj , βj) ηICS(αi, βi). (6.3.15)

It can be estimated to be roughly equal to the single channel effective received power

P̂RX,c. This can be seen by plugging in the definition of ηICS from equation (6.3.12) into
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6.3. Detector Signals for the Initial LOS Calibration

Figure 6.15.: Left: Object and imaging planes of the imaging system on the optical bench.
The receive aperture plane and a plane through the FSM rotation point are imaged onto the
QPD. Right: Visualises the quantities used to define a curvature error in the wave front of
the LO beam at the object plane of the imaging system.

equation (6.3.15):

P̂RX,ICS = ρrx PRX
1

n2
c

nc∑
c=1

ηc

= ρrx PRX,c
1

nc

nc∑
c=1

ηc

= ρrx PRX,c η̄c. (6.3.16)

Here, the mean heterodyne efficiency over all channels was defined by η̄c =
∑nc

c=1 ηc.

Nevertheless, there is a gain in the SNR for the ICS combination as the heterodyne

amplitude is proportional to the square-root of the product of the effective received

power and the power of the local oscillator. For the ICS sum of the segments the local

oscillator is nc times the single channel local oscillator power.

6.3.3. Variation of the Heterodyne Efficiency

The heterodyne efficiency limits the FOV of the detector for local beam misalignments.

Hence, variations of the heterodyne efficiency due to different photodiode slit widths,

curvature errors or different waist radii of the Gaussian beam will have an effect on the

detector performance. The Figures 6.16, 6.17 and 6.18 show the change of the heterodyne
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Figure 6.16.: Left: For three different waist radii of the Gaussian LO beam, shows the
CS heterodyne efficiency for tilts in the vertical / horizontal direction, as well as diagonal
direction, in QPD coordinates. Right: For the same waist radii shows the ICS heterodyne
efficiency. The tophat beam’s radius is equal to the photodiode radius and the Gaussian
beam waist position is located at the photodiode. The QPD slit width is δs = 30µm.

efficiency for variations of these parameters, for interference of a Gaussian LO with a

tophat beam on a quadrant photodiode as a function of the relative tilt angle. Here

again only cross-sections for tilts in purely horizontal or vertical direction as well as

for a tilt in diagonal direction are compared. The heterodyne efficiency was calculated

by computing the overlap integral, defined in equation (2.1.8), over the electric fields

of the local oscillator (LO) and the received beam (RX) in the object planes of the

imaging system. The integration boundaries corresponding to the individual segments

are mapped to the object planes by scaling the radius of the active area, as well as the

slit width by the inverse of the imaging system’s magnification factor. In the left panel

of Figure 6.15, the optical bench is shown together with the object and image planes

of the imaging system. The imaging system is designed such that the receive aperture

plane and the plane through the rotation point of the FSM are imaged onto the QPD,

in a way that a tilt in the object plane is mapped to a tilt in the image plane without

beam walk.
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Figure 6.17.: Left: CS heterodyne efficiency for different QPD slit widths, δs, as a function
of the relative wavefront tilt, between the Gaussian LO and tophat beam. Right: Incoherent
sum heterodyne efficiency for the same slit widths. The tophat beam’s radius is equal to the
photodiode radius and the Gaussian beam waist radius is w0 = 2.5 mm and located at the
QPD.

The electric field amplitudes of the LO and RX beam are assumed to be defined by

equation (3.3.14) which is repeated here as follows:

ERX =

√
1

π

1

ra
exp(−ikxα− ikyβ), and (6.3.17)

ELO =

√
2

π

1

w0
exp

(
−x

2 + y2

w2
0

)
. (6.3.18)

The assumption is that the magnification of the imaging system is m = RPD/ra, where

RPD is the QPD radius and ra is the receive aperture radius, so that the receive aperture

is perfectly mapped to the active area of the photodiode. Only the slit width of the QPD

has to be scaled by the inverse of the magnification factor of the imaging system.

Figure 6.16 shows the change of the CS and ICS heterodyne efficiency for a change

in the waist radius of the Gaussian local oscillator. Changing the waist size of the

Gaussian beam, whereas the tophat beam and photodiode radius are held constant,

has a huge impact on the maximally achievable heterodyne efficiency for zero wavefront

tilt. For 2 mm, 2.5 mm and 3 mm waist radius the maximum values of the heterodyne

efficiency for the coherent sum are ηCS = 0.48, 0.67 and 0.80 and for the incoherent sum,

ηICS = 0.12, 0.17, 0.20, respectively. This is caused by the fact that for larger waist radii

the Gaussian beam’s amplitude distribution on the QPD surface approaches that of a
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Figure 6.18.: Left: CS heterodyne efficiency for different wavefront curvature errors of the
local oscillator beam, as a function of the relative wavefront tilt between the LO and RX
tophat beam. Right: Incoherent sum heterodyne efficiency for the same curvature errors.
The tophat beam’s radius is equal to the photodiode radius and the Gaussian beam waist
radius is w0 = 2.5 mm and located at the QPD.

plane wave and hence, better overlap with the perfect tophat beam is achieved.

The horizontal axis of the plot is normalised to the divergence half angle of the Gaus-

sian beam which is θ0 = λ/(πw0), with the wavelength λ. For the three considered

cases of waist radii, w0 = 2 mm, 2.5 mm and 3 mm, the divergence half angles are

θ0 = 169µrad, 136µrad and 113µrad. The bend of the curve starts at about θ0 for

the coherent sum combination and at about 2 θ0 for the incoherent sum combination.

Increasing the divergence will hence increase the field-of-view of the detector to local

beam axis misalignments, but it also increases the width of the Gaussian beam in the

far field by roughly the same amount.

Figure 6.17 shows the change of the heterodyne efficiency if the width of the insen-

sitive slit that separates the individual segments is changed. The maximum achievable

heterodyne efficiency slightly increases with wider slit width which is not visible from

the plots due to the thickness of the lines. The field-of-view slightly decreases for in-

creasing slit width and the plateau height at misalignments > 300µrad, for the case of

pure horizontal/vertical tilt, for the CS increases with increasing slit width. The ICS

combination is not altered noticeably. The curvature error in the plots of Figure 6.18

was generated by multiplying the electric field of the Gaussian LO beam by the following
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6.4. Maximum LOS-to-Scan Track Separation

quadratic phase function in the radial distance r from the beam centre

δE(r) = exp

(
−2πi

δr

λ

r2

r2
a

)
,

where δr is the deviation of the phase due to the curvature error at a distance of ra in

transversal direction from the beam axis. ra is the radius of the tophat beam or the

receive aperture radius. The right panel in Figure 6.15 gives an explanation of the used

quantities. The radius of curvature, rce, of the wavefront error is then just given by

rce = ra/
√

4π δr/λ .

For the case of the CS of the channels, an increasing curvature error will decrease

the heterodyne efficiency for zero tilt, from about ηCS = 0.67 if no curvature error is

present to ηCS = 0.61 for a curvature error of δr = λ/5, which is a loss of roughly 9 %.

The ICS drops by the same ratio. However, the change is more prominent for higher

tilt angles and is bigger for the CS than for the ICS. For example at α = 200µrad

misalignment the CS heterodyne efficiency with curvature error of δr = λ/5 is about 5

times higher than for the case of no curvature error. Also, the dip of ηCS at a bit more

than 200µrad misalignment vanishes for higher curvature errors. The ICS heterodyne

efficiency is nearly unchanged.

Summarising the results, the ICS sum combination is nearly invariant under a change

in the QPD slit width or an additional curvature error of the interfering beams. Gen-

erally, the field-of-view of the ICS is larger than that of the CS detector for all three

examined waist sizes of the Gaussian beam. The CS combination however, roughly lim-

its the field-of-view of the detector for local misalignments to the divergence half angle

of the Gaussian beam. The divergence angle limits the FOV of the detector for remote

beam axis tilts if the beam propagation factor, M2, is close to 1. An additional curva-

ture error will increase the FOV of CS detector for local beam misalignments while an

increase in the QPD slit width will slightly decrease the field-of-view.

6.4. Maximum LOS-to-Scan Track Separation

The aim of this section is to estimate the maximum allowable, simultaneous misalignment

on both spacecraft such that the maximum returned by the detection algorithm over the

complete calibration scan is most likely not due to noise alone. If it would be, the

resulting alignment calibration is likely to yield an arbitrary alignment, because for this

case the time, when the maximum was returned, is not correlated to the alignment of

the beam axes relative to the LOS.
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6. Initial Line-of-Sight Calibration

For the analysis in this section it is assumed, that the master spacecraft runs a fast

Lissajous raster scan while the slave spacecraft dwells on a fixed scan point. So far,

effects due to amplitude variations during an FFT were not considered. However, for

the large uncertainty cones, as expected for the initial LOS calibration, scan speeds are

high and variations of the heterodyne amplitude during an FFT will affect the power

spectrum. In order to analyse the worst case, the maximum scan speed of the Lissajous

scan is assumed in the following analysis.

The results obtained in Section 4.3.2 about the detector noise RMS, the heterodyne

efficiency of the CS and ICS of the channels of Section 6.3.1, but also some results of the

spatial scan section, can now be used to estimate the maximum allowable misalignment

during the initial LOS calibration scan. The basic approach taken here is to compare

the maximum in a computed power spectrum of the heterodyne signal to the noise

RMS of the detector, over the complete time of the calibration scan. The alignment

angles for which the maximum in the power spectrum is equal to the noise RMS of the

Table 6.2.: List of the default parameters used in the simulation to produce the maximum
allowable misalignment. Variations of parameters are done while keeping all other parameters
fixed to their default values.

Item

Parameter Symbol Value Unit

S/C separation DS/C 270 km

Transmitted laser power PTX 13.7 mW
Usable LO power (sum of segments) PLO 1.2 mW
Beam quality factor M2 1.05 r.u.
Beam waist size (radius) w0 2.5 mm
QPD responsivity ρPD 0.6 A W−1

QPD slit width δs 30 µm
Number of QPD segments nseg 8 (hot redundancy) number
Power loss in receive beam path ρrx 0.795 r.u.
Samples in FFT NDFT 2048 number
Sampling frequency fs 38 MHz

Lissajous fast axis frequency f̂ 100 Hz
Uncertainty cone radius Ruc 3 mrad
Receive aperture radius ra 4 mm

Noise equivalent current NEI 5 pA/
√

Hz

Relative intensity noise RIN 3 · 10−8 1/
√

Hz
Total number of computed frequency bins Nb 3.8 · 109 number
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Figure 6.19.: Explanation of the calculations done to find the maximum simultaneous scan
track separation, ĥ, for both spacecraft, here, exemplary for the heterodyne signal measured
by the slow scanning slave spacecraft. Left: For a given initial alignment of (α0, β0) = (0, ĥ),
a fixed FFT of size NDFT and a given maximum scan speed of v̂lis, a time series of the received
power is generated for a scan of the remote spacecraft in horizontal direction. Right: The
relative misalignment between the LO and RX beam on the local spacecraft is kept fixed at
a position in diagonal direction at a distance from the LOS that corresponds to the vertical
remote misalignment of ĥ. This determines the heterodyne efficiency for the measurement
on the local spacecraft. From the time series of the received power and the heterodyne
efficiency, time series of the heterodyne signal are calculated and Fourier transformed. Then
the maximum value in the power spectrum is returned for a comparison against the noise
RMS.

detector, is the maximum allowable simultaneous misalignment. If the two spacecraft

run spatial scans with identical maximum scan track separations, ĥ, the found maximum

simultaneous misalignment is also the maximum scan track separation that is usable for

the calibration scans.

In principle, the maximum scan track separation, ĥ, computed for the two spacecraft

are slightly different, due to the different tilt dependence of the received power and of the

heterodyne efficiency. In the first case, considered in Figure 6.19, the signal is measured

on the slave spacecraft and the received power varies while the heterodyne efficiency

is constant over the course of an FFT. For the second case, the signal is measured on

the master spacecraft and the heterodyne efficiency varies while the received power is

constant. Both cases will be considered and discussed here.

Figure 6.19 explains the concept of the computation, exemplary for the case of a sweep

of the remote spacecraft which here, corresponds to the signal measured by the slave
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6. Initial Line-of-Sight Calibration

spacecraft. The initial scan position, (α0, β0) = (0, ĥ), is varied in vertical direction only.

The initial position for horizontal alignment is fixed to α0 = 0, as this corresponds to

the situation for which the least signal power is collected in a single FFT. The range of

vertical locations for the starting position, β0, was chosen from 0µrad to 500µrad with

a resolution of 5µrad. The results were interpolated for intermediate values by cubic

interpolation.

From the initial position the horizontal alignment angles, αn, of the TX beam axis of

the master spacecraft are computed for each sample of the FFT of size NDFT, under the

assumption of a constant sweep rate, v̂ = 2πf̂Ruc, and sampling frequency, fs, by

αn = α0 + v̂
n

fs
, with n = 0, . . . , NDFT − 1, (6.4.1)

while the vertical alignment is kept constant, i.e. βn = ĥ. As said before, the assumption

is that the beam axis alignment of only one spacecraft varies over the course of an FFT,

such that here the local alignment of the local oscillator beam axis is held constant.

Misalignments between the local oscillator and the received beam enter into the signal

amplitude through the change of the heterodyne efficiency. In Figure 6.12 it was shown

that the drop of the heterodyne efficiency for tilt in horizontal or vertical direction was

much slower than a drop in the diagonal direction. In order to take this asymmetry

into account and only compute the worst case maximum allowable misalignment, the

misalignment between the LO and RX beams is varied along the diagonal direction, see

the right panel of Figure 6.19. The relative angular misalignment between the LO and

RX is chosen as (α, β) = (ĥ/
√

2 , ĥ/
√

2 ), where ĥ is the maximum LOS-to-scan-track

separation of the remote spacecraft’s spatial scan, as indicated in the figure.

The reason for these particular choices is that a Lissajous scan is assumed which,

close to the centre of the spatial uncertainty cone, scans horizontally. Choosing α0 = 0

considers the worst possible starting position for a single FFT as the least signal power is

collected in the FFT. For the other satellite, which keeps its scan position constant over

the time of an FFT, a worst case position for the alignment is chosen. The heterodyne

amplitude time series for the FFT was then calculated according to the formula given

in equation (2.1.14)

sc(n) = 2 sq(n)

=
4 ρPD g(fb)

nseg

√
PLO ρrx PRX(αn, β0) ηq(β0/

√
2 , β0/

√
2 ) (6.4.2)

· cos (2πnfb/fs + φq) . (6.4.3)
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The beatnote frequency was set both to a value in the centre of the frequency band,

and also right between two frequency bins, in order to find the worst case results for

maximum scalloping loss. The heterodyne signals of the channels, sc, were then used

as input for the CS respectively the ICS detectors of Figure 4.2. The detector output

was calculated for various LOS-to-scan-track separations. Now, the computed detector

output for a pure signal input without noise, was compared against the RMS value of

the maximum returned by the detector over a complete spatial scan of 200 s, if only noise

is present during the whole scan.

The value of the noise RMS of the maximum, for the coherent and incoherent sum,

depending on the total number of frequency bins, Nb, over which the maximum is

searched, was derived in Section 4.3.2. Analytical formulas to compute the values also

for a longer scan were given in equations (4.3.20) and (4.3.22). The difference between

the noise RMS for a scan of 200 s and a scan of 20 000 s were given in Table 4.1 and only

differ by roughly 20 %. Here, the noise RMS for a scan of 200 s is chosen, where half

of the FFT bins are searched over. Thus, the number of frequency bins in which the

maximum is searched over is Nb = 3.8 · 109. The values for the incoherent and coherent

sum noise RMS are listed in the table as RMSCS = 45.3 σ̃2
CS, and RMSICS = 91.9 σ̃2

c .

The variances of the noise in a frequency bin of a single channel, σ̃2
c , and of the coherent

sum of all channels, σ̃2
CS, were defined by equations (3.4.7) and (4.2.24). In order to

also compare the maximum LOS-to-scan-track separation for higher noise levels, it is

additionally computed for RMS values which are 5 and 10 times higher.

This calculation was done for varying some parameters from their default values, so

that their influence on the worst case misalignment can be estimated. The parameters

that were varied are the scan speed, the FFT length, the spacecraft separation and

the transmitted power, the beam propagation factor of the transmitted Gaussian beam

(TX), the waist radius of the TX beam, the slit width of the quadrant photodiode and

the amplitude of a possible wavefront curvature error.

The plots in Figure 6.20 show the maximum allowable LOS-to-scan-track separation,

ĥ, of the spatial scans as a function of the spacecraft separation, DS/C, on the left and

as a function of the total transmitted power, PTX, on the right. In both plots the results

are shown for the CS and ICS detector, for a sweep of the remote TX beam and the

local RX to LO alignment, as well as for the three different noise levels given before.

The first thing to note is that ĥ for the ICS is significantly larger than for the CS,

by roughly 30 %, which is no surprise given the results for the effective heterodyne

efficiencies ηCS and ηICS of Section 6.3.1. The maximum simultaneous misalignment for

the case of the CS varies between 185µrad and 200µrad for the default noise level, while
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Figure 6.20.: Left: Maximum allowable LOS-to-scan-track separation, ĥ, as a function of
the spacecraft separation. Right: ĥ as a function of the transmitted power, PTX. Results are
shown for both spacecraft, the CS and ICS of the channels as well as for three different noise
levels. The results labelled local, correspond to a measurement on the master spacecraft, for
which the local alignment between the LO and RX beam is swept during one FFT. Remote
stands for a measurement of the slave spacecraft, for which the remote satellites sweeps the
TX beam alignment. The noise level labelled 1×, corresponds to the default noise parameters
given in Table 6.2.

the ICS varies from 240µrad to 260µrad, as a function of the spacecraft separation. The

three different colours encode the noise RMS of the maximum returned by the detector.

Increasing the level of the RMS noise by a factor of 10 decreases ĥ by roughly 12 % to

15 % for the case of the ICS and 10 % to 15 % for the case of the CS.

In the right plot of Figure 6.20, the maximum ĥ, is shown for a change of the transmit-

ted power from 10 mW to 20 mW. The maximally allowed simultaneous misalignment

is seen to increase by about 10µrad for doubling the output power for the case of the

ICS combination. If the CS combination is used ĥ merely changes by 5µrad. The third

piece of information given in the plot is the difference between the signals taken by the

slave spacecraft, for which the remote spacecraft is sweeping, and the master, for which

the local misalignment between the LO and RX beam changes over an FFT. The signal

of the master satellite is plotted using the solid line and the signal of the slave is drawn

with a dashed line. The difference between the remote and locally varied misalignment

is small and in a range of 5µrad.

Interesting is that for the ICS signal, the master spacecraft has a wider field-of-view

(FOV) while for the CS it is the slave spacecraft. The reason for this is shown in
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Figure 6.21.: Compares the loss of effective received power P̂RX for a local tilt, due to the
heterodyne efficiency, with the loss experienced by the reduction of received power, PRX,
due to a TX beam axis tilt at the remote spacecraft.

Figure 6.21 which shows the tilt dependence of the effective received power, P̂RX, as

a function of only local misalignments which is due to the heterodyne efficiency, ηCS

or ηICS, and also for a pure remote misalignment. For this case the reduction in the

effective received power is due to the decrease of the received power PRX. The assumed

far-field intensity is a Gaussian beam with beam quality factors between M2 = 1.05 and

M2 = 1.4.

The faster the effective received power drops, for a fixed scan range, the smaller is the

collected power in the FFT and the smaller is the maximum returned by the detection

algorithm. Thus, compared to the Gaussian far-field intensity distribution, the CS het-

erodyne efficiency drops quicker and the maximum allowable simultaneous misalignment,

ĥ, is smaller for a locally swept alignment scan and larger for increasing M2-factor. On

the other hand, the ICS sum combination drops slower for a local misalignment than

for all considered Gaussian beam far-field intensities, for a varying remote beam axis

misalignment, and here the maximum ĥ is larger for a local misalignment.

In Figure 6.22, the change of ĥ is shown as a function of the beam quality factor, M2,

of the transmitted Gaussian beam and the speed of the scan, v̂. A change of the M2-

factor increases the divergence of the Gaussian beam and thus, increases the width of the

far-field intensity distribution, as can be seen in Figure 6.21. An increased width of the

far-field intensity distribution obviously increases ĥ. The incoherent sum combination

increases linearly with the M2-factor by a factor of about 20 % over the considered range

of values of M2. For the CS instead, the increase flattens out, because of the faster drop

of the CS. Remember that ĥ is depending on the product of the far-field intensity and
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Figure 6.22.: Left: Maximum simultaneous misalignment, ĥ, as a function of the Gaussian
beam quality factor, M2. Right: ĥ depending on the angular sweep rate, v̂lis. For further
explanations, see Figure 6.20.

the heterodyne efficiency as given by equation (6.3.13) and (6.3.15).

However, the M2-factor as it is used in the parametrisation of the Gaussian beam in

equation (3.3.17), only scales the divergence angle, whereas the intensity profile remains

Gaussian and falls of smoothly for larger misalignments. In general, a large M2-factor

would also change the shape of the intensity which was not investigated here.

If the scan rate, v̂lis = 2πf̂Ruc, is changed, e.g. by varying the uncertainty cone radius,

Ruc, or the fast axis frequency, f̂ , of the Lissajous scan, for the case of the ICS, a

different behaviour of ĥ can be seen for an alignment variation of the remote and the

local spacecraft. A change of the scan rate increases the range, the beam axis is swept

over during one FFT, while keeping the number of scan points fixed. For the case of

the CS and a sweep of the remote TX beam axis this leads to a loss in collected power

during the FFT. For a local scan using the ICS, the heterodyne efficiency drops much

slower and the collected power is nearly independent of the scan range, at least for the

considered range of scan rates.

Table 6.3 lists the maximum allowable misalignment for variations of the QPD slit

width, δs, the Gaussian beam waist radius w0, wavefront curvature errors, δr, and the

sample size of the FFT, NDFT. For the variation of the curvature error the heterodyne

efficiencies as shown in the plots of Figure 6.18 are used, while the far-field intensity

distribution was not altered. For the variation of the waist radius of the local oscillator

beam, the heterodyne efficiencies as shown in Figure 6.16 are used and the far-field

intensity distribution is computed using the same waist radius. The change in the slit

184



6.4. Maximum LOS-to-Scan Track Separation

width was simulated by using the heterodyne efficiencies shown in Figure 6.17.

The biggest effect can be seen for the change of the local oscillator beam waist ra-

dius, w0, which is due to the change of the beam divergence in the far-field and the

increase of the width of the heterodyne efficiency. The beam divergence half angles θ0

for the considered cases of w0 = 2 mm, 2.5 mm and 3 mm, are θ0 = 169µrad, 135µrad,

113µrad. The relative increase of the maximum separation between the LOS and the

scan track, ĥ, is larger than the relative increase of the divergence angle, which is due to

the simultaneous increase of the width in the far-field and of the heterodyne efficiency.

For the rest of the varied parameters the change in the maximum allowable simultaneous

misalignment is about 5µrad for the case of the CS over the range of the parameters for

all noise levels. However, for the ICS a change of 15µrad can be observed for a change

in the FFT length from 512 to 4096 points for the default noise level.

Table 6.3.: List of the maximum allowable, simultaneous misalignment, ĥ, for the coherent
and incoherent sum combinations, for the default parameters listed in Table 6.2. For the
case of the CS, the values for relative LO to RX alignment variations are shown and for
the case of the ICS, the values for remote misalignments. The noise levels assumed for the
parameters are listed at the bottom of Table 6.2 for a total number of computed frequency
bins of Nb = 3.8 · 109 which corresponds to a 200 s spatial scan. For the wavefront error:
λ = 1064 nm.

Item

Description Symbol Value CS max. ĥ / µrad ICS max. ĥ / µrad

Noise / × RMS 1 5 10 1 5 10

20.0µm 188 170 161 242 215 202
QPD slit width δs 30.0µm 185 168 159 243 215 202

45.0µm 182 166 157 244 216 203

2.0 mm 215 192 180 284 248 230
LO waist radius w0 2.5 mm 185 168 159 243 215 202

3.0 mm 166 152 145 214 191 180

0 185 168 159 243 215 202
wavefront δr λ/20 185 169 160 243 216 203
curvature error λ/10 186 170 161 243 216 203

λ/5 190 173 164 245 217 203

512 180 162 152 231 200 189
FFT sample NDFT 1024 186 169 161 243 212 199
size 2048 185 168 159 243 215 202

4096 186 169 161 246 219 206
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6.5. Distributions of the Found Maxima

The result of the initial line-of-sight (LOS) calibration scan is an estimate of the fine-

steering mirror (FSM) position that will align the beam axis of the transmitted beam

(TX) parallel to the LOS between the two satellites. Due to random alignment biases,

TMA coalignment errors and pointing noise, as well as a finite resolution of the spatial

scan, the estimate will not be exact, but subject to residual alignment biases. These

biases depend on the chosen scan resolution, the type of the scan and the specific re-

alisation of pointing noise at the very time the maximum heterodyne amplitude was

recorded.

In this section the distribution of the residual misalignment of the TX beam axis is

investigated for different worst case misalignments of the spatial scan, for the hexag-

onal and the Lissajous scan. Also the FFT length is varied and the effect of a TMA

coalignment error is discussed. In order to determine the distribution of the residual mis-

alignment of the TX beam, relative to the LOS, the high-fidelity simulation presented in

Table 6.4.: List of the default parameters used in the simulation to produce the distribution
of the line-of-sight estimates. Deviations from these will be mentioned explicitly.

Item

Parameter Symbol Value Unit

S/C separation DS/C 290 km

Transmitted laser power PTX 13.7 mW
Usable LO power (sum of segments) PLO 1.2 mW
Beam quality factor M2 1.2 r.u.
Beam waist size (radius) w0 2.5 mm
QPD responsivity ρPD 0.6 A W−1

QPD slit width δs 30 µm
Number of QPD segments nseg 8 (hot redundancy) number
Loss in receive beam path ρrx 0.795 r.u.
Samples in FFT NDFT 2048 number
Sampling frequency fs 38 MHz

Lissajous fast axis frequency f̂ 100 Hz
Uncertainty cone radius Ruc 3 mrad
Receive aperture radius ra 4 mm

Noise equivalent current NEI 5 pA/
√

Hz

Relative intensity noise RIN 3 · 10−8 1/
√

Hz
Total number of computed frequency bins Nb 3.8 · 109 number
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6.5. Distributions of the Found Maxima

Section 5 was used. The simulation was run for one complete spatial scan and the state

of each spacecraft (S/C), at the time of the maximum occurring FFT bin amplitude, was

recorded. This includes the FSM’s position and the TX beam alignment. The angular

alignment returned as the LOS estimate is the alignment of the TX beam at the last

recorded sample for the FFT in which the maximum was found. No additional delays,

for example due to the calculation of the FFT, are taken into account.

Table 6.4 lists the default parameters used in these simulation runs. The frequency

difference between the lasers of the two spacecraft was randomly chosen from a uniform

distribution within the usable photodiode bandwidth, in order to include the effect of

frequency variations that enter the measurement through scalloping loss of the rectangu-

lar windowed FFT. These frequency variations are for example due to frequency noise,

or a slow frequency sweep. However, no Doppler shift and no frequency sweep was di-

rectly simulated. The frequency sweep rates for the initial LOS calibration were found

to be far less than vs = 100 MHz s−1 and thus no significant reduction of SNR due to

the frequency sweep is expected. Frequency sweep rates for the initial LOS calibration

as a function of the desired capture range, rcap, were given in Figure 6.10. Compare this

also to Figure 4.11 and the list of maximum scan speeds given in Table 4.2.

The dominant source of pointing noise, adding on time scales longer than a single

spatial scan, is the orbit prediction error which is briefly discussed in Section 3.4.2. It

can be considered by adding the uncertainty due to the orbit prediction error on top of

the distribution of the LOS estimate that remains after a single spatial scan.

The master satellite runs a Lissajous scan with a fast axis frequency of f̂ = 100 Hz and

the slave spacecraft runs a hexagonal scan. For the following analysis the CS combination

of the channels is used. In order to determine the remaining uncertainty after the initial

LOS calibration and find the distribution of the TX beam angle, relative to the LOS,

the simulation was run a 1 000 times with the same parameters. For each simulation

run a random initial alignment bias was drawn from a uniform distribution inside the

uncertainty cone of radius Ruc = 3 mrad.

The simulation was run for a complete spatial scan and the TX beam angles relative to

the LOS were recorded for the overall occurring maximum detector output. Results are

shown in Figures 6.23a to 6.23d for both of the two spacecraft and for different maximum

LOS-to-scan-track separations of ĥ = 100µrad, 145µrad, 180µrad and 250µrad. The

maximum LOS-to-scan-track separation of the Lissajous scan is only adjustable in dis-

crete steps, corresponding to integer frequency ratios n = f̂/f̌ , while ĥ for the hexagonal

scan is continuously adjustable. The frequency ratio of the Lissajous scan was chosen

such that ĥ is just smaller than the desired value while for the hexagonal scan it was set
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Figure 6.23.: Distribution of the TX beam angles, recorded when the maximum detector
output occurred. The TMA coalignment error was set to zero during the simulation runs,
to show only the distribution for varying uncertainty biases within the uncertainty cone. For
each set of parameters 1000 random alignment biases were drawn from a uniform distribution
within the uncertainty cone. For the different plots only the worst case misalignment of the
scan pattern were varied, i.e. ĥ = 100µrad and n = 55 in 6.23a, ĥ = 145µrad and n = 35
in 6.23b, ĥ = 180µrad and n = 28 in 6.23c as well as, ĥ = 250µrad and n = 20 in 6.23d.
The plots show that the width of the distributions follow the desired worst case misalignment
up to ĥ = 180µrad.
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6.5. Distributions of the Found Maxima

exactly to the desired value. This results in a slightly narrower distribution for the case

of the Lissajous scan.

In Figure 6.23a the distribution of the angular misalignment of the TX beam to the

LOS, for the maximum recorded signal power over a complete spatial scan, is shown

for a maximum LOS-to-scan-track separation of ĥ = 100µrad. The frequency ratio of

the Lissajous raster scan was set to n = 55, resulting in ĥ ≤ 85.7µrad, which takes the

synchronisation requirement of Section 6.1.2 into account. The first obvious thing to note

is that the distribution of TX beam alignments is different for the two scan patterns. For

the case of the hexagonal scan, the shape of the distribution clearly resembles a hexagon

with its diameter equal to the set ĥ. This is more pronounced in the plots for larger ĥ

but can also be seen in the case of ĥ = 100µrad.

For the Lissajous scan, however, the width is different in the two axes. In the

vertical direction the width is in accordance to the set LOS-scan-track separation of

ĥ = 85.7µrad, but it is wider in the horizontal direction, having a width of ≈ 100µrad.

The horizontal alignment is not limited by the LOS-to-scan-track separation but by the

maximum range, the FSM sweeps during one FFT. The maximum range swept by the

steering mirror r̂d occurs at the zero-crossing of the fast scan axis and can be computed

with equation (6.1.12) to

r̂d = v̂lis · tFFT

≈ 2π f̂ Ruc · tFFT, (6.5.1)

which is shown in Figure 6.6. Plugging in the used parameter values for the fast

axis frequency f̂ = 100 Hz, the uncertainty cone radius Ruc = 3 mrad and FFT time,

tFFT ≈ 53.895µs, this gives r̂d ≈ 101.6µrad which fits to the horizontal widths of the

distributions of all of the Figures 6.23a to 6.23c. The horizontal width of the distribution

of TX angles for the Lissajous raster scans is constant while the width in the vertical

direction follows the set LOS-to-scan-track separation, ĥ, of the scan.

The results plotted in Figure 6.23d, ĥ = 250µrad, suggest that the calibration is likely

not successful in that case, as can be seen by the wide spread of the recorded TX angles

of up to 6 mrad relative to the LOS. For this case, the maximum separation between the

LOS and the scan track is too large such that for some simulation runs the maximum

effective received power is below the maximum value produced by noise alone. The

found maximum thus occurs at a random time during the spatial scan which yields an

arbitrary alignment estimate.

Another interesting figure is the carrier-to-noise density (C/N0) of the heterodyne
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Figure 6.24.: Distribution of the carrier-to-noise density (C/N0) of the single segment
heterodyne signal, recorded at the time the maximum occurred during a pick-max search
over an uncertainty cone with radius of Ruc = 3 mrad. These are the C/N0 corresponding to
the distributions of TX beam angles shown in the plots 6.23a to 6.23d. For the different plots
only the LOS-to-scan-track separation, ĥ, of the scan pattern were varied, i.e. ĥ = 100µrad
in 6.24a, ĥ = 145µrad in 6.24b, ĥ = 180µrad in 6.24c and ĥ = 250µrad in 6.24d. For
increasing the maximum separation between the LOS and the scan track, the width of the
distribution increases. The maximum value is invariant, corresponding to perfect alignment of
both S/C, while the minimum found C/N0 will decrease for larger separations. Figure 6.24d
shows the distribution if ĥ is too large and the true LOS is not found with some probability.
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Figure 6.25.: Percentage of simulation runs for which the TX beam angles relative to the
LOS that correspond to the found maximum, are larger than 300µrad. The effect of bigger
worst case misalignment can be seen in Figures 6.23d and 6.24d. The master runs a fast
Lissajous raster scan while the slave uses a slow hexagonal scan.

signal in a single channel which is defined as the power of the carrier signal in Watt,

divided by the noise spectral density in Watts per Hertz,

C/N0 =
A2
c/2

2 NEI2 + 2 qe ρPD PLO,c + (ρPD PLO,c RIN)2
. (6.5.2)

The unit of C/N0 is given in Hz. Figures 6.24a to 6.24d show the distribution of the

carrier-to-noise density for a single channel that corresponds to the found maximum

during the initial LOS calibration scan. The plots correspond to the same simulation

runs for which the distribution of the TX beam angles is shown in the Figures 6.23a to

6.23d. The carrier-to-noise density ratio is a direct indicator for the performance of the

phasemeter. The left edge of the distribution of the carrier-to-noise density ratio, seen

in the plots, is hence a lower limit of the performance of the phasemeter if the beams

are aligned to the found calibration estimate.

The plot in Figure 6.25 shows the percentage of simulated spatial scans for which the

residual TX beam angle is bigger than 300µrad, depending on the maximum LOS-to-

scan-track separation of the scan. For a separation larger than ĥ = 190µrad, there is

a non-negligible probability that the maximum heterodyne signal power is less than the

noise power returned by the detection algorithm during the spatial scan. This fits well

with the predictions for the maximally allowed misalignment for a spatial scan that was

made in the previous section.
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(a) (b)

Figure 6.26.: Left: Distribution of the TX beam angles for the maximum occurring detector
output for the case of a TMA coalignment error of γTMA = 50µrad. The chosen maximum
separation between the LOS and the scan track is ĥ = 145µrad. Right: Distribution of the
TX beam angles for the maximum occurring detector output if the FFT size is set to 4 096
samples. The chosen ĥ for the scan is ĥ = 100µrad.

Again, the big difference in the results between the Lissajous scan which is run by the

master spacecraft, and hexagonal scan, that is run by the slave spacecraft, originates

from the slightly smaller maximum separation between the LOS and the scan track that

is chosen for the Lissajous scan to ensure that the LOS will stay within the spatial

capture cone for at least a complete FFT. A second reason is that the LOS-to-scan-track

separation during a Lissajous raster scan only occurs in the centre of the scan pattern.

The scan point density is much higher at the edges of the covered area which increases

the mean resolution of the scan.

The former plots that show the calibration accuracy were made using data from sim-

ulations with zero TMA coalignment error. This is obvious through the fact, that the

distribution of residual beam alignment errors is centred around the true LOS at zero

misalignment. The plot in Figure 6.26a shows the distribution for the same scan pa-

rameters that were also used in the data generation for Figure 6.23b, i.e. Ruc = 3 mrad,

ĥ = 145µrad for the hexagonal scan, a frequency ratio of n = 35 and a fast-axis fre-

quency of f̂ = 100 Hz for the Lissajous scan. Additionally, a coalignment error of

γTMA = +50µrad in horizontal direction was set on both spacecraft. It is easy to see
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Figure 6.27.: Left: Distribution of the single channel C/N0 for the maximum occurring
detector output for the case of a TMA coalignment error of γTMA = 50µrad. The chosen
LOS-to-scan-track separation for the scan is ĥ = 145µrad. Right: Distribution of the single
channel C/N0 for the maximum occurring detector output if the FFT size is set to 4 096
samples. The chosen ĥ for the scan is ĥ = 100µrad.

the horizontal shift of the distribution’s mean value by +50µrad.

However, this is due to the additional coalignment error added on transmission through

the TMA to the other spacecraft. Figure 6.27a shows the distribution of the correspond-

ing single channel carrier-to-noise density. A comparison with the histogram of Fig-

ure 6.23b yields no significant difference to the case of no TMA coalignment error. This

shows clearly that the calibration will only be relative to the wavefronts of the incoming

beam, which do not depend on the alignment of the transmitted beam of the remote

spacecraft, since the arriving waveform is approximately spherical, with the centre of

curvature close to the centre of mass of the remote spacecraft. Only when going through

the TMA to the other spacecraft is the coalignment error added to the beam alignment.

The TMA coalignment error will not be visible from only looking at the FSM position

where the maximum occurred but the time of occurrence is necessary to extract that

information from where the beam was pointed to.

Another interesting parameter is the FFT length that is used in the detection algo-

rithm, because a larger number of samples in the FFT increases the SNR of the signal

inside a frequency bin, as long as the variation of the frequency due to a frequency sweep

or frequency noise is small compared to the width of the frequency bin. Figure 6.26b
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shows the residual TX beam angles for a scan with maximum LOS-to-scan-track sepa-

ration of ĥ = 100µrad and an FFT length of NDFT = 4 096 points.

The time of the FFT, tFFT, determines the time between two successive LOS estimates.

For NDFT = 4 096 samples in the FFT, the time between two successive estimates is

tFFT = NDFT/fs ≈ 108µs. The maximum range the TX beam angle sweeps during this

time is r̂d = v̂lis tFFT, with the maximum scan rate of the Lissajous scan, v̂lis. For an

uncertainty cone radius of 3 mrad and a fast axis frequency of f̂ = 100 Hz, the scan rate

is v̂lis = 1.9 rad s−1, see Table 6.1 and equation (6.1.12). The range the TX beam axis

is swept for this case is r̂d = 205µrad which is even larger than the LOS-to-scan-track

separation of ĥ = 100µrad. The carrier-to-noise density in a single channel for the time

the maximum was recorded is shown in the left plot of Figure 6.27b. In comparison

to the former case of NDFT = 2 048, C/N0 is slightly reduced, due to the on average

larger separation between the LOS and the TX beam alignment when the maximum is

recorded.

6.6. Conclusions

In this chapter, an initial line-of-sight calibration scan was analysed as a first step to

an autonomous laser link acquisition. The detailed analysis performed in this chapter

yielded estimates for the total scan time based on the desired scan resolution. Subse-

quent analysis of the tilt dependence of the two proposed signal combinations provided

estimates of the maximally allowed separation between the LOS and the scan track.

Combining both results gives a lower bound for the possible scan times.

In the first part of this chapter, the spatial and frequency scans were investigated.

Three types of spatial scan patterns were introduced, namely a discretely stepped hexag-

onal scan as well as a continuously scanned Archimedean spiral scan and a Lissajous

raster scan.

The use of the hexagonal scan was found to be advantageous for the slow scan due to

its optimal coverage of the uncertainty cone. The Lissajous scan was instead selected for

the fast spatial scan for its simplicity and simple frequency response. Relations between

the desired capture range and the maximum separation between the LOS and the scan

track were derived and used to estimate the scan time for a complete four dimensional

spatial scan.

Subsequently, the frequency scan and the scan sequence were discussed. For the

case of a slow frequency scan, the frequency sweep rates and total acquisition times

were computed. For a large uncertainty cone radius, alternative scan sequences were
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evaluated. It was found that either the resulting frequency sweep rate would have to be

chosen too large to give sufficient signal-to-noise ratio or the resolution of the spatial scan

would have to be increased due to increased pointing noise due to the orbit prediction

on long time scales.

In the second part of this chapter, the coherent and incoherent sum combinations of

the detection algorithm were discussed and an effective heterodyne efficiency could be

defined for the two cases. The tilt dependence of the two heterodyne efficiencies were

investigated for different photodiode slit widths and waist radii of the local oscillator.

Also the effect of an additional phasefront curvature error was calculated. A change of

the local oscillator’s waist radius has a large effect on the tilt dependence for both data

combinations, whereas the photodiode slit width and the curvature error change the tilt

dependence of the CS. The tilt dependence of the ICS remains nearly unchanged for

these cases. The largest change of the CS signal occurs for larger tilt angles of about

200µrad and more.

This was followed by an estimation of the maximum simultaneous misalignment al-

lowed on both spacecraft such that the signal is large enough to be unambiguously above

the noise. It was found that the CS signal limits the allowable misalignment to about

180µrad to 190µrad. The biggest change of this limit could be related to the divergence

of the transmitted beam which depends on the waist radius or the M2-factor of the

Gaussian beam. The ICS instead limits the allowed misalignment to about 230µrad

to 270µrad. The field-of-view of the ICS combination is approximately a factor of
√

2

larger than the field-of-view that is provided by the CS combination.

The maximally allowed simultaneous misalignment can be used as an estimate of the

maximum allowable separation between the scan track and the LOS. As the time for a

spatial scan is roughly proportional to the square of the LOS-to-scan-track separation,

this might be exploited to speed up the calibration scan by about a factor of 2.

In the last section, the distributions of the residual misalignment of the transmitted

beam after an initial LOS calibration scan was investigated. For a discretely stepped

hexagonal scan the width of the distribution is limited by the maximum separation

between the LOS and the scan track. For a Lissajous scan instead, the width of the

distribution in the direction of the fast scanning axis is depending on the scan rate and

the FFT length. In the direction of the slow scanning axis it only depends on the max-

imum LOS-to-scan-track separation. For larger FFT lengths, the residual misalignment

in horizontal direction might exceed the set separation between the scan track and the

LOS.
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7. Autonomous Laser Link Acquisition

In this chapter, an algorithm for an autonomous laser link acquisition is proposed. The

goal of an autonomous laser link acquisition is to reduce remaining uncertainties in the

angular bias and in the frequency difference of the lasers such that finally tracking of

the received light can be realised with differential wavefront sensing. An autonomous

laser link acquisition is carried out after the initial line-of-sight calibration or at any

time when the laser link got interrupted during the mission.

This chapter will start by summarising the assumed parameter values for which the

link acquisition algorithm was developed and review some of the challenges that need

to be tackled in designing a working and robust algorithm. It will further continue with

reviewing the detection signals and show how the detection threshold should be chosen.

At the same time, this fixes the allowable simultaneous misalignment of both spacecraft

and hence the minimum scan resolution.

Thereafter, the spatial scan pattern for the autonomous laser link acquisition is pre-

sented and expressions for the frequency scan rates and total scan times are given. This

is followed by the presentation of the proposed algorithm including an explanation of

the actual implementation. The results given in the subsequent section show that the

algorithm is robust and yields high success rates while keeping the acquisition time at

an acceptable level. The chapter concludes with a summary of identified reasons for the

few remaining time outs and failures of the algorithm.

7.1. Introduction

After an initial line-of-sight calibration, the uncertainty in the alignment of the laser

beams on each spacecraft is reduced from an initial bias of up to 3 mrad down to values

of some hundred µrad. The exact uncertainties depend on the chosen scan resolution

during the initial line-of-sight calibration and additional dynamic biases, such as the orbit

prediction error as the biggest contributor or thermal effects. Also, the uncertainty in

the frequency difference between the master and slave laser is reduced from a possible

range of some GHz down to about 100 MHz.

The goal of the autonomous laser link acquisition is to search the remaining uncer-

tainty space to acquire a signal from the remote spacecraft and autonomously, without
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communication between the satellites or via ground control, transition to a state where

the laser ranging interferometers (LRI) on both spacecraft are tracking the incoming

laser light. Pointing control of the fine steering mirrors (FSM) is then handed over to a

control loop exploiting differential wavefront sensing (DWS) to automatically align the

wavefronts of the local oscillator (LO) beam to the wavefronts of the received laser beam

(RX) from the remote spacecraft.

In Chapter 6 estimates of reachable calibration accuracies were given together with

necessary scan times. An accuracy of roughly 150µrad was possible for an overall scan

time of 5.5 h for the case of 100 frequency scan points. Assuming this number as base-

line for the analysis in this chapter, the orbit prediction error adds a conservatively

estimated maximum of 100µrad on top. Additionally allowing for some margin, the

remaining uncertainty in the alignment of the beam axis on both spacecraft is set to

Ruc = 300µrad for the analysis in this chapter. The frequency uncertainty after the

initial line-of-sight calibration is due to drifts of the laser frequency in the time between

the detected maximum during a pick-max search and the subsequent autonomous laser

link acquisition. It is set here to Fuc = 100 MHz.

These two values are the main parameters that determine the average and worst case

time of an autonomous laser link acquisition. However, there are other parameters

which will influence the performance of the acquisition process. These parameters are

only specified to be limited to a certain range, for example the triple-mirror assembly

(TMA) coalignment error |γTMA| ≤ 40µrad, the one-way Doppler shift |fD| ≤ 2.35 MHz

which the laser light experiences due to the relative movement of the satellites. Also the

clocks of both spacecraft might have some unknown offset assumed to be |δt0| ≤ 500µs

which inhibits a perfectly synchronised start of the acquisition process on both satellites.

The algorithm developed here needs to successfully lock the LRIs for any value of these

variable parameters with high probability.

Another unknown is the exact far-field intensity distribution of the transmitted (TX)

laser beam. The simplest model assumes a pure Gaussian beam with quality factor

between M2 = 1 and M2 = 1.2, as given in equation (3.3.17). A different model

for the far-field intensity distribution was derived by propagating a fundamental fibre

mode resulting in the simple model defined by equation (2.5.18). The algorithm that is

proposed here is tested for all of these cases in order to investigate its limits.

The main idea of the algorithm which is presented here, is that the uncertainty space

is scanned for a signal which exceeds a predefined detection threshold. The algorithm

used to detect the heterodyne signal is that of Section 4 which compares the maximum

frequency bin value that is found in a power spectrum of the heterodyne signal against
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the set threshold. If a signal exceeds the threshold, the scans are stopped. The key

point is that a detection should only be claimed if the effective received power in a single

phasemeter channel is sufficiently high to directly lock the phasemeter, without the need

for additional alignment optimisations. Hence, one of the main concerns is to determine

the correct signal combination which provides high enough SNR and at the same time

is a sufficient indicator for the power received in a single phasemeter channel.

A somewhat different approach would be a multi-stage process, where the spatial

uncertainty cone is initially scanned by a coarse scan to find the correct frequency, and

after detecting the signal the uncertainty is gradually decreased until the signal strength

is large enough to lock the phasemeter. The gradual decrease can be done by subsequent

scans with smaller radius or higher resolution [KS89] while the detection threshold is

increased. Another option would be to dither the angular alignment of the laser beams

to estimate the direction of the power gradient [GKK+04]. However, the additional

logic will increase the complexity of the algorithm design and here a simpler approach is

evaluated also because the remaining spatial and frequency uncertainties are small and

a full search over the complete uncertainty space is done quickly.

The first section of this chapter is thus dedicated to the analysis of the available

signal combinations and determination of the correct threshold. This is followed by a

discussion of a possible scanning scheme. The proposed algorithm is explained in more

detail thereafter. Finally, results of conducted simulation runs which test the algorithm

for various parameter values, and the three far-field intensity distributions which were

mentioned before, are presented. The acquisition algorithm was also tested for a range

of detection thresholds to investigate its sensitivity to this key parameter.

7.2. Signals and Thresholds

The general detection problem was extensively discussed in Chapter 4 and only the main

results important for the following analysis will be reviewed. The expected RMS noise

in a frequency bin of a 4096 point DFT of a single channel, expressed as equivalent

effective received power, was estimated to be P̂ noise
RX,c ≈ 3 fWrms and for the coherent sum

(CS) detector to roughly P̂ noise
RX,CS ≈ 40 fWrms, at a considered local oscillator power of

PLO,q = 150µW per photodiode segment. See Table 3.3 for a list of noise levels for

different LO powers and DFT sizes.

Figure 4.8 presents the distribution of the output of the CS detector for different

effective received powers per phasemeter channel. It shows a clear distinction between

the distribution due to only noise and a present signal for P̂RX,c ≥ 500 fW. Using the
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separation of the CS noise and signal distributions as indication for sufficient separation

also for the case of the incoherent sum (ICS) one can argue that if the single channel

effective received power is larger than 500 fW the false alarm rates due to the additive

noise sources are negligible.

The minimum effective received power per channel to which the phasemeter is still

able to lock to, is assumed to be P̂RX,c = 3 pW. Any threshold set for the CS detector

which guarantees at least 3 pW per phasemeter channel will thus limit false alarm rates

to far less than 1 in 106. However, this is only true for the simple noise models assumed

here and does not consider other noise artefacts as glitches, etc.

Choosing the correct threshold is nevertheless essential for a successful acquisition

process and not trivial. The data combination used for the detection of the heterodyne

signal, either the CS or the ICS for their higher SNRs, have to be used as an indicator

for the effective received power in a single channel.

In order to determine a detection threshold for the acquisition process, it is assumed

that perfect knowledge about the far-field intensity distribution of the transmitted beam

and the dependence of the heterodyne signal on the relative wavefront tilt exist. However,

the exact intensity distribution is likely not known beforehand, as the far-field intensity

is hard to generate in a laboratory. Also the generation of a nearly perfect tophat beam

interfering with the LO on the optical bench is not easily done. However, in studying

the threshold selection for different far-field intensity distributions, general rules can be

derived that need to be considered. Some knowledge might also be gained during an

initial LOS calibration.

The first question to answer is which of the available data combinations is a suitable

indicator for the effective received power in a single channel and the second question is

how to set the threshold value for the chosen data combinations.

7.2.1. Detector Signal for Autonomous Laser Link Acquisition

The chapter discussing the detection algorithm also proposed two distinctly different

ways of combining the signals of different photodiode channels which are denoted the

coherent sum (CS) and the incoherent sum (ICS) of the channels. The data flow diagram

is shown in Figure 4.2. For the two different combinations, the signal amplitude could

be formulated with effective heterodyne efficiencies ηCS and ηICS which are defined in

equations (6.3.8) and (6.3.12) in a form similar to that of the single channel heterodyne

amplitude Ac. The expression is here recapitulated with indices i, j being either 1 or 2
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Figure 7.1.: Comparison between the effective received power P̂RX for tilt of the beam axis
on one spacecraft for perfect alignment of the other spacecraft for the coherent sum (CS)
and incoherent sum (ICS) of the channels as defined by equation (7.2.4), as well as a single
channel (CHAN) from equation (7.2.2). The blue curve shows P̂RX for the local spacecraft
tilting the beam (LOC) and the black curve shows P̂RX for the remote spacecraft (REM).
The tilt is in the diagonal direction yielding the steepest fall-off. The parameters used here
are given in Table 7.4.

and i 6= j, indexing the two spacecrafts, whereas c indexes one of the nc data channels:

Ac(αi, βi, αj , βj , fb) = 2 ρPD g(fb)

√
PLO,c P̂RX,c(αi, βi, αj , βj) (7.2.1)

P̂RX,c(αi, βi, αj , βj) := ρrx PRX,c(αj , βj) ηc(αi, βi) (7.2.2)

Here αi, βi are the horizontal and vertical tilt angles between the LO and the RX beam,

and are further on called local misalignment angles, αj , βj are the misalignment angles

between the LOS and the axis of the beam transmitted by the remote spacecraft. As

these angles determine the received power due to the tilt of the TX beam axis on the

remote spacecraft they will be called remote misalignment angles. Figure 3.5 shows a

sketch of the local and remote misalignment angles.

The frequency response of the photodiode is denoted by g(fb) and ρPD is the photodi-

ode responsivity. The angular dependence of the heterodyne amplitude can be combined

in an effective received power P̂RX which is defined by equation (3.3.11) as a function

of the heterodyne efficiency ηc of the segments of the channel c. The received power

per channel is given by PRX,c = PRX/nc, where PRX is the total power passing through

the receive aperture and PLO,c is the total local oscillator power that is collected in a
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single channel. It is assumed that the LO power on all segments is equal and that the

segments have uniform responsivity over their surface area. The losses in the path of

the RX beam are combined in ρrx. For the CS and ICS combinations the heterodyne

amplitude can be given in a similar form by:

AS,i(αi, βi, αj , βj , fb) = 2 ρPD g(fb)

√
PLO P̂RX,S(αi, βi, αj , βj) (7.2.3)

P̂RX,S(αi, βi, αj , βj) := ρrx PRX(αj , βj) ηS(αi, βi) (7.2.4)

where S stands for either CS or ICS. The dependence of the heterodyne efficiency for

the two combinations on the relative tilt between the wavefronts of the LO and RX

beam was also shown in the plots of Figure 6.12, indicating the much smaller change of

the ICS combination as compared to the CS combination. The dependence on remote

misalignments is the same for the two cases and determined by the far-field intensity

pattern of the beam transmitted by the remote spacecraft. The heterodyne efficiencies

fall off faster in the diagonal direction than in the horizontal or vertical direction which

is also shown in Figure 6.13.

In this chapter only the worst case powers are of importance and hence only misalign-

ments in diagonal direction are considered. A local misalignment by an angle θi will

be defined by αi = βi = θi/
√

2 . Additionally, the far-field intensity pattern of the TX

beam is assumed to be circular symmetric to the beam axis such that the received power

only depends on the combined angle θj ≈
√
α2
j + β2

j . The following simplified notation

will be used for the rest of this chapter:

P̂RX(θi, θj) := P̂RX

(
θi/
√

2 , θi/
√

2 , θj , 0
)
. (7.2.5)

In the right plot in Figure 7.1 the effective received power P̂RX for misalignments of one

spacecraft is shown for the CS and a single channel (CHAN). The left plot in Figure 7.1

shows the same for the ICS and a single channel (CHAN). For perfect alignment of the

distant spacecraft the two plots compare the dependence of the effective received power

P̂RX on beam axis misalignments of the local spacecraft.

From the left plot in Figure 7.1 it is obvious that the single channel signal is differ-

ent in shape to the CS signal which falls off faster. The faster drop is due to relative

phase shifts between the channels. However, the important thing to note is that the

CS signal has a similar dependence on local and remote misalignments, up to approxi-

mately 200µrad. Tilting a beam on one spacecraft will hence change the signal on both

spacecraft approximately by the same amount and the detected signal power on both
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spacecraft will cross a set threshold simultaneously for misalignments ≤ 200µrad.

The right plot in Figure 7.1 compares the dependence of the ICS to the single channel

P̂RX for beam axis tilts on one spacecraft. The response of the ICS signal on local and

remote beam axis tilts is vastly different. Most importantly the signal drops much faster

for the remote spacecraft than for the local spacecraft. In fact, this makes the ICS

unusable for a detection algorithm as implemented here because the local misalignment

can be much larger before the signal is lost or a set threshold is crossed than for the

remote spacecraft.

This will likely lead to the following situation. In the above plot, setting a definite

threshold of for example 10 pW for the incoherent sum effective received power, the local

misalignment can be bigger than 300µrad for perfect alignment of the remote spacecraft

and a detection would still be claimed. This would stop the steering mirror scan at

these 300µrad misalignment. Hence, the transmitted beam would be misaligned by

300µrad from the LOS and the effective received power on the remote spacecraft would

be less than 200 fW. A different but more complex implementation might be possible to

accommodate these large differences between the local and remote signal but this will

not be studied here.

For the reason given above the CS combination of the segments is preferred over the

ICS combination for the autonomous laser link acquisition. The following analysis of

the proposed acquisition algorithm is done with the CS signal only.

7.2.2. Threshold Selection for the CS Detector

Two types of thresholds are used in the proposed algorithm. The first one is the detection

threshold GCS, which is used in the detection algorithm to decide if a signal is present.

The other threshold is the signal-lost threshold CCS, which in turn is used to decide

if the signal is lost again once a detection has been made. The reason for this will be

explained later on.

However, both thresholds will be derived from a necessary minimum CS effective

received power ξCS that ensures a minimum signal power in a single phasemeter channel.

The selection of a threshold for the signal detection GCS will be defined in terms of

the CS effective received power ξCS for its indicative meaning. However, the detection

algorithm compares the threshold GCS against the maximum value in a power spectrum

of the heterodyne signal photocurrent. For the case of a present signal, the mean value

of the signal bin will be equal to the squared root mean square (RMS) of the heterodyne

photocurrent. Therefore, the minimum effective received power ξCS has to be converted
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from effective received power to RMS amplitude squared by

GCS :=

[
2 ρPD

√
PLO ξCS√
2

]2

= 2 ρ2
PD PLO ξCS. (7.2.6)

Here the maximum frequency response of the photodiode is assumed to be g(fb) ≡ 1.

The threshold ξCS for the CS effective received power depends on the shape of the

far-field intensity pattern and the heterodyne signal. While here only the heterodyne

efficiency for interference of a perfect tophat with a perfect Gaussian beam on a detector

with 0.5 mm radius and 30µm slit width was used, as far-field patterns the simple model

for the propagated fibre mode, as given in equation (2.5.18), and a Gaussian beam with

beam quality factor of M2 = 1.0 and M2 = 1.2 was used to compare the performance of

the algorithm for these three cases. An expression to compute the intensity of a Gaussian

beam with beam quality factor of M2 was given in equation (3.3.17).

The change of the heterodyne efficiency for curvature errors and different photodiodes

slit widths was discussed in Section 6.3.3. The outcome was that within a range of

roughly 200µrad the tilt dependence will remain approximately the same except for

small variations of the maximum heterodyne efficiency for zero tilt which however only

slightly decreases the SNR of the signal. The difference of the far-field intensity pattern

for the propagated fibre mode and a possible Gaussian beam with M2 = 1.2 however,

will have different behaviours for small tilt angles as well, and the on-axis power for the

non-perfect Gaussian beam will be reduced by about a third as compared to the simple

model of the propagated fibre mode or a perfect Gaussian beam with M2 = 1.

For the threshold selection here it is assumed that the signal level only changes due

to misalignments of the beam axes. However, the signal level will also change due to a

change in the beatnote frequency because of the frequency response of the photodiode

or scalloping loss, see Section 4.4.1. Also the additive noise sources such as shot noise,

laser intensity noise and detector electronic noise will change the measured signal and

hence the detector output. These changes will be accounted for by defining the signal-lost

threshold CCS, which will be derived from the minimum CS effective received power ξCS,
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by multiplying the heterodyne amplitude with the scalloping loss factor ρscallop ≈ 0.637:

CCS :=

[
ρscallop

2 ρPD
√
PLO ξCS√
2

]2

= 2 ρ2
scallop ρ

2
PD PLO ξCS

= 2 ρ2
PD PLO ζCS. (7.2.7)

In the last line the signal-lost threshold in terms of the effective received power was

defined by:

ζCS = ρ2
scallop ξCS. (7.2.8)

Determining the detection threshold for the CS signal here principally means finding the

maximum misalignment allowed on both spacecraft before the single channel effective

received power will drop below the desired lower limit of ξCHAN. This will guarantee

that a signal will only be detected if the combined misalignment of both spacecraft is

such that the photodiode still receives an effective received power of ξCHAN per channel.

The resolution of the spatial scan pattern has to be set according to the found limit on

the allowable misalignment in order for the signal to be detectable.

7.2.3. A Naive Approach

At first the threshold selection is done for the case that the far-field intensity pattern is

given by the propagated fibre mode of equation (2.5.18). The effective received power

for the CS signal and the single channel (CHAN) is shown in the plots of Figure 7.2 for

the case of a remote (REM) TX beam misalignment and local RX to LO beam axis mis-

alignment (LOC) at the beamsplitter as well as for a simultaneous (SIM) misalignment

on both spacecraft. Two different approaches have been taken to find the correct value

for the threshold of which one turned out to be wrong if the single channel effective

received power should be limited to a minimum value of ξCHAN which here is assumed

to be ξCHAN = 3 pW. This incorrect method is shown in the plot of Figure 7.2 indicated

by the circles. It sets the CS threshold ξCS based on the single channel effective received

power for simultaneous misalignments on both spacecraft. At first the angle θsim for a

simultaneous misalignment is determined for which the single channel effective received

power crosses the lower limit. This is marked by the circle numbered (1), and written
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Figure 7.2.: Two methods how two choose the threshold. The curves correspond the single
channel (CHAN) and coherent sum (CS) effective received power P̂RX for misalignments of
the beam axes. Here, local misalignment (LOC) is the tilt of the LO beam with respect to
the RX beam at the beamsplitter, whereas remote misalignment (REM) is the misalignment
of the TX beam of the distant spacecraft relative to the LOS. The effective received power is
plotted for the case of simultaneous (SIM) local and remote misalignment and for only local
misalignment. For this case, the effective received power is shown for the local spacecraft
(LOC) as a function of the relative beam axis tilt at the beamsplitter, and for the remote
spacecraft (REM) for misalignments of the TX beam of the local spacecraft relative to the
LOS. Circles: Procedure for picking the threshold based on the simultaneous misalignment
on both spacecraft (1) and (2), which might lead to a detection on both spacecraft (3)
though not enough power is received on the photodiode of the remote spacecraft for the
phasemeter to lock (4). Squares: Procedure for picking the CS threshold (2) based on
the single channel effective received power on the remote spacecraft (1). The allowable
simultaneous misalignment (3) is much smaller than for the first method, but if a detection
was made the power is guaranteed to exceed the 3 pW threshold for a single channel (4),
also (1). For further details see the text. The far-field intensity pattern here is assumed to
be the fibre mode far-field of equation (2.5.18) which for the small misalignments considered
here is close to the purely Gaussian profile with M = 1.

mathematically with the simplified notation of equation (7.2.5) as

P̂RX,c (θsim, θsim)
!

= ξCHAN. (7.2.9)
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The threshold for the CS effective received power is subsequently set as the value of

P̂RX,CS for the same simultaneous misalignment θsim, marked by circle (2). Hence:

⇒ ξCS = P̂RX,CS (θsim, θsim) . (7.2.10)

However, this is problematic for the case that the remote spacecraft is better aligned

than θsim, as the CS signal level for the local spacecraft increases and allows for a larger

local misalignment before the threshold is violated which in turn results in a larger

misalignment for the remote spacecraft.

This is depicted in the plot for the extreme case that the remote spacecraft is perfectly

aligned to the LOS resulting in the maximum possible received power. For this case the

CS on the local spacecraft crosses the threshold at θone (3) for which the CS signal on

the remote spacecraft is also still above the threshold so that it can detect the signal.

In spite of that, the single channel effective received power on the remote spacecraft

is below ξCHAN = 3 pW such that the phasemeter might not be able to lock to the

incoming signal. Since a detection was made the information can be used to start a

second smaller scan that could be implemented into the algorithm for the autonomous

laser link acquisition and would use a second higher threshold to increase the signal

level until the single channel effective received power is above ξCHAN. However, this

will increase the complexity of the algorithm and as the baseline here was to keep it as

simple as possible a different approach for setting the threshold was chosen which limits

the single channel signal to the desired lower limit for all detection events.

7.2.4. An Improved Approach

This second approach is shown in the plot of Figure 7.2, indicated by the squares and

italic numbers, for the same parameters. The threshold is chosen for the case of mis-

alignment of only the local spacecraft. At first the misalignment angle θone is determined

for which the single channel effective received power of the remote spacecraft crosses the

desired lower limit, square number (1), hence:

P̂RX,c(0, θone)
!

= ξCHAN. (7.2.11)

The threshold for the CS signal on the local spacecraft is then set to the value of P̂RX,CS

for a misalignment of θone in diagonal direction in photodiode coordinates and perfect
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Figure 7.3.: Single channel (CHAN) and coherent sum (CS) effective received power P̂RX

for misalignments of the beam axes on both spacecraft simultaneously (SIM) and of only
one of the beams on one spacecraft while the other beam axis is perfectly aligned to the
LOS. For this case, the effective received power is shown for the local spacecraft (LOC) as
a function of the relative wavefront tilt at the photodiode and for the remote spacecraft
(REM) for which the power is degraded due to the decrease in the received power. Left: The
far-field intensity distribution is assumed to be a Gaussian beam with beam quality factor
M2 = 1.0. Right: Here, the far-field intensity is a Gaussian beam with M2 = 1.2. The
procedure to set the threshold is the improved approach from the plot in Figure 7.2.

alignment of the other spacecraft, marked by square number (2), in Figure 7.2,

⇒ ξCS = P̂RX,CS(θone, 0). (7.2.12)

Setting the threshold to this value will ensure that the single channel received power

always exceeds the desired lower limit, if the CS effective received power is above the

threshold. The maximum allowable LOS-to-scan-track separation of the spatial scan,

can then be found by determining the simultaneous misalignment angle θsim such that

the CS effective received power equals the set threshold:

P̂RX,CS(θsim, θsim)
!

= ξCS. (7.2.13)

However, in the later sections it will be explained that some extra margin between ξCS

and the signal lost threshold ζCS is advantageous if attitude jitter due to the star-camera

assembly (SCA) is present. Here, it is assumed that the SCA attitude corrections add

an attitude error of 10µrad (1σ) to the FSM position every 100 ms. In order to consider
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a loss in the effective received power due to misalignments as a result of SCA noise one

can increase the difference between the detection and signal lost threshold.

The way to do this that is proposed here, is to subtract additional angular margin

θmar from the allowed simultaneous misalignment θsim and determine a new detection

thresholds ξCS,mar by:

ξCS,mar := P̂RX,CS(θsim − θmar, θsim − θmar). (7.2.14)

This way additional attitude jitter by θmar will not lead to a signal lower than the

signal-lost threshold.

7.2.5. Thresholds for the Three Far-Field Distributions

Here now values for the CS thresholds and the corresponding simultaneous misalignments

are calculated for the parameters given in Table 7.4. Table 7.1 lists the computed

thresholds and simultaneous misalignment angles for the three far-field intensity patterns

and different angular margins. It can be seen that the thresholds and simultaneous

misalignments are closer together in case of the propagated fibre mode and a far-field

distribution corresponding to a Gaussian beam with M2 = 1 than for the Gaussian beam

Table 7.1.: Summarising the maximum simultaneous misalignment, θsim, and the CS effec-
tive received detection thresholds computed for the three different far-field intensities and
angular margins. The Gaussian beam waist radius is assumed to be w0 = 2.5 mm, resulting
in a divergence half angle for M2 = 1 of θ0 = 136µrad. The parameters for the propagated
fibre mode correspond to the small core case, given in Table 2.1. A Gaussian beam fitted to
the fibre mode at the outcoupler results in a waist radius of also ∼ 2.5 mm.

Item

Beam Type θsim / µrad Angular Margin Symbol Value / pW

20µrad ξCS,20 40
Fiber Mode 106 10µrad ξCS,10 27

0µrad ξCS 17

20µrad ξCS,20 32
Gaussian, 111 10µrad ξCS,10 21
M2 = 1 0µrad ξCS 14

20µrad ξCS,20 11
Gaussian, 137 10µrad ξCS,10 7.2
M2 = 1.2 0µrad ξCS 4.5
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7. Autonomous Laser Link Acquisition

Figure 7.4.: Concept of the slipping scan for a scan space of each Np = 3 points. Shown
is the time evolution of the scan points which are indexed 1, 2 and 3 for both scans. The
time T2 of the second slower scan is chosen such that the first faster scan covers Np + 1
points while the second scan covers Np points. The second scan is thus falling one scan
point behind the fast scan each time the slow scan finishes. The relation between the scan
times for the two scans is then T2 = T1 (1+N−1

p ). The total uncertainty space of N2
p points

is covered in TS = (T−1
1 − T−1

2 )−1 = (Np + 1)T1.

with M2 = 1.2. The difference in the thresholds is roughly 25 % and the simultaneous

misalignment angle, θsim, only deviates by 5µrad. A quality factor of M2 6= 1 will

increase the divergence of the beam by a factor of M2 while decreasing the on-axis

power by a factor of 1/(M2)2. The higher divergence of the Gaussian beam thus results

in a larger field-of-view for remote misalignments. The resolution of the spatial scan can

potentially be choosen coarser by about 30µrad than is possible for the Gaussian beam

with M2 = 1.

However, Figure 7.3 shows that in case of the Gaussian beam with M2 = 1.2 the CS

effective received power for a remote beam axis tilt falls off slower than the CS signal for

local beam axis tilt. For a given remote beam axis misalignment this slightly increases

the maximum possible misalignment of the local spacecraft compared to the case of

the fibre mode far-field or the Gaussian beam with M2 = 1. The effect of this for the

proposed algorithm is discussed later on in the results section.

7.3. Spatial Scan for the Autonomous Laser Link Acquisition

In principle, the same scan patterns can be used for the autonomous laser link acquisition

than were used for the initial LOS calibration. However, the scans used for the initial
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LOS calibration were chosen to increase the speed for large uncertainty cones and long

scan times. Here the remaining spatial uncertainties are much smaller and the total

scan times are expected to be less than the scan times during the initial LOS calibration

scans. The initial uncalibrated uncertainty cone radius is assumed to be 3 mrad while

the remaining uncertainty cone radius after calibration is assumed to be roughly a factor

of ten less, i.e. of the order of 300µrad.

If the resolution of the scan remains the same, a speed up of roughly 10 in the time for a

single scan can be expected, while the total scan time for covering the four-dimensional

spatial uncertainty space shrinks by a factor of 100. Hence, the expected times for

covering the total spatial uncertainty space is of the order of seconds. During the initial

LOS calibration one satellite is scanning the uncertainty cone as fast as possible while

the other satellite dwells on one scan point for the whole scan time of the fast scan

and than advances to its next scan point. The total time to cover the four dimensional

spatial uncertainty space can then easily be computed by TS = Np T1 as the product of

the scan time of the fast scan T1 and the number of scan points of the slow scan Np.

However, a different approach is possible, where both spatial scans are fast and run

at only slightly different rates, so that the slower of the scans will slowly fall behind

the fast scan (private communication D. Shaddock, ANU, 2012 / B. Spero, NASA/JPL,

2012). All combinations of scan points of the two scans will be covered if the slow scan

slips by the equivalent of at most one scan point during the time of the faster scan.

Letting the spatial scan run with about the same rate is advantageous in an au-

tonomous acquisition as it simplifies and speeds up the signal verification and thus

reduces the cost of a false alarm. More detailed information are given when the actual

algorithm implementation will be presented. Figure 7.4 shows a schematic of the time

evolution of the scan points for two such scans with scan times T1 and T2. The number

of scan points in each scan is Np = 3 indexed 1, 2 and 3. The time T2 of the slower scan

is chosen as

T2 = T1 (1 +N−1
p ) (7.3.1)

so that the fast scan covers Np + 1 scan points while the slower scan covers Np points.

The slow scan thus slips by one scan point each time it finishes its scan. This can be

seen in Figure 7.4 because the first scan point of the second scan is scanned concurrently

with scan points of the first scan of increasing index until the first scan points of both

scans are scanned again at the same time and the pattern repeats. The second scan is

thus repeated Np times before the scans align again and all combinations of scan points
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Figure 7.5.: Left: Geometry of the Lissajous scan with frequency ratio n = 4 and the two
biggest separations of adjacent scan tracks, which occur at the central zero crossings dz and
the central turning points dt. The maximum separation between the LOS and the scan track,
ĥ, during the scan can be estimated by ĥ ≈ max(dt, dz)/2. Right: Estimated maximum
LOS-to-scan-track separation, ĥ, as a function of the frequency ratio of the fast and slow
frequency axes for an uncertainty cone radius of Ruc = 300µrad.

of the first scan and the second scan have been covered. The total time to cover the

combined uncertainty space is then computed with eqn. (7.3.1) to:

TS = Np T2 = (Np + 1)T1. (7.3.2)

For a large number of scan points the total scan times for a slipping scan and the type

scan assumed for the calibration scan, which again was given by TS = Np T1, can be

thought of as approximately the same. During the autonomous laser link acquisition the

two scans will run at the maximum speed possible, which will render a scan with discrete

stepping impractical for the same reasons it is impractical for the fast scan during an

initial LOS calibration. Here again Lissajous raster scans will be used but now on both

satellites. Again the maximum separation between the line-of-sight and the scan track

during a Lissajous raster scan, ĥ, is determined by the uncertainty cone radius, Ruc,

and the frequency ratio ni = f̂i/f̌i between the fast axis frequency f̂i and the slow

axis frequency f̌i of the scan, with i = 1, 2 indexing the two spacecraft. An estimate

of the maximum LOS-to-scan-track separation ĥ for a Lissajous scan as a function of

the uncertainty cone radius and the frequency ratio was given in equations (6.1.9) and

(6.1.11) as ĥ ≈ max(dz, dt)/2, where dz and dt are shown in the left plot of Figure 7.5.

ĥ as a function of the frequency ratio is shown in the right plot of Figure 7.5 for an
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r2(t0) = r2(t0+T2)

r1(t0)

r1(t0+T2)

rwc

δ ≤ 2 π f1 Ruc (T2 - T1)
^

δ ≤ rwcδ ≤ rwc

Figure 7.6.: Synchronise the two slipping Lissajous scans.

uncertainty cone radius of 300µrad. For the following analysis it is assumed that the

scans on both satellites will have the same resolution, i.e. n1 = n2 = n. The remaining

question is how to choose the time of the slower scan such that the complete combined

uncertainty space will be covered as no discrete stepping is wanted for the Lissajous

scan.

The difference in the scan times, τ , for the Lissajous raster scans can be approxi-

mately estimated using the formulas for the scan coordinates of equation (6.1.8). For

the Lissajous scan the uncertainty cone is not partitioned into a discrete set of scan

points because it is a continuous scan. However, the size of a scan point can be defined

as the desired capture range rcap which here should be set equal to the found maximum

simultaneous misalignment rcap = θsim.

The scan time difference between the Lissajous scans on the two spacecraft can be

found if one restricts the maximum slip of the scans during one spatial scan to the desired

capture range rcap. For simplicity the scans are assumed to start at the same position

at time t0. Hence, if r1(t0) is the position of the faster scan at time t0 and r2(t0) is the

position of the slower scan at time t0 and T2 = T1 + τ is the scan time of the slower

scan, then the following conditions should hold:

r1(t0) = r2(t0) and δ = |r1(t0 + T2)− r2(t0 + T2)|
= |r1(t0 + T1 + τ)− r2(t0)|
= |r1(t0 + τ)− r2(t0)| ≤ θsim. (7.3.3)

If the difference in the scan times, τ , is small compared to T1 and T2 one can approximate
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the slip δ as follows:

δ = |r1(t0 + τ)− r2(t0)| = Ruc

∣∣∣∣∣
(

sin 2πf̂1(t0 + τ)

sin 2πf̌1(t0 + τ)

)
−
(

sin 2πf̂2t0

sin 2πf̌2t0

)∣∣∣∣∣
≈ Ruc

√
(2πf̂1τ)2 cos(2πf̂1t0)2 + (2πf̌1τ)2 cos(2πf̌1t0)2 (7.3.4)

In getting to the last line the addition theorem for the sine was used and additionally

the following small angle approximations were applied:

cos(2πf̂τ) ≈ 1, sin(2πf̂τ) ≈ 2πf̂τ,

cos(2πf̌τ) ≈ 1, sin(2πf̌τ) ≈ 2πf̌τ.

Equation (7.3.4) can be used to estimate an upper bound on the slip δ for any starting

point t0. The maximum δ is obtained if both cosine functions attain their maximum

value at the same time, which is only true for t0 = j T1 where j is an integer number.

The upper bound on the slip can then be given by:

δ ≤ 2πRucτ

√
f̂2 + f̌2

= 2πRucf̂ τ
√

1 + 1/n2

≈ 2πRucf̂ τ (7.3.5)

The error in carrying out the last approximation is ≤ 3 % for a frequency ratio of n ≥ 4

and should cause no problems as some margin will be applied to the timing and scan

resolution later on. Now, finally the maximum scan time difference can be estimated by

requiring that the slip should be less than the desired capture range, rcap = θsim, by:

δ . 2πRucf̂ τ ≤ θsim,

⇒ τ ≤ θsim

2πRucf̂
. (7.3.6)

The last sentences in this section are devoted to deriving an expression for the total scan

time to cover the complete combined uncertainty space of both satellites.

Let’s assume the individual scan times are T1 for the faster scan and T2 for the

slower scan and that the scan time difference is T2 − T1 = τ . One can now compare

equation (7.3.1) for the time of the discrete scan with the equation T2 = T1 + τ and cast
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it into a similar form by:

T2 = T1

(
1 +

τ

T1

)
. (7.3.7)

Interpreting the fraction within the parentheses as the inverse of an effective number of

scan points N̂p = T1/τ the total spatial scan time TS can be given by:

TS = (N̂p + 1)T1 =

(
T1

τ
+ 1

)
T1. (7.3.8)

That this is indeed the correct answer for the total scan time TS, which is characterised

by the fact that the scans start to repeat from the beginning and the first scan points of

each scan align again, can be understood if one inserts τ = T2−T1 into equation (7.3.8).

The total scan time TS can then be reformulated to TS = (T−1
1 − T−1

2 )−1, which is just

the inverse of the beat frequency between the slow scanning axes. Actual values for the

scan times are shown in the results section for the parameters used during the simulation

runs.

7.4. Proposed Algorithm and State Diagram

Here, now the proposed algorithm for an autonomous link acquisition is presented. The

emphasis is on describing the current status of the development as well as give insight

into some of the design decisions that were taken. The design of the algorithm was

mainly driven by the goal to show for once that an autonomous laser link acquisition can

work by only using the heterodyne signals of the science photodiodes as acquisition and

tracking signals and secondly to give a first more qualitative estimate on the robustness

and timing requirements of the autonomous laser link acquisition. The algorithm was

designed so that synchronisation between the satellites is of lesser importance and both

satellites can carry out their part of the algorithm without the need for communication

between the satellites or ground control. Another design goal was to make the algorithm

simple, and more complex designs are certainly possible.

Figures 7.8 and 7.9 show the state diagrams of the developed algorithm for the slave

and the master spacecraft respectively. As stated earlier the name master is used for the

spacecraft whose laser is locked to the reference cavity and will not be swept, whereas

slave names the satellite whose laser is free-running and will be swept to scan the fre-

quency uncertainty region. Handling of the frequency sweep is the only difference in the

state diagrams of the two spacecraft, apart from this they are identical.
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Figure 7.7.: Time series plots of some indicative parameters showing the evolution of the
algorithm from an initial phase up to (1), via the scanning phase (1)–(3) and signal verifica-
tion and frequency settling phase (3)–(4), to the final phase after (4) when both satellites
have locked and start tracking the incoming light. The plots show from top to bottom: TX
beam angle γTX relative to the LOS, the CS effective received power P̂RX,CS, the beatnote
frequency fb and the current state of the algorithm. The prefix S or M for the states of the
slave and master are omitted in the y-axis labels because the assignment is unambiguous.

The state diagram shows the actions taken when transitioning between states and also

the conditions under which a state is left; they are also called transition guards. Despite

of the details already given in the diagrams the actual actions taken during the execution

of the states are not visible. However, this section will go through the states one by one

and explain their working. The main tool to do so are plots of misalignment γTX of the

transmitted beam’s (TX) axis relative to the line-of-sight (LOS) in the inertial reference

frame, the effective received power for the coherent sum (CS) detector P̂RX,CS as well

as the beatnote frequency fb of the heterodyne signal. Sometimes also a time series of
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Figure 7.8.: State diagram for the acquisition algorithm of the slave satellite.
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Figure 7.9.: State diagram for the acquisition algorithm of the master satellite.
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the evolution of the states is presented to show the reaction of the algorithm to certain

events.

An example is shown in Figure 7.7. The upper panel shows the TX beam angles

γTX of both spacecraft relative to the LOS, whereas the middle and bottom panel show

the coherent sum effective received power P̂RX,CS and the beatnote frequency for both

spacecraft respectively. The detection threshold ξCS and the signal-lost threshold ζCS of

equation (7.2.8) are shown in the middle panel for this particular simulation run and in

the frequency plot at the bottom the usable photodiode frequency band is shown; it is

equal to the non-vetoed region of the FFT in all simulation runs conducted here.

Some special times are marked by annotated vertical lines across all plots. These

partition the overall acquisition process in an initialisation phase, before time (1), a

scanning phase that is ended at time (3), followed by a signal verification phase in which

also the beatnote frequency is centred into the PD bandwidth. Finally both satellites

lock at time (4) which is accompanied by a strong increase in the effective received power.

The plots in Figure 7.7 give already a good overview of the process of an acquisition

run. Focusing first on the upper plot showing the outgoing beam angles γTX. Initially,

the fine-steering mirror (FSM) position is kept fixed at the best estimate of the LOS. The

deviation between the LOS (γTX = 0 rad) and the estimated LOS is due to a remaining

initial angular bias and unknown coalignment error of the triple-mirror assembly (TMA).

Star-camera assembly (SCA) attitude noise is responsible for the jitter in the outgoing

beam angles at a rate of 10 Hz and magnitude of 10µrad (1σ).

In the frequency plot it can be seen that during the initialisation phase the frequency

of the slave laser is set to the lower bound of the frequency scan interval that here is offset

from the frequency of the laser on the master spacecraft by 30 MHz. The initialisation

period also ensures that the frequency of the slave laser can reach the lower bound of

the frequency scan interval before any scans are actually started.

The difference in the beatnote frequencies measured by the master and the slave

spacecraft is due to the Doppler shift which was here randomly set to fD = 738 kHz.

The magnitude of the difference is equal to 2 · fD. The small rebound of the frequency

for small t and the slow increase is due to the transfer function of the thermal actuator

used to control the laser frequency of the slave laser. See Figure 5.6 in the chapter about

the high-fidelity simulation for a plot of the thermal-actuator transfer function and step

response.

The commands given to initialise the laser frequency and the steering mirror positions

are given during the transition from the default state—black circle in Figures 7.8 and

(7.8)—to the states M_INIT and S_INIT respectively. After the initialisation phase, (1),
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the spatial and frequency scans are started which can be seen in the upper plot by

the large amplitude signal for the TX beam angles and the slow drift of the beatnote

frequencies.

An interesting period starts when the beatnote frequency of the master spacecraft

enters the band width of its photodiode (PD), at time (2), while the beatnote frequency

of the slave laser is still outside of its photodiode bandwidth. Several gaps in the scan

of the master appear at times when the CS signal of the master crosses the detection

threshold, ξCS, and the scan is stopped for a signal verification. As the slave space-

craft keeps scanning, the signal is immediately lost again and after a certain period it

resumes its scan from the last scan position. Some seconds later the beatnote frequency

measured by the slave spacecraft will also enter the PD bandwidth and the CS effective

received power starts to increase on the photodiode of the slave spacecraft. At time (3),

the detection threshold is crossed for both spacecraft nearly simultaneously, the scans of

both spacecraft are stopped, and the signals are verified. After the successful verifica-

tion the master spacecraft directly transitions to state M4 while initiating the lock of the

phasemeter to the incoming signal. After the lock of all phasemeter channels was suc-

cessful differential wavefront-sensing (DWS) signals are available, the FSM DWS control

loop is closed and the steering mirror position is driven to zero DWS. However, the TMA

coalignment error is added to the beam direction after passing the FSM and prevents

the TX beam from being centred exactly onto the LOS. Here the TMA coalignment

error was randomly set to roughly 30µrad.

After the slave spacecraft has detected and verified the signal, it tries to centre the

beatnote in the centre of the non-vetoed region of the PD bandwidth, such that for large

Doppler shifts the beatnote frequency at both spacecraft will reside in the usable PD

bandwidth. Centring the beatnote frequency is initiated upon entering the state S_CB.

How this is done exactly is explained in more detail in the corresponding section later.

The process of centring the beatnote frequency can be seen in Figure 7.7 shortly after

time (3) in the frequency plot, where the frequency rapidly sweeps towards the centre

of the PD bandwidth. In order to make sure that the frequency is settled when the

phasemeter lock is initiated on the slave spacecraft a period of τL = 2 s is waited for

before the state machine transitions to the next state S4.

Starting from time (4) also the slave spacecraft has initiated the phasemeter lock

and shortly thereafter DWS signal is available and the FSM DWS loop on the slave

spacecraft is closed which drives the FSM to the position with zero DWS signal. The CS

effective received power on both spacecraft now drastically increases due to the better

alignment. However, both transmitted laser beams have a residual misalignment to the
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LOS of approximately 30µrad which is due to the TMA coalignment error that here is

by chance roughly the same for both spacecraft.

The overview of the acquisition process is now complemented by a complete listing,

in Sections 7.4.1 to 7.4.6, of the states of the master and slave satellite while states with

equal functionality in the master and slave part of the algorithm will be treated together.

7.4.1. Initialisation Phase

Involved States: S_INIT, S0, M_INIT, M0

Commanding the FSM position to the estimated LOS on the master and the slave

spacecraft and the frequency of the free-running slave laser to the lower bound of the

frequency scan interval is done during all transitions to the INIT state. Concurrently

timers are started measuring the elapsed time tFSM and tL since the commands for the

FSM and the laser were given. During the INIT state no additional actions are taken

but the number of acquisition attempts NA is incremented by 1. The state of the state

machine transitions from M_INIT to M0, if

tFSM ≥ τFSM, (7.4.1)

and for the slave spacecraft from S_INIT to S0, if

tFSM ≥ τFSM and tL ≥ τL. (7.4.2)

Table 7.2.: Global constants used to control the algorithm and their default values; T2 is the
time of the slower spatial scan, dep. means the value is depending on other parameters. The
meaning of the constants is discussed in the description of each state. The timing constants,
τFSM, τL and τDWS are derived from the step responses shown in Section 5.2.

Item

Description Symbol Value Unit

Maximum number of acquisition attempts NA,max 4
FSM settling time τFSM 10 ms
Laser frequency settling time τL 2 s
Time before signal verification τSV T2

Number of sequential detection in verification NSD 1 000
Time to wait in S5, M5 τwait 200 ms
Time FSM is driven to zero in DWS loop τDWS 10 ms
Detection threshold GCS dep. A2

RMS

Signal-lost threshold CCS dep. A2
RMS
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The values of the predefined constants τFSM and τL are given in Table 7.2. The function

of the states M0 and S0 is to roughly synchronise the start of the scan once in the

beginning, when the whole acquisition process is initiated. It delays the transition to

the scanning state up to an agreed point in time t0. However, for successive acquisition

attempts during one run this state is passed immediately without additional delay. Also

random differences in the start time are inserted here by adding a random offset δt0 to

t0 to test the algorithm for asynchronous starts.

7.4.2. Scanning Phase and Detection

Involved States: S1, S2, M1, M2

During the transition from S0 to S1 and M0 to M1 the counter for counting the total scan

time is reset to zero. The spatial scan is started and for the case of the slave spacecraft

the frequency sweep is also started. The scanning states S1 or M1 are left to S6 or M6 if

a predefined maximum scan time is exceeded during which no detection was made. If

the maximum returned by the CS detector exceeds the set detection threshold,

max
k
|s̃CS(k)|2 > GCS with k = klow, . . . , kup, (7.4.3)

the spatial and frequency scans are stopped and the state machine transitions to M2 or S2

respectively. For k < klow and k > kup the frequency bins are vetoed and not considered

for a detection. For a definition of the CS signal s̃CS(k) see equation (4.2.21) and for

the definition of the threshold GCS see equation (7.2.6). Stopping the spatial scan and

commanding the FSM to the position, where the detection occurred might result in

overshoot of the steering-mirror. Thus, after stopping the scans, the states M2 and S2

wait for a predefined time τFSM to allow the steering mirror to settle to the commanded

point. The frequency sweep is assumed to be slow enough so that no significant overshoot

is expected and no additional settling time for the laser frequency is defined.

7.4.3. Signal Verification Phase

Involved States: S3, M3

The signal verification which happens in the states S3 and M3 on the slave and master is

identical and implemented as follows. The main idea here is that due to the similar tilt

dependence of the CS effective received power P̂RX,CS for local and remote measurement,

see Figure 7.2 or 7.3, it is likely that, if one spacecraft made a detection and fixes its FSM

position to where the detection occurred, the other spacecraft will also detect a signal, if

its scan position approaches the LOS. Hence, before the actual signal verification starts,
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a certain time τSV is waited for. It is chosen as the scan time of the slower spatial scan,

T2, in order to wait for a detection of the remote spacecraft, which will then end its

scan and fixes its FSM position which will in turn likely result in a signal at the local

spacecraft. Here a wider far-field intensity pattern as compared to the local response

which is given by the heterodyne efficiency is advantageous, but not a necessity. This

will be discussed further in the results section.

The signal verification is successful if a number ofNSD sequential FFTs yield maximum

values above the signal-lost threshold CCS,

max
k
|s̃CS(k)|2 > CCS with k = klow, . . . , kup. (7.4.4)

The number of sequential detections is set as high as NSD = 1 000 to guarantee a robust

signal, which is very unlikely to drop below the signal-lost threshold due to noise and

scalloping loss alone. After a successful verification the master transitions to M4 to lock

the phasemeter and the state machine on the slave spacecraft transitions to S_CB in

which the beatnote frequency is centred in the PD bandwidth.

If at any time the detector output drops below CCS, i.e.

max
k
|s̃CS(k)|2 ≤ CCS with k = klow, . . . , kup, (7.4.5)

the signal verification failed and the state machine transitions back to the scanning states

M1 or S1, resuming the scans during the transition.

7.4.4. Centring the Beatnote Frequency on the Slave Spacecraft

Involved State: S_CB

During the transition from S3 to S_CB the current frequency command for the laser

is stored as backup f̂L. The laser frequency will be commanded to this backup fre-

quency any time the signal is lost hereafter and the state machine of the slave spacecraft

transitions to the buffer state S5.

The relative speed of the satellites as measured during the current GRACE mis-

sion is limited to roughly 2.5 m s−1 resulting in a one-way Doppler shift of up to fD =

±2.35 MHz. The difference in the beatnote frequencies is 2 · fD resulting in possible fre-

quency differences of the beatnote on the master and slave spacecraft of up to ±4.7 MHz.

However, a signal verification is only successful if both spacecraft detected a signal

and stopped their scans which means that the beatnote frequency is in the measurement

band on both spacecraft. Though if the beatnote signal on one of the spacecraft is
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close to the edge of the measurement band, frequency noise might push it outside of

the measurement band. For this reason the beatnote frequency measured on the slave

spacecraft is centred in the measurement band to avoid such a situation. The way this

is realised in the simulation is to estimate the beatnote frequency fb from the FFT bin

number kmax the maximum signal was found in, by

fb ≈ kmax
fs

NDFT
, (7.4.6)

where fs is the sampling frequency and NDFT is the sample size of the FFT. The offset,

foff , from the centre of the measurement band is then calculated with the bin indices of

the lower and upper bound of the vetoed frequency band klow and kup by

foff =

[
kmax −

kup + klow

2

]
fs

NDFT
. (7.4.7)

This offset is added to the current commanded frequency of the slave laser, resulting in

the centring of the beatnote frequency. See Figure 7.7 directly after marker (3) for an

example.

After commanding the laser frequency to the new value a period of τL seconds is

waited for the frequency to move to the centre before the transition to S4 is initiated. A

check if the beatnote is really centred might be necessary though in the simulation this

was not implemented. During the transition to S4 the current, now centred frequency,

is stored as new current backup frequency f̂L.

If the signal drops below the signal-lost threshold CCS, the state machine transitions to

the buffer state S5 during which the frequency is set back to the backup frequency f̂L.

7.4.5. Initiate Tracking

Involved States: S4, S7, S8, M4, M7, M8

At any time during the execution of one of the above listed states, is the detector output

checked for a lost signal. This means, that any time,

max
k
|s̃CS(k)|2 ≤ CCS with k = klow, . . . , kup, (7.4.8)

the state machine restores the state of the frequency and steering mirror as was after the

signal verification M3 for the master and after the beatnote centring S_CB for the slave

and transitions to M5 respectively S5.ot is expected and no additional settling time for

the laser frequency is defined.
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0
200
400
600
800

γ
T

X
/
µ

ra
d

10−1

100

101

102

P̂
R

X
,C

S
/

p
W

Detection Threshold

Signal–Lost Threshold

0 5 10 15 20 25 30 35
time / s

0

10

20

30

40

f b
/

M
H

z

usable PD bandwidth

Master

Slave

Figure 7.10.: Time series of an acquisition process which needed two attempts. It also
motivates the inclusion of the buffer states as the signal drops below the signal-lost threshold
after detection and verification. Figure 7.11 shows a close-up of the important region.

For both the master and the slave, the transition from 4 to 8 via 7 is straight-forward

if the signal is not lost. Locking the phasemeter to the incoming light is initiated during

the transition to S4/M4 from S_CB or M3 and the state machine resides in S4/M4 as long

as the DWS signal is not available. If the phasemeter signals successful locking of all

channels and DWS is available the state machine transitions to S7/M7 during which it

closes the FSM DWS loop.

In states S7/M7 a predefined time of τDWS, is waited for to allow the control loop to

drive the DWS signal to zero after which the transition to the final state S8 or M8 is

done.

7.4.6. Buffer State and Decision State

Involved States: S5, S6, M5, M6

The buffer state was introduced as some processes exist which lead to a loss in the

signal after the signal has been successfully detected and verified. See Figures 7.10 and

7.11 for an example of an acquisition process which benefits twice from the existence

of the buffer state, though the signal is finally lost and the scans are reinitialised. In

the shown acquisition process, star-camera assembly (SCA) noise leads to increasing

misalignments. The simulated SCA noise has an assumed standard deviation of 10µrad

being added every 100 ms to the current FSM position.
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Figure 7.11.: Close-up of Figure 7.10. After signal detection and verification the signal
drops below the lower threshold initiating a transitions to S5 which redetects the signal and
transitions back to S CB, (1) and (2). After the third time (3) the signal is lost completely.
One reason for this is that the slave waits too long for the frequency to settle, while SCA
noise accumulates. Reducing this time, τL, is a key to improve the algorithm during this
phase.

Also frequency noise might be a cause in case of large Doppler shifts and a limited

usable PD measurement band. However, if these noise sources are responsible for the

signal loss, the probability exist that the signal will reappear shortly after. The buffer

states S5 and M5 try to exploit this in that it is waited for some time τwait for the signal

to reappear. A restart of the scans might then be prevented.

The way the signal is verified is the same as in the signal verification states M3 or S3

by counting the number of sequential FFTs for which the detector output is above CCS.

Also the same number NSD of sequential FFTs is required.

However, the difference is that if the signal is below CCS it is checked if the time since

entering the state t5 is longer than τwait. If not, the number of sequential detections

already counted, is reset to zero and counting will restart anew. Only if

max
k
|s̃CS(k)|2 ≤ CCS and t5 > τwait, (7.4.9)

is the signal declared lost completely and the state machine will transition to the decision

226



7.5. Results

state S6 or M6.

The decision state only compares the current number of acquisition attempts NA car-

ried out, to a predefined maximum number of attempts NA,max. If NA ≤ NA,max the

transition to S_INIT, M_INIT is initiated and the next attempt is started. If however,

NA > NA,max the state machine transitions to S_FAIL or M_FAIL respectively.

7.5. Results

The presented algorithm for the autonomous laser link acquisition was implemented

on top of the high-fidelity simulation to control the underlying dynamics of the LRI

components, provided by the lower layer of the simulation. The implementation of

the proposed algorithm was tested for the three different far-field intensity patterns

discussed earlier and for different thresholds accounting for different margins, to test the

sensitivity of the algorithm to this parameter. The thresholds used for the simulation

runs are summarised in Table 7.1.

The corresponding signal-lost thresholds ζCS are computed from the detection thresh-

old with no margin by equation (7.2.8). Determining the thresholds, however, also sets

the capture range as the maximally allowed simultaneous misalignment, rcap = θsim, to

reach the detection threshold and, hence, the maximum LOS-to-scan-track separation,

ĥ, of the spatial scan that can be combined with a given threshold. Table 7.3 lists the

used scan times for a given threshold, whereas the frequency of the fast-scanning axis

is kept fix at f̂ = 100 Hz. For simulation runs in which the angular margin is reduced

from θmar = 20µrad to 10µrad or 0µrad, the parameters of the spatial scan were kept

at the values for the case of θmar = 20µrad.

The frequency sweep rate was then computed from the total spatial scan time TS by

requiring that during one complete spatial scan half, the size of the usable PD bandwidth

is swept over, meaning:

vs =
FPD

2TS
. (7.5.1)

For the usable photodiode bandwidth of FPD = 12 MHz, from 4 MHz to 16 MHz, and the

spatial scan times of Table 7.3 the maximum sweep rate computes to vs = 1.72 MHz s−1.

A loss of SNR due to the frequency sweep is not expected as seen from Figure 4.11. In

order to rigorously test the algorithm, 1000 simulations were conducted for a given far-

field intensity distribution, detection and signal-lost threshold with random values for

the initial angular and frequency bias, for the triple-mirror assembly (TMA) coalignment
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error as well as for the Doppler shift. Also an initial random offset for the start time of the

algorithm was introduced to test if asynchronous starts effect the algorithm performance.

The ranges of the parameters from which random values were drawn from a uniform

distribution over the specified interval are listed in Table 7.5.

All simulations were run for the worst case separation of the spacecraft of 270 km

and an FFT length of 4096 points. The simulation was thus run at a rate of fsim =

38 MHz/4096 = 9.277 kHz simulating one FFT per time step. The one-way light travel

time at this distance is tlight ≈ 901µs and was approximated by delaying the received

power and frequency of the laser light by 8 samples at the simulation rate, resulting in

a time delay of τdelay = 862.3µs. All other parameters were fixed and correspond to an

assumed low power case for a GRACE Follow-On mission; these are listed in Table 7.4.

For the unknown frequency offset δf0 before the link acquisition is started, it is as-

sumed that the uncertainty interval is known and the frequency sweep is started from

below the lower edge of the uncertainty interval, such that the sign of the frequency

change is known. If the sign would not be known a more complicated procedure for cen-

tring the beatnote frequency in the centre of the PD bandwidth had to be used which

first estimates the correct sign of the offset to be applied.

7.5.1. Fibre Mode Far-Field

At first, the results obtained for using the simple model of the propagated fibre mode

far-field as given by equation (2.5.18) are discussed. The single channel (CHAN) and

coherent sum (CS) signals for a simultaneous, local and remote misalignment are shown

Table 7.3.: Spatial scan parameters for desired capture range of rcap = θsim − θmar for
the thresholds listed in Table 7.1 for an angular margin of θmar = 20µrad. Also given are
the maximum separation between the LOS and the scan track during the scan, ĥ, and the
corresponding frequency ratio n = f̂/f̌ . With these parameter values the scan time of the
faster scan T1 is calculated assuming a fast axis frequency of f̂ = 100 Hz. The scan time
difference τ and the overall spatial scan time TS are computed with equations (7.3.8) and
(7.3.6). For simulation runs using smaller angular margins the spatial scan parameters are
kept fix at the values for θmar = 20µrad.

Item

Beam Type rcap / µrad ĥ / µrad n T1 / ms τ / µs TS / s

Fiber Mode 86 77.7 6 60 456 7.95
Gaussian, M2 = 1 91 77.7 6 60 483 7.52
Gaussian, M2 = 1.2 117 92.7 5 50 621 4.08
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in Figure 7.2. Based on these signals the detection and signal-lost thresholds as well as

the maximum LOS-to-scan-track separation, ĥ, for the spatial scans are chosen with the

Table 7.4.: Default parameters used for the simulations. The noise sources correspond to
the default values defined in Table 3.2. The usable photodiode bandwidth FPD is assumed
be located between 4 MHz and 16 MHz.

Item

Description Symbol Value Unit

Spacecraft separation DS/C 270 km

One-way light travel time τdelay 862.3 µs
TX beam power PTX 13.7 mW
LO beam power PLO 0.6 mW / photodiode
QPD slit width δs 30 µm
QPD radius RPD 0.5 mm
QPD responsivity ρPD 0.6 A/W
QPD segments nseg 8 (hot redundant) number
Usable photodiode bandwidth FPD 12 MHz
Receive aperture radius ra 4 mm
Power loss in RX beam path ρrx 0.795 r.u.
Spatial uncertainty cone radius Ruc 300 µrad
Frequency uncertainty Fuc 100 MHz

Frequency noise S̃ν 200/f kHz/
√

Hz
FFT size NDFT 4 096 number

Lissajous fast axis frequency f̂ 100 Hz
Gaussian beam waist radius w0 2.5 mm
Gaussian beam quality factor M2 1.0, 1.2 r.u.
Fibre mode core radius a 2.54 µm
Fibre mode normalised frequency V 1.967 r.u.

Table 7.5.: Ranges of the randomised parameters in the simulation runs. For these, variates
were drawn from uniform distributions.

Item

Description Symbol Min. Max. Unit

Initial frequency offset δf0 -100 0 MHz
Initial angular bias γBIAS 0 300 µrad
TMA coalignment error γTMA 0 40 µrad
Initial start time offset δt0 -500 500 µs
Doppler shift fD -2.5 2.5 MHz
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Figure 7.12.: Simulation results for the fibre mode far-field. The figure shows scatter plots
of the acquisition time over the initial frequency offset as measured from the lower bound
of the frequency sweep interval. The two solid lines correspond to the time of the earliest
entry of the beatnote into the measurement band for the used frequency sweep rate, not
considering the Doppler shift or frequency noise. The lower one for a first and upper one
for a second attempt. The colour encodes the minimum number of attempts any of the two
spacecraft needed to acquire. Left: upper CS threshold chosen with 20µrad margin to the
desired capture range rcap = θsim to guarantee 3 pW effective received power per channel in
case of a detection. Right: upper CS threshold chosen with no margin.

improved method shown in the plot of Figure 7.2.

As was stated in the last section some margin between the detection and signal-lost

thresholds should be kept so that additional misalignments due to SCA noise do not

immediately reduce the signal power below the signal-lost threshold. However, due to

some robustness in the proposed algorithm introduced by the buffer states M5 and S5

a lost signal will not inevitably lead to a reinitialisation of the scans but there is a high

probability that the signal reappears.

In order to investigate the performance of the algorithm for different margins three

cases were considered, namely margins corresponding to θmar = 20µrad, 10µrad and

0µrad. The used thresholds are listed in Table 7.1.

The results for a 20µrad margin and no margin are compared in Figure 7.12. The

plots show the time the two spacecraft needed to acquire as a function of the initial offset

of the beatnote frequency, as measured from the lower bound of the frequency sweep

interval. The colour of the circles encode the minimum number of attempts needed by

any of the two spacecraft to acquire, whereas the maximum number of attempts was set

to 4. If one of the spacecraft did not acquire in the fourth attempt the acquisition was
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said to be failed.

Failures are marked by black squares in the two plots. The maximum time for the laser

link acquisition was set to tTO = 300 s and the simulation was stopped if the acquisition

process was not successful after tTO. Simulation runs that timed out are marked by

black diamonds. The two solid straight lines mark the time for the earliest entry of the

beatnote into the PD bandwidth given the used frequency sweep rate and assuming no

frequency noise and Doppler shift. The lower of these two lines marks the time for the

first attempt and the upper line for a second attempt.

However, some of the green circles lie below the bottom and some of the orange circles

below the upper line indicating an acquisition which succeeded earlier than the perfect

limit. Frequency noise or a Doppler shift can reduce the actual frequency offset by

chance reducing the time for a successful acquisition. Apart from this the two lines seem

to partition the circles nicely into the group of acquisitions that at least needed a single

attempt and those that needed more than one by any of the two spacecraft. The most

prominent feature in both plots is the, however, expected strong correlation between

the acquisition time and the frequency offset, following the lower solid line. More than

90 % of all simulation runs acquired directly in the first attempt for an angular margin

of 20µrad, no acquisitions failed but 9 timed out.

The number of successful acquisitions with a minimum of one attempt is reduced to

86 % if no angular margin is applied, as can be seen in the right plot of Figure 7.12.

The number of failures increased to 13, and also 13 acquisitions timed out, but still the

success rate is at 97.4 %. Hence, most of the failed first attempts are successful in a

succeeding second or third attempt. The width of the area with the most green circles is

determined by the total time of the four-dimensional spatial scan TS and is mostly due

to variations in the angular bias and frequency noise.

7.5.2. Gaussian Beam, M2 = 1

The second series of simulations was carried out using the Gaussian beam with beam

quality factor M2 = 1 for the far-field intensity pattern. The single channel (CHAN) and

coherent sum (CS) signals for the three types of misalignments were shown in the left

plot of Figure 7.3. The CS detection threshold for no margin was found to be 13.7 pW at

a simultaneous misalignment of θsim = 111µrad and from this the signal-lost threshold

is defined in analogy to the latter case. The thresholds for 10µrad and 20µrad margin

were estimated to be ξCS,20 = 32 pW and ξCS,10 = 21 pW.

The results for this case are shown in Figure 7.13. The principle pattern is the same as

for the fibre mode far-field with 94 % of the acquisitions being successful with a minimum
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Figure 7.13.: Simulation results for a far-field intensity pattern of a Gaussian beam with
beam quality factor M2 = 1.0. Left: upper CS threshold chosen with 20µrad margin to the
desired capture range rcap = θsim to guarantee 3 pW effective received power per channel in
case of a detection. Right: upper CS threshold chosen with no margin. For more details see
Figure (7.12).

of one attempt, one failed and 7 timed out. Decreasing the margin also increases the

number of acquisitions successful only in a second or third attempt and introduces some

failures. The overall performance however is slightly better than in the case of the fibre

mode far-field which might originate from the larger difference between the remote and

local CS signal, whereas the local CS signal falls-off more slowly as compared to the

remote CS signal. Compare to Figures 7.2 and 7.3.

7.5.3. Gaussian Beam, M2 = 1.2

The last considered case is for a Gaussian beam with beam quality factor M2 = 1.2

which significantly increases the width of the far-field distribution. The plot of the

signals for the single channel (CHAN) and the coherent sum (CS) of the channels, as a

function of the beam axis misalignment is shown in the right plot of Figure 7.3. It can

be seen that the remote beam misalignment has a much wider response than the local

CS signal. The effect of this is obvious from the plots in Figure 7.14. The number of

successful acquisitions with a minimum of one attempt with 96 % is the highest of all

considered cases, while the maximum allowable misalignment is the largest, resulting in

a faster spatial scan and frequency sweep. Also, the number of simulations that need a

higher number of attempts is less than in the two other cases if no margin is applied to

the detection threshold. The detection thresholds used for this case are: ξCS = 4.48 pW,
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Figure 7.14.: Simulation results for a far-field intensity pattern of a Gaussian beam with
beam quality factor M2 = 1.2. Left: upper CS threshold chosen with 20µrad margin to the
desired capture range, rcap = θsim, to guarantee 3 pW effective received power per channel
in case of a detection. Right: upper CS threshold chosen with no margin. For more details
see Figure 7.12.

ξCS,10 = 7.2 pW and ξCS,20 = 11.27 pW, whereas the required capture range for ξCS is

θsim = 137µrad.

7.5.4. Summary of Simulation Runs

All results are again summarised in Table 7.6, showing the number of successful ac-

quisition attempts, the number of failures and time-outs. The successful attempts are

additionally broken down into the maximum number of attempts any of the two space-

craft needed. This is in contrast to the plots in Figures 7.12 to 7.14 where the colour

encodes the minimum number of attempts needed. The percentage of successful acqui-

sition attempts is above 97 % in all considered cases independent of the angular margin

used to determine the CS threshold, ξCS.

Similar results are obtained for the fibre-mode far-field and the Gaussian beam far-field

with M2 = 1.0. This is expected because in these two cases the remote and local CS

signal have similar shapes, whereas for the Gaussian beam the curves are much closer

together, resulting in slightly better performance. Looking at the number of simula-

tions for which both satellites needed only a single attempt to acquire, it can be noticed

that decreasing the angular margin between the detection threshold and the signal-lost

threshold leads to a higher probability that the first attempt will fail.

It can also be seen that the number of acquisitions successful in the first attempt
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increases about linear with the angular margin applied to the threshold. The percentage

of acquisitions successful with at most 2 attempts which failed in a first attempt of one

of the spacecraft is for all cases of the angular margin in the range of 63 % – 69 %,

while those acquisitions not successful with at most 2 attempts, will acquire with three

attempts with 47 % – 50 % probability. Additionally, one series of simulations was made

using the same thresholds for the signal detection and for the decision if a signal is lost by

setting the thresholds to the 0µrad margin and thus, not accounting for scalloping-loss

in the FFT. The results are shown in the rows labelled equal threshold.

Here, the number of acquisitions successful in the first attempt is reduced significantly

to 64 % – 66 %, whereas the number of failed and timed out acquisitions only increase

to roughly 6 %. The reason for this can be seen in the high number of runs for which

one of the spacecraft is successful in a second attempt. For the simulations using the

Gaussian beam with beam quality factor M2 = 1.2 for the far-field intensity pattern the

bottom line is, that the increased width of the intensity distribution in the far-field and

in particular, the fact that the remote CS signal falls-off much slower than the local CS

Table 7.6.: Outcome of the simulation runs for the three different far-field beam types and
angular margins. Additionally, results are shown for simulations in which the two thresholds
were chosen identical, i.e. the signal-lost threshold was not reduced to account for scalloping
loss and the detection threshold was chosen with 0µrad margin. The successful acquisitions
are here broken down into the maximum number of attempts one of the two spacecraft
needed. This is in contrast to the plots in figures 7.12 to 7.14, in which the minimum
number of attempts is encoded by the colour.

Item

Beam Type Angular Margin Acquired 1st 2nd 3rd 4th Time Out Fail

Fiber Mode

20µrad 991 900 69 15 7 9 0
10µrad 978 846 99 26 7 20 2
0µrad 974 806 120 37 11 13 13

equal thresholds 937 643 224 55 15 43 20

20µrad 992 915 69 6 2 7 1
Gaussian 10µrad 989 862 108 15 4 8 3
M2 = 1 0µrad 986 811 132 36 7 9 5

equal thresholds 943 664 206 58 15 36 20

20µrad 995 933 54 4 4 5 0
Gaussian 10µrad 997 891 89 17 0 2 1
M2 = 1.2 0µrad 998 854 120 17 7 1 1

equal thresholds 990 814 140 30 6 6 2
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signal, increases the rate of successful acquisitions and reduces the number of sequential

attempts needed by the two spacecraft. It can also be seen from the table that the actual

value of the threshold does not drastically change the number of timeouts or failures for

this case. For equal thresholds and 0µrad margin, the success rate is still 99 % with 81 %

of the acquisitions succeed without any of the two spacecraft needing a second attempt.

7.5.5. Time-Outs and Failures

Despite the high success rate of the proposed acquisition algorithm, there are a few time

outs and failures for which reasons were identified. Also ways to prevent the failures and

time outs are proposed.

Failures only occur, if the total number of subsequent acquisition attempts of any

of the two spacecraft exceeds a predefined maximum number NA,max which was set

to NA,max = 4 in all of the simulation runs that are discussed in this section. See

Section 7.4.6 for a description of the states involved in the decision process.

On the other hand, time outs only occur if the overall time since starting the acqui-

sition exceeds a predefined maximum acquisition time which was set to 300 s.

Time Outs

One reason for time outs is that no simultaneous detections on the two spacecraft oc-

curred and the scan continued until a time out was raised. A reason for this might be

that the derivation of the scan time difference τ from equation (7.3.6) is too simplified,

in order to guarantee complete coverage of the spatial uncertainty cone for all cases. A

more detailed derivation might lead to an improved estimate for the scan time difference.

Also, the amplitude of the sinusoidal motion of the Lissajous scan was set equal to

the uncertainty cone radius, and hence no margin for star-camera assembly (SCA) noise

was applied. For an initial angular bias close to the edge of the uncertainty cone, SCA

noise might lead to a separation between the LOS and the scan track which is larger

than desired. An increased scan range should prevent these time out.

Another reason is due to the large frequency noise considered in the simulation and

insufficient margin applied to the scan range of the frequency sweep. The frequency noise

might accumulate in a way that some of the frequency scan points cannot be reached

and the frequency sweep rate is reversed before the beatnote enters the photodiode

bandwidth. An increased frequency scan range for large frequency noise will prevent

these time outs.

A different mechanism is due to large frequency offsets δf0 which are close to the
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maximal value of δf0 = −100 MHz, for which the time before the beatnote enters the

photodiode bandwidth reaches 100 s and more. This is visible from Figures 7.12 or 7.13,

which show the acquisition results for the case of the far-field given by the propagated

fibre-mode and the Gaussian beam with M2 = 1.0. The spatial scan times for these

cases are nearly equal with TS = 7.5 s to 8 s which are listed in Table 7.3.

If the signal was detected and lost thereafter, the scan will be reinitialised, restarting

the spatial and frequency scans. In a second attempt, the earliest entry of the beatnote

frequency again occurs about 100 s after the scans were restarted, and hence 200 s of

the allowed 300 s are already spend. A third and fourth attempt are unlikely before the

acquisition process is stopped due to a time out. In fact, most Time Outs are caused by

signal losses in combination with large frequency offsets. For smaller frequency offsets

and scan times, these repeated signal losses lead to failures. The reasons for signal losses

are described in the following, as far as they could have been identified.

Failures

Failures only occur if at least one of the spacecraft exceeded the maximum number of

subsequent acquisition attempts. A running acquisition attempt is interrupted if either

the time in the scanning state exceeded the maximum scan time or a signal was lost

after the signal verification. See Section 7.4.2 for a description of the scanning state, or

Section 7.4.5 for a description of the states involved in initiating tracking after the signal

verification. An important mechanism that leads to signal loss is due to a combination

of a large Doppler shift and frequency noise. A time series of the signal power and

beatnote frequencies is shown in Figure 7.15. The large frequency difference due to the

Doppler shift of 2fD = 4.86 MHz compared to the bandwidth of the QPD of assumed

FPD = 12 MHz, from 4 MHz to 16 MHz, results in the master frequency being fixed close

to the edge of the frequency band, while the beatnote frequency on the slave spacecraft

is fixed to the centre of the photodiode bandwidth. Frequency noise shifts the beatnote

frequency outside of the usable photodiode bandwidth, finally resulting in the signal

being lost. All failures happening during the simulation runs using the Gaussian beam

with M2 = 1.2, as the far-field intensity, are due to this.

A way to mitigate the risk of losing the signal, might be to use the difference of the

current and desired frequency bin index of the FFT to compute a correction to the laser

frequency and repeatedly correct the frequency if it drifts too far away from the centre

of the usable photodiode bandwidth. For smaller frequency noise and larger photodiode

bandwidths than assumed here, this problem should vanish.

However, the most important process which gains in importance for smaller angular
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Figure 7.15.: Signal loss during the beatnote centring in state S CB. Due to the large
one-way Doppler shift of fD = 2.43 MHz, the difference in the beatnote frequencies is
2fD = 4.86 MHz. Fixing the beatnote frequency of the slave to the centre of its PD
bandwidth results in a beatnote frequency on the master spacecraft which is close to the
edge of its PD bandwidth. Eventually, the frequency noise shifts the beatnote frequency of
the master spacecraft out of the PD bandwidth, resulting in signal loss. From top to bottom:
Alignment of the transmitted beam relative to the LOS, effective received power returned
by the detection algorithm, beatnote frequency and current state of the state machine.

margin between the signal-lost and detection threshold is already being discussed as a

motivation for the buffer state S5. See Figures 7.10 and Figures 7.11 as well as the

explanations given in the description of the buffer state in Section 7.4.6. Here, pointing

noise due to the star-camera assembly (SCA) results in increasing misalignments and

reduction in the effective received power, during the beatnote centring on the slave

spacecraft. For smaller angular margin, smaller pointing errors will already lead to a

loss in the signal, increasing the probability for a signal loss. The increase of time outs
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7. Autonomous Laser Link Acquisition

and failures for smaller angular margin between the detection and signal-lost thresholds

can be seen in Table 7.6.

7.6. Conclusions

In this chapter, an algorithm for an autonomous laser link acquisition for the case of the

GRACE Follow-On laser ranging interferometer was presented. In the beginning, the co-

herent and incoherent sum combinations of the phasemeter channels were evaluated for

their usability as indicator for the effective received power in a single phasemeter channel.

It was found that for the case of the proposed algorithm, the coherent sum combina-

tion is preferable, because the narrower field-of-view for local beam axis misalignments

more strongly restricts the transmit beam misalignment. The wider field-of-view for

local beam misalignments that is provided by the incoherent sum combinations, allows

misalignments of the transmitted beam that may prevent a detection on the distant

spacecraft.

Subsequently, it was shown that the detection threshold for the coherent sum detector

should be set for perfect alignment of the received beam, based on the effective received

power per phasemeter channel on the remote spacecraft. Setting the threshold based

on the simultaneous misalignment of both spacecraft, might lead to insufficient signal

amplitude in a single phasemeter channel, despite a successful detection.

Thereafter, the spatial scan pattern for the autonomous laser link acquisition was

proposed as two Lissajous scans running at nearly equal rates. An expression for the

maximum difference in the scan times was derived that depends on the desired capture

range.

The presented algorithm yields high success rates of more than 99 % for a wide range

of considered parameters. The obtained results show that more than 90 % of the acqui-

sition runs were successful in a first attempt, if an angular margin of θmar = 20µrad

between the detection and signal-lost thresholds was used. Hence, in at least 90 % of the

acquisition runs, the acquisition time is less than the time for a complete scan over the

five-dimensional uncertainty space. A scan over the complete five-dimensional uncer-

tainty space, that covers the angular and frequency uncertainties, needs approximately

100 s or 105 s for the case of the far-field of a propagated fibre-mode or the Gaussian beam

with M2 = 1.0. If the far-field intensity is given by a Gaussian beam with M2 = 1.2,

the larger divergence of the beam allows for a coarser scan resolution. For this case, the

total scan time reduces to 54.4 s.
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8. Summary and Conclusions

In this thesis, a detailed analysis of laser link acquisition for the GRACE Follow-On laser

ranging interferometer (LRI) using only heterodyne signals was given. A comprehensive

analysis of the interferometer signals, including the simulation of non-Gaussian beams,

was carried out. In addition, an algorithm to detect the heterodyne signal in the presence

of noise was developed and the distributions of its output were derived. These results

were, henceforth, used in combination with realistic models of instrument subsystems to

develop a sophisticated simulation of the LRI to extensively test acquisition procedures.

Detailed analysis of scan patterns together with the developed high-fidelity simulation

were used to investigate an initial line-of-sight calibration scan. For this case, realistic

estimates of scan times, limits to the scan resolution and the accuracy of the alignment

estimates were obtained. Moreover, an algorithm for an autonomous laser link acqui-

sition was designed and successfully tested with help of the high-fidelity simulation of

the LRI. The suitability of the algorithm for the GRACE Follow-On mission could be

verified due to its high success rate and limited timing requirements.

In order to simulate non-Gaussian beams such as tophat beams or fibre modes in

interferometers, the mode expansion method was implemented in IfoCad [Hei12], a

toolkit to simulate 3D setups of complex interferometers. A comprehensive analysis of

the propagation of tophat beams provided simple expressions to estimate the required

mode order in the series expansion, as a function of the desired propagation distance,

transversal range and tophat radius. For smaller aperture sizes the calculated electric

field is accurate close to the aperture even for moderately high mode orders used in

the mode decomposition. However, the dependence of the required mode order on the

square of the aperture radius renders the mode expansion of the tophat beam compu-

tationally expensive for the case of larger aperture radii. The study of the propagation

and transformation of the fundamental fibre mode yielded the far-field intensity pattern

for GRACE Follow-On taking clipping at the exit aperture into account. The results

show that clipping is negligible for aperture radii larger than twice the mode radius of

the propagated fibre mode. In the case of negligible clipping an analytical model for the

far-field intensity distribution could be obtained that provided important input for the

following study on laser link acquisition.

The mode expansion method as is, proved extremely useful as it greatly extended the
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type of beams that can be simulated in the framework of IfoCad. However, for the

investigation of the far-field intensity pattern of the fundamental fibre mode, the actually

aspheric surface of the fibre outcoupler had to be approximated by a parabolic surface.

For the future it would be highly valuable to be able to simulate aspheric surfaces in

combination with the mode expansion method. Also, in the decomposition of the tophat

beam an effect generally known as Gibbs phenomenon could be observed that originates

due to the discontinuous boundary of the electric field amplitude at the edge of the

tophat beam. Here, techniques such as low pass filtering the input field might increase

the accuracy of the approximation.

The study of laser link acquisition presented in this thesis provided a detailed analysis

of laser link acquisition exclusively using heterodyne signals. For this purpose a realistic

instrument model was developed, including accurate models of the interferometer signals

and the data processing stage. This instrument model served as a key building block for

the high-fidelity simulation developed in this thesis, to enable the comprehensive analysis

of the line-of-sight calibration scan and the algorithm for the autonomous laser link

acquisition. Multiple instances of the simulation code were run in parallel on the ATLAS

cluster, in the scope of detailed parameter studies, in order to gather sufficient statistics

for the line-of-sight calibration and the autonomous laser link acquisition. Furthermore,

spatial scan patterns were analysed in detail. Taking into account pointing noise and the

analysed scan patterns, an optimal scan sequence for the initial line-of-sight calibration

for the case of large spatial uncertainties was presented. The optimum scan was found

to be a fast Lissajous scan, followed by a discretely stepped hexagonal scan and a slow

frequency scan. This order results in the smallest scan time and prevents large distortions

of the spatial scan pattern due to the orbit prediction error, whereas frequency sweep

rates are limited to levels that do not affect the signal-to-noise ratio. For this case, total

scan times for the line-of-sight calibration scan were computed for several representative

cases. For example, the total scan time is T = 6.2 h for the case of an uncertainty cone

of radius 3 mrad, 100 frequency scan points and a desired capture range of 150µrad.

Limits to the resolution of the spatial scans were found to be 180µrad to 190µrad

for the coherent sum and 230µrad to 270µrad for the incoherent sum of the photodiode

channels. Hence, using the incoherent sum instead of the coherent sum during the line-

of-sight calibration scan enables the use of coarser spatial scans which would potentially

result in shorter scan times. Furthermore, the remaining alignment biases after the line-

of-sight calibration scan were determined with the developed high-fidelity simulation.

The remaining bias is bound by the maximum separation between the line-of-sight and

the scan track for the case of a discretely stepped hexagonal scan and the slow scanning
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axis of the Lissajous raster scan. In contrast, the width of the remaining distribution for

the case of the fast scanning axis of the Lissajous scan is determined by the slew rate of

the steering mirror at the centre of the Lissajous scan and the computation time for a

single Fourier transform. For large uncertainty cone radii the remaining bias in the fast

scanning axis may exceed the used line-of-sight to scan-track separation in the spatial

scan.

Finally, an algorithm for the autonomous laser link acquisition was proposed that was

tested with simulations for a broad range of parameters. The coherent and incoherent

sum combinations were reviewed for the case of the autonomous laser link acquisition.

The coherent sum combination was found to be a suitable indicator for the signal power

in a single photodiode channel. For this case, two methods to determine the detection

threshold and the necessary spatial capture ranges were discussed. Also, a slipping

Lissajous scan was introduced as a possible scan type and expressions for the total scan

time were given depending on the desired spatial capture range. For three different

far-field intensity distributions the capture ranges, to ensure sufficient power in a single

photodiode channel upon detection, were determined to be in the range between 106µrad

to 137µrad. For an angular margin of 20µrad, applied to the found spatial capture

ranges to account for attitude jitter of the star-cameras, the found spatial scan times are

in the range of 7.95 s to 4.08 s. For a frequency uncertainty of 100 MHz the total scan

times were found in the range of 100 s to 54.4 s. It could be shown that the developed

algorithm yields high success rates of more than 99 % for all considered cases. Causes

for the few remaining time outs and failures were identified and ways to prevent these

were proposed.

Future work could focus on the investigation of different approaches to combine larger

amounts of samples to generate more accurate line-of-sight estimates, as the estimates

generated in this thesis take only a single peak value into account. This would potentially

reduce the spatial uncertainty cone for a succeeding autonomous laser link acquisition.

One way of improving the estimate for the fast scanning axis in the Lissajous raster scan

would be to correlate the information about the scan position, slew rate and length of

the Fourier transform to calculate a correction to the estimate.

For the autonomous laser link acquisition it might be beneficial to use the larger field-

of-view provided by the incoherent sum combination of the photodiode channels, which

provides sensitivity over nearly the complete spatial uncertainty cone that remains after

the initial line-of-sight calibration. Investigation of an algorithm that makes use of this

might lead to a faster more robust algorithm.
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A. Normalisation of LP fibre modes

The on-axial electric field amplitude of the linear polarised fibre modes LPlm is given in

equation 2.5.4 and here repeated as follows:

E0 =

√
2P

cl

σ

V

1

aJl(σ)

Kl(τ)√
Kl−1(τ)Kl+1(τ)

. (A.0.1)

The electric field is normalised such that |E0|2 directly yields the intensity in units of

W/m2. Here, P is the total power in the fibre mode, V is the normalised frequency

or V -parameter. The parameter σ is found by solving the eigenvalue equation (2.5.6)

which is connected to the normalised frequency and τ by V =
√
σ2 + τ2 . The constant

cl is either cl = 2π if l = 0 or cl = π if l 6= 0. This section provides a derivation of

equation (A.0.1).

The total power in the fibre mode is the sum of the power in the core Pcore and the

cladding Pclad,

P = Pcore + Pclad. (A.0.2)

With help of the definition of the electric field of the fibre mode from equation (2.5.3)

the power in the core and the cladding can be defined as:

Pcore =

∫ 2π

0
dφ

∫ a

0
dr r

∣∣∣E0 Jl

(σr
a

)
cos(lφ)

∣∣∣2 (A.0.3)

Pclad =

∫ 2π

0
dφ

∫ ∞
a

dr r

∣∣∣∣E0
Jl(σ)

Kl(τ)
Kl

(τr
a

)
cos(lφ)

∣∣∣∣2 , (A.0.4)

where a denotes the fibre core radius, Jl is the Bessel function of the first kind of order

l and Kl is the modified Bessel function of the second kind of order l. The cladding is

assumed to be of infinite extent, which is within the assumptions made in the derivation

of the LP fibre modes by Gloge et al. [Glo71] and does not represent an additional

constraint. Both integrals for the power in the core and the cladding can be separated
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in the two variables φ and r and written as:

Pcore = |E0|2
∫ 2π

0
dφ cos2(lφ)

∫ a

0
dr rJ2

l

(σr
a

)
(A.0.5)

Pclad = |E0|2
J2
l (σ)

K2
l (τ)

∫ 2π

0
dφ cos2(lφ)

∫ ∞
a

dr rK2
l

(τr
a

)
(A.0.6)

The integral over the angular range is easily solved. The value of the integral is

cl :=

∫ 2π

0
dφ cos2(lφ) =

2π if l = 0,

π if l 6= 0.
(A.0.7)

Also, the integral over the radial part can be analytically solved by using the following

relationships: ∫
dr r J2

l (kr) =
r2

2

[
J2
l (kr)− Jl−1(kr) Jl+1(kr)

]
, (A.0.8)∫

dr rK2
l (kr) =

r2

2

[
K2
l (kr)−Kl−1(kr)Kl+1(kr)

]
. (A.0.9)

Inserting equation (A.0.8) into (A.0.5) and equation (A.0.9) into (A.0.6) one can compute

the powers to:

Pcore = |E0|2
cla

2

2
J2
l (σ)

[
1− Jl−1(σ) Jl+1(σ)

J2
l (σ)

]
(A.0.10)

Pclad = |E0|2
cla

2

2
J2
l (σ)

[
Kl−1(τ)Kl+1(τ)

K2
l (τ)

− 1

]
(A.0.11)

A last step in deriving the final result is to use the eigenvalue equation of the fibre

modes (2.5.6) to express the Bessel functions Jl by the modified Bessel functions Kl.

The eigenvalue equation is repeated here as follows:

Jl−1(σ)

Jl(σ)
= − τ

σ

Kl−1(τ)

Kl(τ)
. (A.0.12)

An alternative formulation of the eigenvalue equation can also be given in terms of Bessel

functions of higher order, e.g.:

Jl+1(σ)

Jl(σ)
= +

τ

σ

Kl+1(τ)

Kl(τ)
. (A.0.13)

The second form can be derived by inserting the following difference equations for the
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Bessel functions, which can be found for example in [AS64], into the eigenvalue equa-

tion (A.0.12):

2l

σ
Jl(σ) = Jl+1(σ) + Jl−1(σ) (A.0.14)

2l

τ
Kl(τ) = Kl+1(τ)−Kl+1(τ) (A.0.15)

Using the two eigenvalue equations (A.0.12) and (A.0.13) the power in the core can also

be given in terms of the modified Bessel functions of the second kind Kl by

Pcore = |E0|2
cla

2

2
J2
l (σ)

[
1 +

τ2

σ2

Kl−1(τ)Kl+1(τ)

K2
l (τ)

]
(A.0.16)

From here it is simple to calculate the total power of the LP fibre mode which by using

the relationship V =
√
τ2 + σ2 can be written as

P = Pcore + Pclad = |E0|2
cla

2

2
J2
l (σ)

V 2

σ2

Kl−1(τ)Kl+1(τ)

K2
l (τ)

. (A.0.17)

This then directly leads to the anticipated result of the normalisation constant in terms

of the power in the fibre mode that is given in equation (A.0.1).
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B. Some Statistics

B.1. CDF of the noncentral χ2-distribution

The PDF of a random variable Ẑ that is distributed with a noncentral χ2-distribution

with d degrees of freedom and noncentrality parameter λ is given by [Kay09]:

fẐ(z; d, λ) =

1
2 e
−(z+λ2)/2

(
z
λ2

)(d−2)/4
Id/2−1 (λ

√
z ) if z ≥ 0,

0 if z < 0,
(B.1.1)

where In(x) is the modified Bessel function of the first kind of order n that can be given

in integral or infinite series form as:

In(x) =

(
1
2x
)n

√
π Γ

(
n+ 1

2

) ∫ π

0
exp (x cos θ) sin2n θ dθ (B.1.2)

=

∞∑
k=0

(
1
2x
)2k+n

k! Γ (n+ k + 1)
. (B.1.3)

The cumulative distribution function (CDF) of the noncentral χ2-distribution FẐ(x; d, λ)

is then given by the integral:

FẐ(z; d, λ) =

∫ z

0
fẐ(y; d, λ) dy. (B.1.4)

Unfortunately, no simple form of the integral exists. However, it can be expressed in

terms of the Marcum Q-function QM (a, b) [Nut75] as:

FẐ(z; d, λ) = 1−Qd/2
(
λ,
√
z
)
. (B.1.5)

The Marcum Q-function is defined as:

QM (a, b) =

∫ ∞
b

x
(x
a

)M−1
e−(a+x)/2 IM−1(a x) dx (B.1.6)
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B.2. Transforming a PDF

A question arising in the context of the derivation of detection and false alarm probabili-

ties is the transformation of the probability density function (PDF) of a random variable

under an invertible function. For example let X ∼ U(0, 1) be uniformly distributed in

the interval [0, 1]. Its PDF is then given by fX(x) = 1. Let g(x) be a bijective function

from the interval I = [0, 1] to the image of the interval under g : I → g(I). Be Y = g(X)

the transformed random variable. Then the probability density function fY (y) of Y is

given by:

fY (y) =
dg−1(y)

dy
fX(g−1(y)) (B.2.1)
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[TeF05] Michael Tröbs, Peter Weßels, and Carsten Fallnich. Power- and frequency-

noise characteristics of an Yb-doped fiber amplifier and actuators for sta-

bilization. Opt. Express, 13(6):2224–2235, Mar 2005.
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