904 research outputs found

    The Challenge of Machine Learning in Space Weather Nowcasting and Forecasting

    Get PDF
    The numerous recent breakthroughs in machine learning (ML) make imperative to carefully ponder how the scientific community can benefit from a technology that, although not necessarily new, is today living its golden age. This Grand Challenge review paper is focused on the present and future role of machine learning in space weather. The purpose is twofold. On one hand, we will discuss previous works that use ML for space weather forecasting, focusing in particular on the few areas that have seen most activity: the forecasting of geomagnetic indices, of relativistic electrons at geosynchronous orbits, of solar flares occurrence, of coronal mass ejection propagation time, and of solar wind speed. On the other hand, this paper serves as a gentle introduction to the field of machine learning tailored to the space weather community and as a pointer to a number of open challenges that we believe the community should undertake in the next decade. The recurring themes throughout the review are the need to shift our forecasting paradigm to a probabilistic approach focused on the reliable assessment of uncertainties, and the combination of physics-based and machine learning approaches, known as gray-box.Comment: under revie

    Robust Eigen-Filter Design for Ultrasound Flow Imaging Using a Multivariate Clustering

    Get PDF
    Blood flow visualization is a challenging task in the presence of tissue motion. Unsuppressed tissue clutter produces flashing artefacts in ultrasound flow imaging which hampers blood flow detection by dominating part of the blood flow signal in certain challenging clinical imaging applications, ranging from cardiac imaging (maximal tissue vibrations) to microvascular flow imaging (very low blood flow speeds). Conventional clutter filtering techniques perform poorly since blood and tissue clutter echoes share similar spectral characteristics. Eigen-based filtering was recently introduced and has shown good clutter rejection performance; however, flow detection performance in eigen filtering suffers if tissue and flow signal subspaces overlap after eigen components are projected to a single signal feature space for clutter rank selection. To address this issue, a novel multivariate clustering based singular value decomposition (SVD) filter design is developed. The proposed multivariate clustering based filter robustly detects and removes non-blood eigen components by leveraging on three key spatiotemporal statistics: singular value magnitude, spatial correlation and the mean Doppler frequency of singular vectors. A better clutter suppression framework is necessary for high-frame-rate (HFR) ultrasound imaging since it is more susceptible to tissue motion due to poorer spatial resolution (tissue clutter bleeds into flow pixels easily). Hence, to test the clutter rejection performance of the proposed filter, HFR plane wave data was acquired from an in vitro flow phantom testbed and in vivo from a subject’s common carotid artery and jugular vein region induced with extrinsic tissue motion (voluntary probe motion). The proposed method was able to adaptively detect and preserve blood eigen components and enabled fully automatic identification of eigen components corresponding to tissue clutter, blood and noise that removes dependency on the operator for optimal rank selection. The flow detection efficacy of the proposed multivariate clustering based SVD filter was statistically evaluated and compared with current clutter rank estimation methods using the receiver operating characteristic (ROC) analysis. Results for both in vitro and in vivo experiments showed that the multivariate clustering based SVD filter yielded the highest area under the ROC curve at both peak systole (0.98 for in vitro; 0.95 for in vivo) and end diastole (0.96 for in vitro; 0.93 for in vivo) in comparison with other clutter rank estimation methods, signifying its improved flow detection capability. The impact of this work is on the automated as well as adaptive (in contrast to a fixed cut-off) selection of eigen components which can potentially allow to overcome the flow detection challenges associated with fast tissue motion in cardiovascular imaging and slow flow in microvascular imaging which is critical for cancer diagnoses

    Sleep Stage Classification: A Deep Learning Approach

    Get PDF
    Sleep occupies significant part of human life. The diagnoses of sleep related disorders are of great importance. To record specific physical and electrical activities of the brain and body, a multi-parameter test, called polysomnography (PSG), is normally used. The visual process of sleep stage classification is time consuming, subjective and costly. To improve the accuracy and efficiency of the sleep stage classification, automatic classification algorithms were developed. In this research work, we focused on pre-processing (filtering boundaries and de-noising algorithms) and classification steps of automatic sleep stage classification. The main motivation for this work was to develop a pre-processing and classification framework to clean the input EEG signal without manipulating the original data thus enhancing the learning stage of deep learning classifiers. For pre-processing EEG signals, a lossless adaptive artefact removal method was proposed. Rather than other works that used artificial noise, we used real EEG data contaminated with EOG and EMG for evaluating the proposed method. The proposed adaptive algorithm led to a significant enhancement in the overall classification accuracy. In the classification area, we evaluated the performance of the most common sleep stage classifiers using a comprehensive set of features extracted from PSG signals. Considering the challenges and limitations of conventional methods, we proposed two deep learning-based methods for classification of sleep stages based on Stacked Sparse AutoEncoder (SSAE) and Convolutional Neural Network (CNN). The proposed methods performed more efficiently by eliminating the need for conventional feature selection and feature extraction steps respectively. Moreover, although our systems were trained with lower number of samples compared to the similar studies, they were able to achieve state of art accuracy and higher overall sensitivity

    Role of Four-Chamber Heart Ultrasound Images in Automatic Assessment of Fetal Heart: A Systematic Understanding

    Get PDF
    The fetal echocardiogram is useful for monitoring and diagnosing cardiovascular diseases in the fetus in utero. Importantly, it can be used for assessing prenatal congenital heart disease, for which timely intervention can improve the unborn child's outcomes. In this regard, artificial intelligence (AI) can be used for the automatic analysis of fetal heart ultrasound images. This study reviews nondeep and deep learning approaches for assessing the fetal heart using standard four-chamber ultrasound images. The state-of-the-art techniques in the field are described and discussed. The compendium demonstrates the capability of automatic assessment of the fetal heart using AI technology. This work can serve as a resource for research in the field
    corecore