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Abstract 
 

Blood flow visualization is a challenging task in the presence of tissue motion. Unsuppressed 

tissue clutter produces flashing artefacts in ultrasound flow imaging which hampers blood flow 

detection by dominating part of the blood flow signal in certain challenging clinical imaging 

applications, ranging from cardiac imaging (maximal tissue vibrations) to microvascular flow imaging 

(very low blood flow speeds). Conventional clutter filtering techniques perform poorly since blood and 

tissue clutter echoes share similar spectral characteristics. Eigen-based filtering was recently introduced 

and has shown good clutter rejection performance; however, flow detection performance in eigen 

filtering suffers if tissue and flow signal subspaces overlap after eigen components are projected to a 

single signal feature space for clutter rank selection.  

To address this issue, a novel multivariate clustering based singular value decomposition 

(SVD) filter design is developed. The proposed multivariate clustering based filter robustly detects and 

removes non-blood eigen components by leveraging on three key spatiotemporal statistics: singular 

value magnitude, spatial correlation and the mean Doppler frequency of singular vectors. A better 

clutter suppression framework is necessary for high-frame-rate (HFR) ultrasound imaging since it is 

more susceptible to tissue motion due to poorer spatial resolution (tissue clutter bleeds into flow pixels 

easily). Hence, to test the clutter rejection performance of the proposed filter, HFR plane wave data 

was acquired from an in vitro flow phantom testbed and in vivo from a subject’s common carotid artery 

and jugular vein region induced with extrinsic tissue motion (voluntary probe motion). The proposed 

method was able to adaptively detect and preserve blood eigen components and enabled fully automatic 

identification of eigen-components corresponding to tissue clutter, blood and noise that removes 

dependency on the operator for optimal rank selection.  
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The flow detection efficacy of the proposed multivariate clustering based SVD filter was 

statistically evaluated and compared with current clutter rank estimation methods using the receiver 

operating characteristic (ROC) analysis. Results for both in vitro and in vivo experiments showed that 

the multivariate clustering based SVD filter yielded the highest area under the ROC curve at both peak 

systole (0.98 for in vitro; 0.95 for in vivo) and end diastole (0.96 for in vitro; 0.93 for in vivo) in 

comparison with other clutter rank estimation methods, signifying its improved flow detection 

capability. The impact of this work is on the automated as well as adaptive (in contrast to a fixed cut-

off) selection of eigen-components which can potentially allow to overcome the flow detection 

challenges associated with fast tissue motion in cardiovascular imaging and slow flow in microvascular 

imaging which is critical for cancer diagnoses.  
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Chapter 1 Introduction  
 

1.1 Chapter Overview 
 

Ultrasound imaging has established itself as a mature screening and diagnostic imaging 

modality in clinical practice. In fact, ultrasound is being used in at least a quarter of all imaging 

procedures globally (Wells, 2006). The breakthrough in high-frame-rate (HFR) ultrasound imaging has 

enabled several novel clinical applications  (Tanter & Fink, 2014). Although research in the ultrasound 

imaging field has progressed rapidly, knowledge of conventional ultrasound principles is still important 

to establish a strong foundation.  Hence, Section 1.2 explains the fundamental physical and flow 

estimation principles behind ultrasound imaging. Next, the HFR imaging scheme is introduced 

followed by a background of the tissue motion based clutter problem encountered in ultrasound flow 

imaging. Limitations of the conventional and current methods of clutter filtering are detailed later and 

in the last section the motivation, hypothesis and objectives of this research work are outlined. 

1.2 Background 

1.2.1 Physical Principles of Ultrasound Imaging 

Ultrasound imaging is generally done by placing a piezo-electric transducer on the skin that transmits 

sound waves with high center frequencies (typically ranging from 2-15 MHz) and then receives the 

back-scattered echoes from body tissues. The received signal consists of the emitted pulse which is 

reflected as it crosses the boundary of media with an acoustic impedance mismatch (Jensen J. A., 

Medical ultrasound imaging, 2007). The speed of sound (c0) in human body tissues is typically 1540 

m/s. Using this speed, the depth of the returned echoes can be computed using their time of flight. As 

the ultrasound waves pass through the soft tissues, part of it is reflected due to different types of 

reflection: Rayleigh scattering, specular reflection and backscattering. At typical ultrasound 

frequencies, the scattering produced by the red blood cells is Rayleigh scattering which happens when 
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the scatterer size is smaller than the ultrasound wavelength. The received echoes are then converted 

into voltage signals using an analog-to-digital converter (ADC), which outputs the radio frequency (RF) 

signal for processing. A brightness-mode (B-mode) image is generated by rendering the received 

ultrasound RF signals as bright dots across 2-D space. The brightness of each dot is a function of the 

returned echo signal amplitude. 

1.2.2 Flow Estimation Principles in Ultrasound Imaging 
 

Flow estimation in ultrasound imaging is based on pulsed-wave Doppler technique, in which 

RF signal acquisitions are compared between at least two subsequent firings to find spatial displacement 

of the scatterers over a time interval. Fig. 1.1 illustrates this technique by showing a scatterer in upward 

motion that will cause a change in the pulse-echo time of flight between two time intervals. The echo 

received from the second firing will arrive earlier in comparison to the first firing as the distance 

between the ultrasound transducer and the scatterer is reduced. The set of RF signals obtained from the 

subsequent firings is called a slow-time ensemble, and the number of firings in each slow-time 

ensemble is called the ensemble size. 



 

 3 

 

Fig. 1.1. Flow estimation in ultrasound based on pulsed-wave Doppler principle. The received RF 
echoes from the backscattering of the scatterer at each firing is sampled at a fixed depth position. 
Velocity of the scatterer can be estimated from the changes in phase of the sampled slow-time signal. 

 

The flow velocity of this scatterer can be estimated by the following Doppler equation: 

𝑣𝑣 = (𝑓𝑓𝑡𝑡− 𝑓𝑓𝑟𝑟)𝐶𝐶0
2𝑓𝑓𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

      (1-1) 

Where 𝑣𝑣 is the scatterer velocity, 𝑓𝑓𝑡𝑡 is the ultrasound transmission frequency, 𝑓𝑓𝑟𝑟 is the received 

frequency and 𝜃𝜃 is the beam-flow angle (angle between the ultrasound beam axis and the direction of 

scatterer motion, i.e., the flow direction). It is worth noting that the change in phase is the quantity 

essentially being measured for flow estimation instead of the frequency shift. The frequency shift in 

one pulse is equivalent to the phase shift from one pulse to the next. 
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1.2.3 High-frame-rate Data Acquisition Technique 

In conventional ultrasound imaging scanners, focused beams are fired line by line to insonify 

the entire imaging view as shown in Fig 1.2(a). Each scan line acquisition is coherently summed to 

form a single B-mode image. Such a transmission scheme leads to a limited frame rate of about 30 to 

40 Hz, without sacrificing the number of scan lines (Montaldo, Tanter, Bercoff, Benech, & Fink, 2009). 

The use of line by line scanning also limits the number of temporal samples (ensemble size) that are 

acquired at a scan line before the system moves on to the next one.  

Over the past two decades, high-frame-rate ultrasound based on unfocused plane wave 

transmission (Tanter, Bercoff, Sandrin, & Fink, 2002) (Udesen, Gran, & Jensen, 2005) has allowed 

more than a 100-folds increase in frame rate. As illustrated in Fig 1.2(b), instead of focused beam 

firings, all the transducer elements are fired at the same time to generate plane waves which cover the 

entire imaging view. A single plane wave transmit can be used to form an image, but since plane waves 

are unfocused the resultant images will suffer from a poor signal-to-noise ratio (SNR) and be of low-

resolution. The solution to this problem is to transmit plane waves at different steering angles (angle 

between the depth direction and the beam-axis) as shown in Fig 1.2(c) and coherently sum the low-

resolution images to yield a high-resolution compounded image with improved SNR (Montaldo et al., 

2009). For N Tx angles, the effective data acquisition rate (fDAQ) is given by fPRF/N, where fPRF is the 

ultrasound pulse repetition frequency (PRF). The compromise in this multi-angle plane wave 

compounding approach is a loss in contrast compared to the conventional focused beam firings method 

where the pressure field at the focal depth is much higher, resulting in better SNR.  

Apart from plane wave based ultrasound imaging, spherical waves can also be transmitted for 

broad-field imaging (Ylitalo & Ermert, 1994), (Jensen, Nikolov, Gammelmark, & Pedersen, 2006). 

This approach is known as synthetic aperture imaging, where each transducer element is activated one 

by one to transmit a spherical wave that insonifies the entire imaging view. The echo from each 
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emission is received using all elements. It yields a single low-resolution image and multiple low-

resolution images formed are compounded to generate a synthetic image, also known as a high-

resolution image, as illustrated in Fig. 1.3. Therefore, the acquisition rate for this synthetic aperture 

transmission scheme is fDAQ is equal to fPRF/M, where M is the total number of emissions. 

 

Fig. 1.2. (a) Conventional focused beam based ultrasound imaging in which m scanlines are merged to 
form an image. High-frame-rate data acquisition based on plane wave transmissions with (b) single 
steering angle, and (c) multiple N angles. 

 

 
Fig. 1.3. High-frame-rate data acquisition using synthetic aperture imaging method. Spherical waves 
are emitted by a single transducer element. M low-resolution images are compounded to form a single 
high-resolution image. 
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1.2.4 Origin of Clutter in Ultrasound  

Clutter is defined as unwanted echoes produced by stationary or slow moving tissue structures 

like pulsating vessel walls, muscular tissue vibrations and heart valve pulsations (Jensen J. , 1993). As 

illustrated in Fig. 1.4(a), in focused scan line based ultrasound imaging, clutter artifact emerges from 

the grating lobes of linear transducer arrays which reflect from tissue structures that are outside of the 

main ultrasound beam in the non-blood regions (Paul, Barthez, DVM, Peter, & Scrivani, 1997). Hence, 

tissue clutter echoes produced by the grating lobes are displayed along the axis of the main lobe 

positioned in the flow region. In high-frame-rate ultrasound imaging, since a plane wave is used to 

excite the entire imaging view at the same instant, clutter echoes from static and slowly moving tissues 

corrupt the blood flow signal even more. Fig. 1.4(b) shows that during receive delay-and-sum 

beamforming where the transit time of echoes received by each array element are computed, tissue 

clutter and blood flow echoes can have the same transit time based on their similar shortest distance to 

the array element. This way echoes from tissue clutter get beamformed with the blood echoes and result 

in corruption of the flow signal. 
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Fig 1.4. Illustration of how tissue clutter is generated in (a) conventional focused beam based ultrasound 
imaging where grating lobes reflect sound from tissue structures outside flow region (b) High-frame-
rate plane wave imaging approach where tissue clutter gets beamformed with the blood signal due to 
similar transit time of echoes from both tissue and blood pixels. 
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1.2.5 Tissue Motion in Ultrasound Flow Imaging 

Tissue clutter hampers blood flow detection in ultrasound flow imaging since the 

backscattering strength of tissue is much stronger than blood due to its higher acoustic impedance 

mismatch (Bjaerum, Torp, & Kristoffersen, 2002). Moreover, tissue motion being relatively slower 

than blood dominates low frequencies compared to the fast fluctuations of the blood flow signal that 

exhibit a higher range of frequencies (Hoskins & McDicken, 1997). As shown in Fig. 1.5(a), in the 

presence of tissue motion, clutter echoes become broadband and overlap the slower blood flow signal 

(Heimdal & Torp, 1997). This problem of tissue and blood echoes sharing similar spectral 

characteristics is found in important ultrasound (US) imaging applications. Such as, imaging flow with 

fast vessel wall motion is a major challenge in cardiac imaging (Mozumi & Hasegawa, 2019), 

(Takahashi, Hasegawa, & Kanai, June 2015). Furthermore, when detecting slow flow in tumor 

microvasculature which is critical for cancer diagnoses (Jin, He, Wu, Lin, & Jiang, 2016), (Bayat, 

Fatemi, & Alizad, 2018), the blood frequencies in this case become much closer to tissue clutter as 

shown in Fig. 1.5(b).  

 
Fig. 1.5. Frequency spectrum of tissue clutter and blood flow signal with high-pass filter (HPF) cut-off 
indicated with a dashed line at scenarios with (a) fast tissue motion and fast flow (b) slow flow in 
microvasculature and insignificant tissue motion. 
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1.2.6 Conventional Methods of Clutter Filtering 

Conventionally, high-pass filtering methods like the finite impulse response (FIR) filter (Jensen 

J. , 1993), infinite impulse response (IIR) filters (Hoeks, Vorst, Dabekaussen, Brands, & Reneman, 

1991) and polynomial regression filters (Kadi & Loupas, 1995) have been used to remove low 

frequency tissue clutter. However, since these methods are limited to the temporal dimension only, they 

fail to discriminate between tissue and blood signals when their Doppler frequency spectrums overlap 

significantly. Hence, temporal filtering techniques cannot reject tissue clutter without loss of lower 

velocity blood flow as illustrated in Fig. 1.5(a), (b). Inadequate suppression of tissue clutter introduces 

bias in the velocity estimates, thereby altering the blood flow velocity profile. Adaptive filters based 

on clutter downmixing have also been used for clutter suppression, but they are limited by accuracy of 

the downmixing matrix and the low number of Doppler samples available in focused transmission 

scheme (Yu, Johnston, & Cobbold, 2007). Wavelet transform based filters based on an amplitude 

thresholding method to reject high energy wavelet coefficients corresponding to clutter can falsely 

diminish bright objects that are not artifacts in the ultrasound image (C. Tay, Acton, & Hossack, 2011). 

Moreover, there is no regular rule for the wavelet base selection, it commonly depends on the users’ 

experience. Since the threshold value used to separate clutter from blood depends on the selected 

wavelet, the filtering performance of the wavelet transform based methods may vary. Empirical Mode 

Decomposition (EMD) method has also been used for clutter filtering. The problem however with EMD 

based filter is that it decomposes the signal residue at each stage by using a sifting procedure, which is 

nonlinear and can cause phase distortion resulting in poor clutter and blood separation (Zhang, Gao, 

Wang, Chen, & Shi, 2007).  
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1.2.7 Eigen-based Clutter Filtering: Advantages and Limitations 

The emergence of eigen based clutter filtering has helped overcome the limitations of 

conventional clutter filtering methods by using both spatial and temporal information to better 

distinguish between tissue clutter and blood subspace (Yu & Lovstakken, 2010), (You & Wang, Oct 

2009), (Song, Zhang, & Gong, Dec 2006). Eigen based filtering has strongly benefited from the long 

Doppler ensembles obtainable by HFR plane wave imaging (Bayat & Fatemi, 2018). Singular value 

decomposition (SVD) of raw ultrasonic data generates singular values whose amplitude decay allows 

removal of the high energy clutter components (Song, Manduca, Trzasko, & Chen, 2016). Singular 

vectors produced by SVD contain spatiotemporal information that can be used to identify and reject 

tissue clutter from the blood flow signal (Demené, et al., 2015). Attempts to overcome the high 

computational cost associated with SVD filtering of large data volumes have also been reported (Song, 

et al., 2017), (Chee, Yiu, & Yu, 2017). 

Although SVD based filtering has established itself as a good method for clutter rejection, there 

is however no standard approach yet to determine the eigen components belonging to tissue clutter. 

Several SVD based filtering methods have been reported to achieve clutter rank selection. Each of these 

techniques have their own limitations. Kruse and Ferrara presented a fixed eigen rank threshold for 

clutter based on the amplitude of eigenvalues (Kruse & Ferrara, 2002). Yu and Cobbold proposed a 

Hankel-SVD filter formulation which uses mean frequency of singular vectors to select the clutter rank 

(Yu & Cobbold, 2008). Arnal et al. formed a spatial similarity matrix (SSM) from singular vectors to 

find the singular value threshold that separates the tissue and blood subspace (Arnal, Baranger, 

Demene, Tanter, & Pernot, 2017). Filtering performance of all these clutter rank estimation strategies 

depends highly on the quality of the involved data statistics. For e.g., computing the correct eigen rank 

threshold for clutter based on the singular value amplitude can become difficult for larger ensemble 

sizes. Moreover, in the SSM method identifying the tissue and blood spatial correlation squares is not 
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always possible since blood correlation can rather represent an elliptic shape (Baranger, et al., 2018). 

A hand-tuned cut-off frequency needs to be defined for the Hankel-SVD filter and it can lose 

performance when blood and tissue frequencies overlap.  

1.2.8 Data Clustering in Biomedical Imaging 

Clustering is an unsupervised machine learning tool for grouping data points which is 

commonly used in several fields, including image segmentation, bioinformatics, data mining etc. Many 

clustering methods have been reported in literature for biomedical image segmentation. For e.g., Wu et 

al. used color-based K-means clustering for brain tumor detection (Wu, Lin, & Chang, 2007). Beevi et 

al. used fuzzy c-means clustering for MRI image segmentation (Beevi, Sathik, & Senthamaraikannan, 

2010). Moubark et al. used K-means clustering for classification and removal of tissue clutter from 

ultrasound image based on an energy criterion (Moubark, Harput, Cowell, & Freear, 2016). 

1.3 Outline of Thesis Study 
 

1.3.1 Motivation and Hypothesis 

Blood flow detection in ultrasound imaging is a challenging task in certain clinical scenarios 

e.g., slow-flow detection and assessing blood flow with fast tissue motion.  Clutter arising from tissue 

motion has much stronger energy than blood. Hence, unsuppressed tissue clutter significantly hampers 

blood flow visualization and biases velocity estimation (Bjaerum, Torp, & Kristoffersen, 2002). 

Furthermore, flow detection performance suffers if tissue and flow signal subspaces overlap after eigen 

components are projected to a linear feature space for clutter rank selection. Instead of relying on just 

one specific feature, the rich information present in the unfocused plane wave transmission dataset can 

potentially be further utilized for clutter removal. The guiding hypothesis is that since tissue clutter and 

blood signals have different spatiotemporal and energy characteristics, a clustering algorithm can 
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exploit these distinctive properties to adaptively identify and suppress eigen components corresponding 

to clutter, and in turn improve blood flow detection performance. 

1.3.2 Research Objectives 

The overall goal of this project is to enhance flow detection performance by developing a robust 

clutter rank estimation technique which uses the spatiotemporal and energy information available in 

the data to detect and reject tissue clutter effectively. Specifically, this work will seek to achieve the 

following three research objectives: 

1) Develop a novel multivariate clustering based clutter rank estimator that is fully automated 

(independent of tissue/blood threshold hand tuning) and adaptively detects and removes non-

blood eigen components by considering multiple signal features extracted using SVD. 

2) Evaluate the flow detection performance of the proposed method in vitro through a flow 

phantom testbed design which exhibits acoustic properties similar to human arteries and soft 

tissue.  

3) Assess the flow detection performance of the proposed method in vivo, where the data 

characteristics are most realistic. 

4) Quantitatively compare the statistical flow detection performance of the proposed method with 

the current clutter rank estimation methods using receiver operating characteristic (ROC) 

analyses. 
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Chapter 2 Robust Eigen-filter Design for Ultrasound Flow 
Imaging 
2.1 Chapter Overview 

This chapter explains in detail the design of the proposed multivariate clustering based SVD 

filter. Section 2.2 first gives an overview of the eigen-filtering framework, starting with the 

fundamentals of the Ultrasound Doppler signal components. Next, the basics of SVD are introduced, 

followed by an explanation of how multiple image features are generated from the decomposed 

components to aid in discrimination between clutter and blood signal. Furthermore, K-means clustering 

for clutter rank estimation was introduced and the eigen-image analysis was specified to establish 

ground truth reference for clutter and blood rank estimation. The last section outlined the procedure for 

ROC analysis to determine the comparative flow detection performance of the proposed method with 

other clutter rank estimation techniques. 

2.2 Methodology 
 

The theoretical design behind multivariate clustering based eigen-filter is explained stepwise 

in this chapter. Fig. 2.1 illustrates all the methods in steps corresponding to the proposed eigen-filtering 

framework reported earlier in (Waraich, Chee, Xiao, Yiu, & Yu, 2019). The raw data ensemble is first 

reshaped to a 2-D space-time Casorati matrix which then undergoes SVD to yield the singular values 

and the left/right singular vectors. Multiple signal features are then extracted from these three 

decomposed matrices to aid in the discrimination of tissue clutter, blood and noise signals. The three 

matrices are then supplemented for clustering which groups eigen components into tissue clutter, blood 

& noise clusters. Eigen components corresponding to the non-blood clusters are removed and post-

filtered power Doppler maps overlaid on B-mode image are created from the reconstructed images. 
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Fig. 2.1. Overview of the multivariate clustering based eigen-filtering framework. The raw data 
ensemble (frame block) s(x, z, t) has a slow-time dimension t and two spatial dimensions including x 
(lateral) and z (depth). The frame block is reshaped to a 2-D space-time Casorati matrix S by stacking 
columns within a frame into a single column in S and repeating this procedure for all slow-time frames. 
SVD is next performed on S to yield the diagonal matrix and the left/right singular vectors. Multiple 
signal features are generated from the three decomposed matrices which are then supplemented for 
clustering. The clustering algorithm groups eigen components into clutter, blood & noise clusters. Eigen 
values corresponding to the non-blood clusters are removed and post-filtered power Doppler maps 
overlaid on B-mode background are generated from the reconstructed images. 
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2.2.1 Ultrasound Doppler Signal Components 

The US Doppler flow signal is represented as the summation of three components: tissue 

clutter, blood and electronic/ thermal noise. A typical beamformed ultrasound RF data matrix is 

described as a cineloop of 2-D images. Mathematically, the raw data matrix is a three-dimensional (3-

D) complex variable s(x, z, t) of size (Nz , Nx , Nt), where one dimension is time t and the other two are 

spatial dimensions x (lateral) and z (depth). 

2.2.2 Singular Value Decomposition 

The raw data ensemble s(x, z, t) is reshaped to a spatiotemporal Casorati matrix (Candès, Sing-Long, 

& Trzasko, 2013) which rearranges the data into a 2-D space-time matrix S of size (Nz × Nx , Nt). SVD 

is performed on the Casorati matrix S which yields the product of the following three matrices: 

                           𝑺𝑺 = 𝑼𝑼𝑼𝑼𝑽𝑽∗      (2-1) 

Where matrices U and V are unitary matrices with dimensions (Nz × Nx, Nz × Nx) and (Nt , Nt) 

respectively. * stands for the conjugate transpose and D is a diagonal matrix of size (Nz × Nx, Nt) with 

diagonal values λk sorted in a descending energy order. S is decomposed into eigen-components λk and 

each component consists of U and V vectors scaled by D. The rows of matrix S contain the raw spatial 

information, while its columns represent the time dimension. Thus, the SVD of S results in the singular 

vectors of U that provide spatial information while singular vectors of V represent the temporal 

information in S. 

2.2.3 Generation of Image Statistics 

The following three signal features were extracted from the singular values and left/right 

singular vectors to aid in discrimination between tissue clutter and blood signals. 
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Singular Value Magnitude 
 

 Clutter from tissue structures is generally much more echogenic than the blood signal due to 

its relatively high acoustic impedance mismatch (Bjaerum, Torp, & Kristoffersen, 2002). This 

difference in power between tissue clutter and the blood signals can be seen in the singular value 

magnitude decay curve as shown in Fig. 2.2(a).  

 
Fig. 2.2. (a) Singular values λk of matrix D expressed in dB, (b) Spatial correlation curve (correlation 
of the first singular vector U1 with left singular vectors |Uk| k ∈ [1, Nt] ), (c) Mean Doppler frequency 
estimation curve of the right singular vectors, for a plane wave HFR Doppler acquisition on an in vivo 
carotid region. 

 
Spatial Correlation 
 

In US imaging, it has been widely reported that tissue clutter has a much higher spatial 

coherence relative to blood since it is far less deformable then the blood scatterers which have low 

viscosity compared to tissue (Demené, et al., 2015). Fig. 2.3 illustrates the spatial difference between 

clutter and blood eigen images which can be leveraged by computing the spatial correlation between 

the first spatial singular vector U1 (typically representative of tissue clutter) and the spatial singular 

vectors |Uk| k ∈ [1, Nt].  

                            C = 𝟏𝟏
𝐍𝐍𝐱𝐱⋅𝐍𝐍𝐳𝐳

� �|𝐔𝐔𝟏𝟏|−|𝐔𝐔𝟏𝟏|�������⋅�|𝐔𝐔𝐤𝐤|−|𝐔𝐔𝐤𝐤|�������
𝛔𝛔𝟏𝟏⋅𝛔𝛔𝐤𝐤

𝐍𝐍𝐭𝐭

𝐤𝐤=𝟏𝟏
        (2-2) 
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Where Uk���� stands for the mean and 𝝈𝝈𝒌𝒌 is the standard deviation of Uk indexes.  Nx and Nz are the lateral 

and depth dimension size respectively of the original raw data matrix s. C is the spatial correlation 

vector of size (1, Nt) which reveals high spatial correlation for low-order singular vectors corresponding 

to tissue clutter and low spatial correlation in high-order singular vectors typically corresponding to 

blood and noise as shown in Fig. 2.2(b). 

Fig. 2.3. Illustration of spatial eigen images generated from left singular vectors by reshaping them 
back to raw image dimensions. (a) U1 shows the strong clutter originating from the vessel wall and 
surrounding tissue. (b) U13 demonstrates the overlap between vessel wall clutter and weak blood signal. 
(c) U21 shows the strong blood signals in vessel lumens along with background noise. (d) U100 just 
shows background noise signal. 

 

Mean Doppler Frequency 
 

Tissue clutter being relatively slower than blood, dominates the low temporal frequencies whereas 

blood echoes exhibit high frequency motion (Bjaerum, Torp, & Kristoffersen, 2002). Fig. 2.4 shows 

the temporal difference between the clutter and blood signals that can be used by calculating the mean 

Doppler frequency for each temporal (right) singular vector Vk using the following lag-one 

autocorrelation based estimator: 
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𝑹𝑹�𝒌𝒌 = � 𝑽𝑽𝒌𝒌∗
𝑵𝑵𝒕𝒕−𝟏𝟏
𝒊𝒊=𝟏𝟏

(𝒊𝒊) ⋅ 𝑽𝑽𝒌𝒌(𝒊𝒊 + 𝟏𝟏)    (2-3) 

 

𝒇𝒇�𝒌𝒌 = PRF
𝟐𝟐𝟐𝟐

× 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 �imag�𝑹𝑹�𝒌𝒌�
real�𝑹𝑹�𝒌𝒌�

�    (2-4) 

Where 𝒇𝒇�𝒌𝒌 is the mean Doppler frequency estimate for the kth singular vector Vk . * stands for the 

conjugate transpose. Mean Doppler frequency estimation curve of the right singular vectors is shown 

in Fig. 2.2(c). 

 
Fig. 2.4. Temporal criteria for mean Doppler frequency computation. (a) V1 shows that tissue clutter 
has a near constant temporal magnitude. (b) V13 shows random temporal fluctuations corresponding to 
mixed clutter and weak blood signal. (c)-(d) Right singular vectors describe the strong random temporal 
fluctuations corresponding to blood and background noise signals. 

 

2.2.4 K-means Clustering for Adaptive Clutter Filtering 

There are three clusters of interest in the raw ultrasound data based on the Doppler flow signal 

components: clutter, blood and noise. Since the number of clusters are known in advance and the data 
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is unsupervised, K-means is preferred for clustering. Gaussian Mixture Model (GMM) based clustering 

was not used as the data violates the Gaussian assumption. Fuzzy clustering is not relevant to this 

application since each data point cannot be a part of more than one cluster. Density based clustering 

requires a distance threshold which can be difficult to set. K-means clustering (Lloyd's algorithm) 

(Lloyd, 1982) is applied on the three-dimensional data formed from the extracted image statistics. Each 

of the three statistics were computed from the SVD of five consecutive frame blocks, where each frame 

block contains a sequence of 100 frames. Cluster centroids were initialized using the K-means++ 

algorithm (Arthur & Vassilvitskii, 2007 ). K-means iteratively calculates the squared Euclidean 

distance between the data points and cluster centroids to allocate each point to the closest cluster. The 

centroids are recomputed in each iteration by evaluating the mean of all points in that centroid’s cluster 

until the centroid positions do not change and the algorithm converges to an optimal result. Number of 

clusters were pre-defined as three, where each cluster represents one of tissue, blood and noise 

component. The cluster with the highest mean singular value magnitude and spatial correlation and the 

lowest mean Doppler frequency is classified as tissue clutter. The cluster with the highest mean Doppler 

frequency is classified as noise.  

2.2.5 Suppression of Tissue Clutter and Noise Components 

Each cluster contains separate data points from the total five consecutive frame blocks (5×100 

frames). The eigen components corresponding to the tissue and noise clusters are then set to zero for 

suppression of clutter and noise data points belonging to each of the five frame blocks.  

2.2.6 Power Doppler (PD) Flow Map Construction 

Equation (2-1) is used to perform reverse SVD where the diagonal matrix D contained the filtered 

singular values. Post-filtered image matrix is then constructed by reshaping the matrix S from (2-1) 

back to the raw data ensemble s(x, z, t) dimensions. The power estimates are generated by computing 
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the mean-squared sum of the filtered data ensemble using (2-5). The power estimates are log 

compressed when displaying the PD image. 

 𝑷𝑷𝑷𝑷(𝒙𝒙, 𝒛𝒛) = ∫ |𝒔𝒔(𝒙𝒙, 𝒛𝒛, 𝒕𝒕)|𝟐𝟐𝒅𝒅𝒅𝒅𝑵𝑵𝒕𝒕
𝒊𝒊=𝟏𝟏     (2-5) 

 
 

2.2.7 Eigen-image Analysis 

Spatial eigen-images were generated from left singular vectors by reshaping them back to image 

dimensions of the raw data matrix s. These eigen-images served as ground truth reference for showing 

the clutter, blood or noise signal contributions in each left singular vector. For each left singular vector’s 

spatial eigen image, the blood-to-clutter (BCR) ratio was computed using the following: 

𝑩𝑩𝑩𝑩𝑩𝑩 = 𝟐𝟐𝟐𝟐𝒍𝒍𝒍𝒍𝒍𝒍𝟏𝟏𝟏𝟏 � 𝑴𝑴𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇

𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
 �              (2-6) 

 

Where Mflow is the mean Doppler power of the flow pixels in both carotid and vein flow regions, while 

Mtissue is the mean Doppler power of the tissue pixels outside the flow regions. 

2.3 ROC Analysis for Flow Detection Performance Investigation 
 

2.3.1 Comparison with Different Clutter Rank Estimation Methods 

To obtain data for comparison, clutter filtering was also performed using the following eigen-based 

clutter rank estimators: 

1. A frequency filter based on fixed cut-off frequencies that are hand tuned for both clutter and 

noise removal (Baranger, et al., 2018). 

2. A spatial coherence filter which involves the spatial similarity matrix (SSM) based clutter and 

noise suppression method (Baranger, et al., 2018). 



 

 21 

3. A magnitude filter whose clutter threshold is based on the turning point of the singular value 

curve (Baranger, et al., 2018). 

All these filters operated on a slow-time ensemble size of 100 frames. Post-filtered power Doppler 

maps corresponding to each method were obtained for ROC analysis. 

2.3.2 Tissue and Flow Region Identification 

The boundaries between blood flow and tissue region were demarcated on the cross-sectional 

grayscale B-mode image of the PVA-based straight tube (see Fig. 2.5(a)) and the carotid and vein region 

(see Fig. 2.5(b)) for ROC analysis. MATLAB’s built-in contour tool was used for selecting the regions 

of interest. Fig. 2.5(a) shows the vessel lumen flow region (blue dashed circle) selected as the 

hypoechoic B-mode pixels inside the vessel walls, while the tissue region are all the B-mode pixels 

surrounding the flow region. Similarly, Fig. 2.5(b) shows the carotid flow region (red dashed circle) 

and jugular vein flow region (blue dashed circle) is selected as the hypoechoic B-mode pixels inside 

the vessel walls, while the tissue region are all the B-mode pixels outside the flow region.  

 

Fig. 2.5. Ultrasound B-mode images showing (a) short-axis view of the PVA-based straight tube with 
the vessel lumen flow region highlighted with blue dashed circle. (b) cross-sectional view of the in vivo 
Common Carotid Artery (CCA) flow region (red dashed circle) and Jugular Vein (JV) flow region (blue 
dashed circle). 
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2.3.3 Generation of ROC Curves 

Pixel values corresponding to the identified tissue and flow regions were extracted from the 

post-filtered power Doppler maps of each clutter rank estimation technique. Two statistical parameters 

were then computed for different power Doppler thresholds (swept in 0.2 dB increments from 0 to 100 

dB): true positive rate (TPR) and the false alarm rate (FAR). The TPR or sensitivity was defined as the 

percentage of flow pixels with post-filtered Doppler power higher than the threshold value, while the 

FAR (1-Specificity) was defined as the percentage of tissue pixels with post-filtered Doppler power 

higher than the threshold value. The ROC curves for each filter were plotted with their respective TPR 

against the corresponding FAR. The area under the ROC curve (AUC) quantifies the diagnostic 

performance in ROC analysis. The higher the AUC value is the better the detection performance (Zweig 

& Campbell, 1993). The AUC was also computed to quantitatively evaluate how well each clutter rank 

estimator was able to distinguish between the tissue and flow region. 

2.4 Chapter Summary 
 

This chapter explained in detail the theoretical framework behind multivariate clustering based 

eigen-filter. The ultrasound Doppler signal is first converted into a 2-D space-time Casorati matrix 

formulation which after undergoing SVD, produced left singular vectors which encode the spatial 

information and right singular vectors that contained the time information. Next, three key 

spatiotemporal image features (singular value magnitude, spatial correlation and mean frequency) were 

generated from the singular values and left/right singular vectors to aid in discrimination between tissue 

clutter and blood signals. The K-means clustering algorithm was applied on the 3-D distribution of 

image features to group data points into clutter, blood & noise clusters. Eigen values corresponding to 

the non-blood clusters were removed and post-filtered power Doppler maps overlaid on B-mode 

background were generated from the reconstructed images. As part of eigen-image analysis, spatial 
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eigen-images were produced and BCR was calculated for each eigen-image to serve as ground truth 

reference for showing the clutter, blood or noise signal contributions in each left singular vector. To 

statistically evaluate the flow detection performance of the proposed filter in comparison with other 

clutter rank estimators, ROC analysis procedure was defined in detail. 
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Chapter 3 In Vitro and In Vivo Experimental Setup 
 
3.1 Chapter Overview 
 

This chapter describes the in vitro and in vivo experimental methods used to test the proposed 

K-means based SVD filters’ flow detection performance. Section 3.2 outlines the complete flow 

phantom testbed design, which includes 3D printing of a phantom box, fabrication of a compliant vessel 

tube and tissue mimicking slab. Next, details about blood mimicking fluid formation is given which is 

pumped through the flow phantom using an in-house programmable flow pump system. This section 

also describes the development of a vibratory stage which is used to synthesize tissue clutter. Section 

3.3 introduces the high-frame-rate data acquisition parameters and imaging hardware used for both the 

flow phantom and in vivo experiment. Section 3.4 explains the receive beamforming method and lists 

the ultrasound image formation parameters. 

3.2 Flow Phantom Testbed Design 
 

Fig. 3.1 below shows the complete flow phantom testbed design to evaluate comparative flow 

detection performance of the K-means based SVD filter with other clutter rank estimation methods. 

This testbed is composed of three important components: 

1) A compliant straight tube vessel whose wall elasticity mimics human arteries. 

2) A vibratory stage that synthesizes tissue vibrations which resemble motion from extrinsic 

sources such as operator hand tremor. 

3) A flow pump system that produces pulsatile flow similar to heart circulation. 

Comprehensive description of each component of this testbed is given below. 
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Fig. 3.1. Overview of the flow phantom testbed design showing the flow phantom box placed on top of 
the vibratory stage. The phantom box contains the compliant straight tube vessel inside, immersed in a 
tissue mimicking slab. The phantom box is connected in a closed circuit loop to the flow pump system 
and the blood-mimicking fluid (BMF) reservoir using flow tubing to receive pulsatile flow. The linear 
array transducer is placed on top of the flow phantom through a metal stand support to image in short-
axis view.  

3.2.1 Fabrication of Phantom Box 
 

The flow phantom design framework began with CAD modelling of the phantom box shown 

in Fig. 3.1. Its geometry was designed on SolidWorks (Dassault Systèmes, Waltham, MA, USA). The 

box was constructed as a solid cuboid containing a volumetric cavity for placing the vessel tube. With 

an inner dimension of 293×77×71 mm3 (length×width×height), the CAD model was exported as a 

stereolithography (STL) file that defines the geometry of the phantom box. The STL file was then sent 

for 3-D printing via a fused deposition modeling (FDM) system (model DX; Creatbot 3D Printer, 

Zhengzhou, China). For this 3-D printing process, the printer resolution in the vertical direction is 

determined by the layer thickness parameter which was set to 0.1 mm. The printer resolution in the 

horizontal direction is determined by the extruder head size, which was set to 0.25 mm. The print 

material used was Polylactic acid (PLA). 
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3.2.2 Fabrication of PVA-based Vessel Tube  
 

The geometry of the straight tube vessel was modelled using SolidWorks. The vessel tube had 

a length of 180 mm, with an inner diameter of 6 mm and wall thickness of 1.5 mm. It was developed 

physically using an investment casting protocol previously reported (Dineley, Meagher, Poepping, 

Dicken, & Hoskins, 2006). The material composition of the vessel wall is given in Table 3.1 below. 

The elasticity of the vessel wall was set by administering three freeze–thaw cycles that alternated 

between −20 °C and 4 °C for 24 hours each to crystalize the PVA molecules. The fabricated PVA-

based vessel tube [see Fig. 3.2] was mounted onto flow connectors (EW-06361-61; Cole-Parmer, 

Vernon Hills, IL, USA) attached to the two ends of the phantom box. The PVA-based vessel tube had 

an elastic modulus of 106.1 kPa as measured using a tensile micro tester. Table 3.2 further lists the 

experimentally derived acoustic properties of the PVA-based vessel tube in comparison with human 

soft tissue (Chee, Ho, Yiu, & Yu, 2016). 

Table 3.1. PVA-based vessel tube fabrication. 

Percentage (by weight) Material Part number and Manufacturer 

10% Polyvinyl alcohol (PVA) 341584; Sigma-Aldrich 

3% Fine graphite powder 282863; Sigma-Aldrich 

0.3% Potassium sorbate 85520; Sigma-Aldrich 
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Table 3.2. Acoustic properties of PVA-based vessel tube and human soft tissue. 

Parameters PVA-based Vessel Tube Human tissue 

Attenuation coefficient (dB/cm·MHz) 0.229 ± 0.032 0.3-0.7 

Acoustic speed (m/s) 1535 ± 2.4 1540 

 

 

Fig. 3.2. Picture of the PVA-based straight tube vessel before mounting it in the phantom box. 

 

3.2.3 Tissue Mimicking Material Formation 
 

A tissue mimicking slab was prepared for the flow phantom using an agar-gelatin mixture. The 

chemical composition of the mixture is shown in Table 3.2 below. The mixture was prepared at 90 °C 

in solution form and then machine stirred until the temperature of the agar-gelatin solution dropped to 

45°C. Once cooled, it was poured into the phantom box cavity containing the PVA-based vessel tube 

and then refrigerated at 4 °C to form a slab around the vessel tube [see Fig. 3.3]. The phantom box was 

kept refrigerated prior to use in imaging experiment. The tissue slab had a measured acoustic speed of 
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1510 m/s (close to 1540 m/s in soft body tissues), an attenuation coefficient of 0.145 dB/(cm·MHz) and 

an elastic modulus of 35.9 kPa (Pinter & Lacefield, 2010).  

Table 3.3. Agar-gelatin based tissue mimicking slab fabrication. 

Percentage (by weight) Material Part number and Manufacturer 

94.45% Distilled water N/A 

1.5% Agar A1296; Sigma-Aldrich 

3.75% Gelatin G2500; Sigma-Aldrich 

0.3% Potassium sorbate 85520; Sigma-Aldrich 

 

 
Fig. 3.3. Tissue mimicking slab formed in the phantom box after refrigeration. The PVA-based straight 
tube vessel can also be seen immersed in the tissue slab. A clear plastic wrap is used to cover the tissue 
slab to avoid formation of air bubbles in the slab. 
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3.2.4 Blood Mimicking Fluid Formation 
 

A standardized protocol was used to make blood-mimicking fluid (BMF) (Ramnarine, Nassiri, 

Hoskins, & Lubbers, 1998) that had viscosity and acoustic scattering properties which match human 

blood. The detailed fabrication process has been reported previously by my lab (Ho, et al., 2017). Table 

3.4 lists the ingredients required for its fabrication. 

Table 3.4. Blood mimicking fluid formulation. 

Percentage (by weight) Material Part number and Manufacturer 

83.7% Distilled water N/A 

1.8% Organsol 2001 UD NAT1; Arkema 

0.9% Tergitol 86453; Sigma-Aldrich 

10% Glycerol 15514-029; Thermo Fisher Scientific 

3.3% Dextran D4876; Sigma-Aldrich 

0.3% Potassium sorbate 85520; Sigma-Aldrich 

 

3.2.5 Development of Vibratory Stage to Synthesize Tissue Motion  
 

A vibratory stage was developed for tissue motion generation similar to the one previously 

reported from my lab (Chee & Yu, 2017). This stage synthesized slow-time clutter equivalent to 

extrinsic motion sources such as hand tremor of the ultrasound probe operator (Heimdal & Torp, 1997), 

(Tierney, Coolbaugh, Towse, & Byram, 2017). As shown in Fig. 3.1, the flow phantom box is placed 

over the vibratory stage which contains the following components:  
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1) A bipolar gearless stepper motor (86STH156 NEMA-34; Phidgets Inc., Calgary, Canada). 

2) A bipolar stepper motor controller (1067_0B; Phidgets Inc., Calgary, Canada). 

3) A 38-g weight block. 

The stage housing the stepper motor was entirely modelled on SolidWorks [see Fig. 3.4] and 

printed using the 3D printer with PLA material. The stepper motor was first placed in the printed stage 

base and then the platform printed to hold the phantom box was screwed on top of the stage base. To 

build the vibrator, the weight block was attached to the stepper motor’s shaft to induce an imbalanced 

torque that generates vibrations once the motor revolves. Next, the stepper motor was connected to the 

motor controller in a parallel wiring configuration to provide better torque at higher speeds. The stepper 

motor is rated to generate 122 kg-cm of holding torque at 4.2 Amps.  

To spin the stepper motor, the motor controller was connected to a windows machine by USB 

cable and the automatically installed ‘Phidget Control Panel’ (INC, 2019) was used to adjust the motor’s 

speed and acceleration. A digital photo laser tachometer (tach-mtr-01; CyberTech) was used to 

determine the speed of motor operation. In this work, the stepper motor was rotated at 900 r/min, which 

corresponds to a vibrational frequency of 15-Hz due to the imbalanced torque imposed on the motor. 

The motor’s vibrational frequency induced physical motion in the phantom box in accordance with 

tissue vibration frequencies reported in vivo (Heimdal & Torp, 1997). 
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Fig. 3.4. Illustration of the vibratory stage CAD model showing the stage base that encloses the stepper 
motor and the platform to hold the phantom box which gets screwed on top of the stage base. 

 

3.2.6 In-house Programmable Flow Pump 
 

Overview of the Flow Pump System 
 

An in-house flow pump system previously reported from my lab (Ho, et al., 2017) was used 

for the flow phantom experiment. This pump system allows the pulse shape and the flow rate to be 

modified as desired. The system itself consists of a servo motor that drives the gear pump, and an 

Arduino board to set the motor speed through the motor driver. For every pulse transmitted by the 

Arduino, the pump rotated by 0.001 of a revolution. Blood-mimicking fluid enters the gear pump from 

the BMF reservoir connected to the flow inlet of the pump. The user can set the waveform and flow 

rate desired by a knob connected to the Arduino and view the settings through an LCD panel also 

connected with the Arduino board.  
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Flow Circuit Setup 
 

The pump system was connected to the flow phantom box placed on top of the vibratory stage. 

Using vinyl flow tubing the outlet of the flow pump system was connected to the inlet of the phantom 

box at one end. The outlet at the other end of the phantom box was connected to the inlet of the BMF 

reservoir. The flow circuit loop is completed by connecting the outlet of the BMF reservoir to the inlet 

of the flow pump system as shown in Fig. 3.1. Once this flow circuit was assembled, the flow pump 

system was configured to generate a carotid pulse (pulsatile flow profile) with a pulse rate of 60 

beats/min and a peak systolic flow rate of 10 mL/s. The pulsatile flow profile from the pump system 

contained various key features similar to the human carotid flow waveform as shown in Fig. 3.5 below:  

 

Fig. 3.5. Four essential phases of the human carotid flow waveform indicated by dashed lines 
corresponding to peak systole, post-systolic phase, dicrotic peak, and end diastole. 
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3.3 High-frame-rate Data Acquisition  
 

3.3.1 Imaging Hardware for Flow Phantom Experiment 
 

In vitro data acquisition for flow phantom experiment was done using a channel domain based 

imaging research platform in my lab. The imaging platform is composed of the following parts: 1) a 

customizable front-end core (SonixTouch; Analogic Ultrasound, Peabody, MA, USA) which allows 

transmission and reception programming of each array element, (2) a multi-channel pre-beamformed 

data acquisition tool. The data acquired was streamed to a back-end computer that processes data further 

using a GPU (So, Chen, Yiu, & Yu, 2011). For ultrasound transmission and reception, a 128-element 

linear array (L14-5/38; Analogic Ultrasound) was used.  

3.3.2 Data Acquisition for Flow Phantom Experiment 

For the flow phantom experimentation, the linear array transducer configured for HFR plane 

wave imaging was aligned to scan along the short axis view of the flow phantom. The TEXO software 

development kit (Analogic Ultrasound) was used to program the transmit firing sequence to generate 

plane waves at three transmit-receive steering angle pairs (-10°, 0°, +10°) with a center frequency of 5 

MHz. Remaining parameters used for data acquisition are listed in Table 3.5. 

Table 3.5. Imaging parameters for flow phantom data acquisition. 

Parameter Value 

Plane Wave Imaging 

Imaging Center Frequency 5 MHz 

Pulse Repetition Frequency, fPRF 10 kHz 

Effective Data Acquisition Rate, fDAQ 3.3 kHz 

Sampling Frequency  40 MHz 

# Transmit/Receive channels 128 
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Pulse Duration (# cycles) 3 

Steering Angles -10°, 0°, +10° 

Data Acquisition Duration 1 sec 

Image Formation Processing 

FIR Filter Pass Band 3 to 7 MHz 

FIR Filter Taps 225 

Stop-band Suppression 100 dB 

Apodization Hanning window 
 

3.3.3 Imaging Hardware for In Vivo Investigation 
 

In vivo data acquisition was done using a research purpose ultrasound scanning open-platform 

available in my laboratory (Yiu, Walczak, Lewandowski, & Yu, 2019). This platform contains three 

parts: 1) a front-end 192 channel ultrasound module; 2) a GPU processing unit (GTX 1080Ti; NVidia 

Corporation, Santa Clara, CA, USA); and 3) a back-end computer (TSB7053; Trenton Systems, 

Lawrenceville, GA, USA). All these parts are connected through a peripheral component interconnect 

express back-plane. A 192-element linear array transducer (SL1543; Esaote, Genova, Italy) probe was 

used for transmitting and receiving ultrasound pulse-echoes.  

3.3.4 Data Acquisition for In Vivo Investigation 

For in vivo investigation, a healthy male subject (age 28 years) volunteered to have ultrasound 

examination done for this study. The linear array probe configured for HFR plane wave imaging was 

placed on the subject’s neck (3 cm from the carotid bulb), to image the common carotid artery (CCA) 

and jugular vein (JV) region in short-axis view. Extrinsic tissue motion was induced in the dataset by 

voluntary probe motion to test the efficacy of the clutter filtering methods. Raw plane wave data 

acquisition was performed at 5 MHz imaging frequency. HFR Doppler acquisition was done using a 
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steering angle of -10° and interleaved B-mode firings were done using 30 angles (ranging from -15 to 

15 degrees (excluding 0°) with 1° incremental steps), resulting in an effective PRF of 3 kHz. Detailed 

imaging parameters for this experiment are listed in Table 3.6. 

Table 3.6. Imaging parameters for in vivo data acquisition. 

Parameter Value 

Plane Wave Imaging 

Imaging Center Frequency 5 MHz 

Pulse Repetition Frequency, fPRF 6 kHz 

Effective Data Acquisition Rate, fDAQ 3 kHz 

Sampling Frequency  25 MHz 

Transmit Aperture Size (# channels) 192 

Pulse Duration (# cycles) 2 

Doppler Steering Angle -10° 

B-mode Steering Angles [-15° to 15° (excluding 0°); 1° increments] 

Data Acquisition Duration 2.6 sec 

Image Formation Processing 

FIR Filter Pass Band 4 to 8 MHz 

FIR Filter Taps 64 

Beamformer Aperture Size (# channels) 96 

Apodization Hanning window 

Hilbert transform Filter Taps 51 
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3.4 Ultrasound Image Formation 

3.4.1 Receive Beamforming 
 

In general, once the RF data acquisition is complete, the data is transferred offline to the back-

end processor. The pre-beamformed data is first filtered through a FIR filter with passband frequencies 

listed in Table 3.5 and 3.6 to increase the SNR. Hilbert transform is next applied to the filtered signal 

to yield the imaginary part of the analytic RF signal. The FIR filtered signal represents the real part of 

the analytic RF signal. Next, delay-and-sum beamforming method using GPUs reported earlier by my 

lab (Yiu, Tsang, & Yu, 2011) was applied on the complex signal. Mainly receive beamforming is 

achieved through calculation of the depth information by computing the two-way time of flight delays 

of the pulse-echoes received by each array element. Since multiple transmit-receive steering angles 

were used, the resultant low-resolution beamformed images were coherently compounded to form one 

high-resolution image.  

3.4.2 Image Formation Parameters 
 

The post-beamformed image parameters for both flow phantom imaging and in vivo imaging 

experiment are listed in detail in Table 3.7 and 3.8 below: 

Table 3.7. Post-beamformed image parameters for flow phantom imaging. 

Parameter Value 

Image Size (# pixels) 147 × 231 

Axial Pixel Resolution (mm) 0.1 

Lateral Pixel Resolution (mm) 0.1 

# Pixels in Axial Dimension ( Nx ) 147 

# Pixels in Lateral Dimension ( Nz ) 231 

Slow-time ensemble size ( Nt ) 100 

Casorati matrix size (Nz × Nx , Nt) 33957 × 100 
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Table 3.8. Post-beamformed image parameters for in vivo imaging study. 

Parameter Value 

Image Size (# pixels) 91 × 137 

Axial Pixel Resolution (mm) 0.15 

Lateral Pixel Resolution (mm) 0.15 

# Pixels in Axial Dimension ( Nx ) 91 

# Pixels in Lateral Dimension ( Nz ) 137 

Slow-time ensemble size ( Nt ) 100 

Casorati matrix size (Nz × Nx , Nt) 12467 × 100 
 

3.5 Chapter Summary 
 

Regarding the in vitro imaging experiment, the vibratory stage was used to generate motion 

frequency of 15 Hz in the flow phantom which induced physical motion in the phantom box in 

accordance with tissue vibration frequencies observed in vivo. The flow phantom contained a PVA-

based vessel tube and a tissue mimicking slab that matched acoustic properties of human arteries and 

soft tissue respectively. This flow phantom served to demonstrate the flow detection capability of the 

proposed method at both peak systole (maximum vessel wall motion) and end diastole (slowest flow) 

phases of the carotid waveform. Flow detection capability of the proposed method was also tested in 

vivo in the CCA and JV region, where the data characteristics are most realistic. HFR plane wave 

imaging method at 5 MHz imaging frequency was used for both flow phantom and in vivo experiment.   
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Chapter 4 Experimental Results  
 

4.1 Chapter Overview 
 

This chapter presents the results for both flow phantom and in vivo experiments. Section 4.2 

first shows the result of K-means clustering and next reports the comparative power Doppler maps for 

the proposed K-means based SVD filter and other clutter rank estimation methods. It also presents the 

results for ROC analysis and eigen component selection done by the proposed method and other clutter 

rank estimation techniques. Section 4.3 reports the results for the in vivo experiment in a similar order 

to the first section. It first shows the result of K-means clustering and next reports the comparative 

power Doppler maps for the proposed K-means based SVD filter and other clutter rank estimation 

methods. It then presents comparative results of ROC analysis and eigen component selection for the 

proposed method and other clutter rank estimation techniques. In the end of this section, the effect of 

noise cluster suppression on flow detection is discussed.  

4.2 Flow Phantom Experimental Results 
 

4.2.1 Distinct Clusters Yielded by K-means Clustering 
 

K-means clustered the data (convergence time: 8 ms) into discrete groups as shown in Fig. 

4.1(a) below. Cluster 1 (blue) has the highest mean singular value magnitude and spatial correlation, 

and at the same time, the lowest mean Doppler frequency among all. These are typical properties of 

clutter originating from tissues and hence cluster 1 can be identified as tissue clutter. Cluster 3 (gray) 

has the least spatial correlation and the highest frequency content; both distinct features of noise. Upon 

identifying these two clusters, cluster 2 (red) can therefore be confidently attributed to signals from 

blood flow. 
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Fig. 4.1. (a) K-means clustering performed on the 3D distribution of image statistics acquired from the 
flow phantom at peak systolic phase of the cardiac cycle. (b)-(d) Representative spatial eigen-images 
from each cluster overlaid on B-mode image with lines demarcating the vessel lumen (blue dashed 
circle) flow region. 

 

The group each cluster belongs to can also be qualitatively identified through its corresponding 

spatial eigen-image overlaid on B-mode image for reference. As expected, Fig. 4.1(b) shows the 

presence of strong vessel wall clutter in the eigen-image from cluster 1. It also shows presence of very 

weak blood signal in the vessel lumen flow region highlighted with a blue dashed circle. Since the 

vibrating tissue slab surrounding the vessel is also source of tissue clutter, it has also been identified as 

clutter by cluster 1. The spatial eigen-image in Fig. 4.1(c) clearly shows strong blood flow signal 

identified in the vessel lumen along with some weak surrounding noise signals by cluster 2. The spatial 
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eigen-image from cluster 3 is full of background noise as shown in Fig. 4.1(d). 

4.2.2 K-means based SVD filter achieves Strong Flow Detection and Noise 
Suppression 
 

K-means based clutter filtering strongly distinguished between flow and tissue regions at both 

end diastolic and peak systolic phase of the cardiac cycle in the presence of strong tissue motion caused 

by vessel wall pulsations and extrinsic tissue vibrations. Fig. 4.2 shows the post-filtered power Doppler 

maps at peak systole and end diastole corresponding to different clutter filtering methods which include 

the K-means based SVD filter [Fig. 4.2(a), (e)], frequency filter [Fig. 4.2(b), (f)], spatial coherence 

filter [Fig. 4.2(c), (g)],  and magnitude filter [Fig. 4.2(d), (h)]. All power maps are rendered with a fixed 

dynamic range (30 dB).  

At peak systole, Fig. 4.2(a) shows strong flow detection in the vessel lumen flow region for the 

K-means based SVD filter with limited false coloring seen in the vessel wall pixels. Fig. 4.2(b) and (c) 

show that the frequency and spatial coherence filter achieved comparable performance to the K-means 

filter in terms of Doppler power detection in the flow regions, whereas Fig. 4.2(d) illustrates that the 

magnitude filter had very weak flow detection. Another evident finding is that the frequency [Fig. 

4.2(b)], spatial coherence [Fig. 4.2(c)] and magnitude filter [Fig. 4.2(d)] power maps all show parallel 

noise streaks increasing in intensity with depth. However, the noise streaks are very significantly 

suppressed in the K-means based SVD filter [Fig. 4.2(a)] since the eigen components related to the 

noise cluster were removed. 

At end diastole, Fig. 4.2(e) also shows strong flow detection in the vessel lumen flow region 

for the K-means based SVD filter with limited false coloring seen in the vessel wall pixels. The 

frequency and spatial coherence filter in Fig. 4.2(f) and (g) achieved comparable performance to the K-

means filter in terms of Doppler power detection in the flow regions, whereas Fig. 4.2(h) shows that 

the magnitude filter had weak flow detection and strong spurious coloring of vessel wall and 
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surrounding tissue region. Similar to peak systolic phase, K-means based SVD filter [Fig. 4.2(e)] 

significantly removed the parallel noise streaks present in the frequency [Fig. 4.2(f)], spatial coherence 

[Fig. 4.2(g)] and magnitude filter [Fig. 4.2(h)] power Doppler maps. 

 
Fig. 4.2. Improved flow detection and noise suppression achieved using (a), (e) K-means based SVD 
filter in comparison with (b), (f) Frequency based filter, (c), (g) Spatial Coherence based filter, and (d), 
(h) Magnitude based filter. Post-filtered power Doppler maps overlaid on the flow phantom vessel 
cross-sectional B-mode image are shown at (a)-(d) peak systole and (e)-(h) end diastole phase of the 
cardiac cycle. Dynamic range was kept the same for all the images at 30 dB. 
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4.2.3 Enhanced ROC Performance Gained by K-means Clustering based SVD 
Filter  
 

The classification performance in ROC analysis can be gauged by the AUC value, the higher 

it is the better the flow detection. The improved flow detection efficacy of the K-means based SVD 

filter is statistically substantiated by its high ROC performance as shown in Fig. 4.3. At peak systole, 

where tissue motion is the strongest due to strong vessel wall pulsations, the ROC curve in red of K-

means based SVD filter yielded the largest AUC value (0.98) in comparison to the magnitude filter 

curve in black (0.73), frequency filter curve in blue (0.90), and the spatial coherence filter curve in 

green (0.94). At end diastole, where flow and tissue vibration is the slowest, the ROC curve of K-means 

based SVD filter also yielded the largest AUC value (0.96) in comparison to the magnitude filter curve 

in black (0.72), frequency filter curve in blue (0.87), and the spatial coherence filter curve in green 

(0.88). The proposed method also achieved the highest flow detection sensitivity at 10% false alarm 

rate for both peak systolic and end diastolic phases of the cardiac cycle as evident from Fig. 4.3(a) and 

(b). 

 
Fig. 4.3. K-means clustering based SVD filter achieved the highest flow detection ROC performance 
compared to other clutter rank estimation methods at both (a) peak systole and (b) end diastole. 
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4.2.4 Adaptive Suppression of the Eigen-components Contributes to Improved 
Clutter Suppression 
 

Fixed eigen thresholds were generated by the magnitude and spatial coherence based filters for 

removing tissue clutter as shown by their respective dashed lines in Fig. 4.4(a). On the other hand, K-

means clustering based SVD filter adaptively detected unwanted eigen components with low blood-to-

clutter (BCR) ratio belonging to tissue clutter (blue bars) and noise (black bars). The proposed method 

also adaptively identified the blood eigen components (red bars) which are otherwise falsely removed 

as tissue clutter by the magnitude and spatial coherence based estimation approaches.  

The spatial eigen images [Fig. 4.4(b) - (g)] served as ground truth to exhibit the actual clutter, 

blood and noise signal contributions in each selected left (spatial) singular vector. These eigen-images 

illustrate how K-means based SVD filter correctly identified the eigen components corresponding to 

tissue clutter [Fig. 4.4(b)], blood [Fig. 4.4(e)] and noise [Fig. 4.4(f)]. Although most of the eigen 

components were correctly classified by the proposed method, the classification was however not 

perfect for all eigen components. As shown in Fig. 4.4(c), the 4th spatial (left) singular vector contains 

weak flow signal in the vessel lumen as well as tissue clutter in the vessel wall region. In this case, 

since the BCR is relatively higher than the first three clutter components and much lower than the blood 

components, the correct classification of this 4th left singular vector is challenging due to presence of 

both clutter and flow signals. Fig. 4.4(d) shows that the 5th left singular vector contains the blood flow 

signal with high BCR, but the K-means clustering based filter incorrectly classifies this eigen 

component as clutter. Furthermore, Fig. 4.4(g) shows that the 16th left singular vector comprises of 

noise signals along with some weak flow signal in the vessel lumen. In this case, since the noise signals 

are quite significant, K-means classified this eigen component as noise. However, presence of weak 

blood signal here still makes the correct classification difficult.  
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Fig. 4.4. (a) Eigen thresholds (shown in dashed lines) corresponding to tissue clutter computed by 
Spatial Coherence and Magnitude based clutter rank estimators. Red bars represent the eigen 
components identified as part of the blood flow signal by the K-means based SVD filter, while the blue 
bars represent the eigen components identified adaptively as tissue clutter. Black bars represent the 
eigen components identified by the noise cluster. (b)-(g) Spatial eigen-images from different left 
singular vectors showing the clutter, blood and noise signal contributions in each. 
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4.2.5 Effect of “Noise” Cluster Suppression on Flow Detection 
 

Removing the noise cluster identified by the K-means based SVD filter enabled better 

suppression of the parallel noise streaks present at both peak systolic [Fig. 4.5(a)] and end diastolic 

[Fig. 4.5(c)] phases of the cardiac cycle. It is evident from both Fig. 4.5(b) and (d) that suppressing the 

noise cluster had no adverse effect on the Doppler power detected in the flow region. Fig. 4.5(e) shows 

that at peak systole, noise removal increased the AUC slightly from 0.983 (without noise removal) to 

0.986 (with noise removal). Moreover, Fig. 4.5(f) shows a similar trend where noise removal increased 

the AUC from 0.94 (without noise removal) to 0.96 (with noise removal). Hence, noise suppression 

yielded a substantial improvement in the flow detection ROC performance at both peak systole [Fig. 

4.5(e)] and end diastole [Fig. 4.5(f)], without compromising flow detection accuracy. 

 
Fig. 4.5. Post-filtered power Doppler map without noise cluster suppression (a) and with noise cluster 
suppression (b) at peak systole. Post-filtered power Doppler map without noise cluster suppression (c) 
and with noise cluster suppression (d) at end diastole by the K-means based SVD filter. Comparison of 
flow detection ROC performance with and without noise removal by the K-means based SVD filter at 
(e) Peak systole and (f) End Diastole. 
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4.3 In vivo Experimental Results 
 

4.3.1 K-means Clustering Yields Distinct Clusters 
 

K-means clustered the data (convergence time: 17 ms) into discrete groups as shown in Fig. 

4.6(a) below. Cluster 1 (blue) has the highest mean singular value magnitude and spatial correlation, 

and at the same time, the lowest mean Doppler frequency among all, hence cluster 1 can be identified 

as tissue clutter. Cluster 3 (gray) has the least spatial correlation and the highest frequency content, 

hence it can be identified as noise. The remaining cluster 2 (red) can therefore be confidently classified 

as signals from blood flow. 

 

Fig. 4.6. (a) K-means clustering performed on the 3D distribution of image statistics acquired from in-
vivo common carotid artery and jugular vein data at peak systolic phase of the cardiac cycle. (b)-(d) 
Representative spatial eigen-images from each cluster overlaid on B-mode image with lines 
demarcating the CCA (red dashed circle) and JV (blue dashed circle) flow regions. 

 
 

The group each cluster belongs to can also be qualitatively identified through its corresponding 
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spatial eigen-image overlaid on B-mode image for reference. As expected, Fig. 4.6(b) shows the 

presence of strong vessel wall clutter in the eigen-image from cluster 1. Fig. 4.6(c) clearly shows strong 

carotid (red dashed circle) and jugular vein (blue dashed circle) blood flow signals along with some 

noise signals in the spatial eigen-image from cluster 2. The spatial eigen-image from cluster 3 is full of 

background noise as shown in Fig. 4.6(d). 

4.3.2 Strong Flow Detection and Noise Suppression Achieved by the K-means 
based SVD filter 
 

K-means based clutter filtering strongly differentiated between flow and tissue regions at both 

diastolic and systolic phase of the cardiac cycle in the presence of strong tissue motion caused by vessel 

wall pulsations and extrinsic probe motion. Fig. 4.7 shows the post-filtered power Doppler maps at 

peak systole and end diastole corresponding to different clutter filtering methods which include the K-

means based SVD filter [Fig. 4.7(a), (e)], frequency filter [Fig. 4.7(b), (f)], spatial coherence filter [Fig. 

4.7(c), (g)],  and magnitude filter [Fig. 4.7(d), (h)]. All power maps are rendered with a fixed dynamic 

range (26 dB).  

At peak systole, Fig. 4.7(a) shows strong flow detection in the carotid and vein region for the 

K-means based SVD filter with limited false coloring seen in the vessel wall pixels. Fig. 4.7(b), (c) and 

(d) demonstrate that the frequency, spatial coherence and magnitude filter respectively achieved similar 

performance to the K-means filter in terms of Doppler power detection in the flow regions. Another 

evident finding is that the frequency, spatial coherence and magnitude filter power maps all show 

parallel noise streaks increasing in intensity with depth. However, the noise streak is significantly 

suppressed in the K-means based SVD filter [Fig. 4.7(a)] since the eigen components related to the 

noise cluster were removed. 

At end diastole, Fig. 4.7(e) also shows strong flow detection in the carotid and vein region for 

the K-means based SVD filter with limited false coloring seen in the vessel wall pixels. The magnitude 
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and spatial coherence filter in Fig. 4.7(g) and (h) achieved similar performance to the K-means filter in 

terms of Doppler power detection in the flow regions, whereas Fig. 4.7(f) shows that the frequency 

filter had very weak carotid flow detection and strong presence of vessel wall clutter. Similar to peak 

systolic phase, K-means based SVD filter [Fig. 4.7(e)] significantly removed the parallel noise streaks 

present in the spatial coherence [Fig. 4.7(g)] and magnitude filter [Fig. 4.7(h)] power Doppler maps. 
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Fig. 4.7. Improved flow detection and noise suppression achieved using (a), (e) K-means based SVD 
filter in comparison with (b), (f) Frequency based filter, (c), (g) Spatial Coherence based filter, and (d), 
(h) Magnitude based filter. Post-filtered power Doppler maps overlaid on the CCA and JV cross-
sectional B-mode image are shown at (a)-(d) peak systole and (e)-(h) end diastole phase of the cardiac 
cycle. Dynamic range was kept the same for all the images at 26 dB. 
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4.3.3 Improved ROC Performance Gained by K-means Clustering based SVD 
Filter  
 

The improved flow detection efficacy of the K-means based SVD filter is statistically 

substantiated by its high ROC performance as shown in Fig. 4.8. At peak systole, where tissue motion 

is the strongest due to strong vessel wall pulsations, the ROC curve in red of K-means based SVD filter 

yielded the largest AUC value (0.95) in comparison to the magnitude filter curve in black (0.93), 

frequency filter curve in blue (0.91), and the spatial coherence filter curve in green (0.92). At end 

diastole, where flow and tissue vibration is the slowest, the ROC curve of K-means based SVD filter 

also yielded the largest AUC value (0.93) in comparison to the magnitude filter curve in black (0.90), 

frequency filter curve in blue (0.88), and the spatial coherence filter curve in green (0.89). The proposed 

method also achieved the highest flow detection sensitivity at 10% false alarm rate for both peak 

systolic and end diastolic phases of the cardiac cycle as evident from Fig. 4.8(a) and (b). 

 

Fig. 4.8. K-means clustering based SVD filter achieved the highest flow detection ROC performance 
compared to other clutter rank estimation methods at both (a) peak systole and (b) end diastole. 
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4.3.4 Adaptive Eigen-component Suppression Resulted in Improved Clutter 
Suppression 
 

Fixed cut-off thresholds were produced by the magnitude and spatial coherence based filters 

for removing tissue clutter as shown by their respective dashed lines in Fig. 4.9(a). On the other hand, 

K-means clustering based SVD filter adaptively detected unwanted eigen components with low blood-

to-clutter (BCR) ratio belonging to tissue clutter (blue bars) and noise (black bar). The proposed method 

also adaptively identified the blood eigen components (red bars) which are otherwise falsely removed 

as tissue clutter by the magnitude and spatial coherence based estimation approaches.  

The spatial eigen-images in Fig. 4.9 show how K-means based SVD filter correctly identified 

the eigen components corresponding to tissue clutter [Fig. 4.9(b)], blood [Fig. 4.9(c)] and noise [Fig. 

4.9(e)]. Fig. 4.9(d) shows that the 8th spatial (left) singular vector contains weak carotid and jugular 

vein flow signals as well as strong tissue clutter in the vein wall region. In this case, since the BCR is 

relatively higher than the first five clutter components and much lower than the blood components, the 

correct classification of this 8th left singular vector is challenging due to presence of both clutter and 

flow signals. However, due to the presence of strong wall clutter, K-means based SVD filter removes 

this component as tissue clutter. 
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Fig. 4.9. (a) Eigen thresholds (shown in dashed lines) corresponding to tissue clutter computed by 
Spatial Coherence and Magnitude based clutter rank estimators. Red bars represent the eigen 
components identified as part of the blood flow signal by the K-means based SVD filter, while the blue 
bars represent the eigen components identified adaptively as tissue clutter. Black bar represents the 
eigen component identified by the noise cluster. (b)-(e) Spatial eigen-images from different left singular 
vectors showing the clutter, blood and noise signal contributions in each. 
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4.3.5 Effect of “Noise” Cluster Suppression on Flow Detection 

Removal of noise cluster classified by the K-means based SVD filter enabled significant 

suppression of the parallel noise streaks present at both peak systolic [Fig. 4.10(a)] and end diastolic 

[Fig. 4.10(c)] phases of the cardiac cycle. It is evident from both Fig. 4.10(b) and (d) that suppressing 

the noise cluster had no adverse effect on the Doppler power detected in the flow regions. Fig. 4.10(e) 

shows that at peak systole, noise removal increased the AUC from 0.93 (without noise removal) to 0.95 

(with noise removal). Moreover, Fig. 4.10(f) shows a similar trend where noise removal increased the 

AUC from 0.91 (without noise removal) to 0.93 (with noise removal). Hence, noise suppression yielded 

a considerable improvement in the flow detection ROC performance at both peak systole [Fig. 4.10(e)] 

and end diastole [Fig. 4.10(f)], without compromising flow detection accuracy.  

 
Fig. 4.10. Post-filtered power Doppler map without noise cluster suppression (a) and with noise cluster 
suppression (b) at peak systole. Post-filtered power Doppler map without noise cluster suppression (c) 
and with noise cluster suppression (d) at end diastole by the K-means based SVD filter. Comparison of 
flow detection ROC performance with and without noise removal by the K-means based SVD filter at 
(e) Peak systole and (f) End Diastole. 
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Chapter 5 Interpretations and Significance of Study 
Findings 
 

5.1 Summary of Contributions 

Blood flow detection remains a challenging problem in some key clinical scenarios e.g., non-

contrast blood perfusion imaging and visualizing blood flow with fast tissue motion. In the presence of 

tissue motion, clutter echoes become broadband and overlap the slower blood flow signal which makes 

high-pass filtering based clutter rejection difficult without loss of lower velocity blood flow. Moreover, 

flow detection performance in eigen filtering suffers if tissue and flow signal subspaces overlap after 

eigen components are projected to a linear feature space for clutter rank selection. To overcome these 

limitations, a novel multivariate clustering based eigen-filter design is proposed that robustly detects 

and removes non-blood eigen components by leveraging on three key spatiotemporal statistics: singular 

value magnitude, spatial correlation and the mean Doppler frequency of singular vectors. Flow 

detection performance of the proposed method was evaluated through an in vitro flow phantom testbed 

which exhibited acoustic properties similar to human arteries and soft tissue. Flow detection 

performance was also tested in vivo, where the data characteristics are most realistic.  

For both the in vitro and in vivo experiments, K-means clustering was able to identify distinct 

clusters corresponding to tissue clutter, blood and noise components in the ultrasound signal. Results 

showed that the proposed multivariate clustering based SVD filter yielded high flow detection 

performance in the vessel lumen regions and achieved significant background noise suppression 

without loss of flow sensitivity. The proposed filter also achieved the highest area under the ROC curve 

at both peak systole (0.98 for in vitro; 0.95 for in vivo) and end diastole (0.96 for in vitro; 0.93 for in 

vivo) in comparison with other clutter rank estimation methods, signifying its improved flow detection 

capability. The proposed method was able to adaptively identify and preserve blood eigen components 
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that were otherwise falsely removed as clutter by the fixed eigen threshold based filters. Furthermore, 

K-means based SVD filter enabled fully automatic selection of eigen-components that removes 

dependency on the operator for optimal rank selection. 

 

5.2 Significance of Study Findings 

5.2.1 Improved Flow Detection and Noise Suppression Achieved by the K-

means based SVD Filter 

The post-filtered power Doppler maps for the flow phantom experiment [see Fig. 4.2] and in 

vivo investigation [see Fig. 4.7] have shown the improved performance of K-means based SVD filter 

in detecting both fast flow at peak systole [Fig. 4.2(a), Fig. 4.7(a)], where the vessel wall motion is very 

significant, and the slowest flow at end diastole [Fig. 4.2(e), Fig. 4.7(e)], where tissue vibrations also 

being the slowest result in high spectral overlap between clutter and flow. This demonstrates the 

enhanced potential of the proposed filter to detect flow in challenging clinical scenarios e.g., detecting 

slow flow in tumor microvasculature which is critical for cancer diagnoses (Jin, He, Wu, Lin, & Jiang, 

2016) and visualizing blood flow with fast tissue motion as in cardiac imaging (Mozumi & Hasegawa, 

2019). 

 Also, the proposed filter concurrently suppressed the spurious noise streaks apparent in the 

spatial coherence [Fig. 4.2(c), (g); Fig. 4.7(c), (g)], frequency [Fig. 4.2(b), (f); Fig. 4.7(b)] and 

magnitude filter [Fig. 4.2(d), (h); Fig. 4.7(d), (h)] power Doppler maps. The vessel wall artefact in the 

power Doppler maps of Fig. 4.7(b), (c), (d) and (f) resulted from angled (-10°) plane wave insonification 

at right angle to the vessel walls that were well-suppressed in the K-means based SVD power map in 

Fig. 4.7(a). It is evident from both Fig. 4.5(b), (d) and Fig. 4.7(b), (d) that suppressing the noise cluster 

had no adverse effect on the Doppler power sensitivity in the flow regions. Noise suppression rather 
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yielded an improvement in the flow detection ROC performance at both peak systole [Fig. 4.5(e); Fig. 

4.10(e)] and end diastole [Fig. 4.5(f), Fig. 4.10(f)], by reducing the spurious coloring of the non-blood 

pixels and without compromising flow detection accuracy.  

5.2.2 Adaptive and Automatic Eigen Rank Estimation  

The findings in Fig. 4.4(a) and Fig. 4.9(a) showed that K-means based SVD filter adaptively 

determines the eigen components corresponding to tissue clutter, blood and noise unlike the magnitude 

and spatial coherence based rank estimators which select a fixed singular value cut-off for 

discriminating between tissue clutter and blood flow components. Unwanted eigen components with 

low blood-to-clutter (BCR) ratio belonging to tissue clutter and noise were also adaptively identified 

by the proposed method. The spatial eigen images [Fig. 4.4(b) - (g), Fig. 4.9(b) - (e)] served as ground 

truth to exhibit the actual clutter, blood and noise signal contributions in each selected left (spatial) 

singular vector. Hence, it is evident from Fig. 4.4 and Fig. 4.9 that adaptive component estimation by 

the K-means based SVD filter enables significant preservation of blood flow eigen-components that 

are otherwise falsely removed as tissue clutter by other clutter rank estimation methods. Such adaptive 

clutter and noise removal allowed the K-means based SVD filter to achieve improved flow detection 

and noise suppression as demonstrated in Fig. 4.2(a), (e) and Fig. 4.7(a), (e). Furthermore, K-means 

based SVD filter enabled fully automatic selection of eigen-components that removes dependency on 

the operator for optimal rank selection. 

5.2.3 Highest ROC Performance Achieved by the K-means Based SVD filter 

The experimental results for both in vitro and in vivo experiments are statistically substantiated 

by the robust ROC performance of the K-means based SVD filter as shown by its red ROC curve 

yielding the highest AUC value at both peak systole (0.98 for in vitro and 0.95 for in vivo) [Fig. 4.3(a), 

Fig. 4.8(a)] and end diastole (0.96 for in vitro and 0.93 for in vivo) [Fig. 4.3(b), Fig. 4.8(b)] in 
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comparison to other clutter rank estimators. Both Fig. 4.3 and Fig. 4.8 confirm that, by using K-means 

based SVD filter, the post-filtered power Doppler values for flow pixels are better distinguished from 

tissue pixels’ values in comparison to rest of the clutter rank estimation techniques.  

5.3 Limitations of the Proposed Method 
 

K-means is sensitive to the initial starting positions of cluster centroids. Since the initial cluster 

center is randomly selected from the data, K-means may produce different results on multiple runs 

(Celebi, Kingravi, & A.Vela, 2013). Use of an appropriate cluster initialization technique and repeating 

K-means can help achieve consistent clustering accuracy (Fränti & Sieranoja, 2019). Lastly, CPU-

based K-means suffers from a poor convergence time. Such issue can be overcome by parallelized 

implementation of K-means on a GPU that can speed up the algorithm up to a hundred times faster than 

CPU-based implementation (Li, Zhao, Chu, & Liu, 2013). Another limitation in the proposed 

framework is that a slow-time sequence of at least 50 frames is required to have substantial data points 

available for clustering. This makes the real-time implementation of this framework difficult onto 

existing clinical scanners which use conventional scan-line based imaging that suffers from limited 

Doppler ensemble length. 

5.4 Future Directions 
 

A direct continuation of this work can be to apply this framework in a block-wise fashion 

(Song, Manduca, Trzasko, & Chen, 2016) in which SVD is performed on local spatially overlapped 

segments of the image, rather than applying it globally on the entire image data. This approach can 

allow more localized extraction of image statistics for clustering which can lead to more robust clutter 

reduction and potent flow visualization in challenging clinical imaging scenarios. An alternative to K-

means is the implementation of deep learning architecture for clustering; deep convolutional networks 

have demonstrated improved filtering of tissue signal from the ultrasound microbubble signal in 
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comparison to other iterative methods (Cohen, et al., 2019). To overcome the high computational 

complexity of SVD and for achieving real-time frame rates, the SVD step in the proposed framework 

can be parallelized and be implemented on GPU similar to (Chee, Yiu, & Yu, 2017). It has been 

reported that SVD filter performance increases with the ensemble length (Demené, et al., 2015). Taking 

advantage of the high frame rates offered by plane wave based ultrasound imaging, effect of using 

higher Doppler ensemble size on the flow detection performance of the proposed method can be 

evaluated. This can further aid in the investigation to find potential trade-off between clutter 

suppression and computation time.  

5.5 Research Summary 
 

Tissue clutter is a significant source of artefacts in ultrasound imaging which hampers blood 

flow detection by dominating part of the blood flow signal in certain challenging clinical imaging 

applications ranging from cardiac imaging (maximal tissue vibrations) to microvascular flow imaging 

(very low blood flow speeds). Clutter rank estimation methods based on a single signal feature fail to 

sufficiently discriminate between tissue clutter and flow subspaces and use a fixed cut-off to distinguish 

between clutter and blood eigen-components. An improved clutter suppression framework is necessary 

for HFR ultrasound imaging since it is more susceptible to tissue motion due to poorer spatial 

resolution. 

In this thesis, a novel K-means based SVD filter design is proposed that robustly detects and 

removes non-blood eigen components by leveraging on three key spatiotemporal statistics: singular 

value magnitude, spatial correlation and the mean Doppler frequency of singular vectors. Flow 

detection performance of the proposed method was evaluated in vitro through the flow phantom testbed 

and in vivo at the cross-sectional carotid and jugular vein region. K-means based SVD filter was able 

to identify distinct clusters corresponding to tissue clutter, blood and noise components in the 
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ultrasound signal. The proposed method was able to adaptively identify and preserve blood eigen 

components that were otherwise falsely removed as clutter by the fixed eigen threshold based filters. 

Suppressing the tissue clutter and noise clusters yielded improved flow detection sensitivity and noise 

rejection in comparison to other eigen-based clutter rank estimation methods. Also, K-means based 

SVD filter enabled fully automatic selection of eigen-components that removes dependency on the 

operator for optimal rank selection. The experimental results were statistically substantiated by the 

robust ROC performance of the proposed method, yielding the highest AUC values at both peak systole 

(0.98 for in vitro; 0.95 for in vivo) and end diastole (0.96 for in vitro; 0.93 for in vivo) in comparison to 

other clutter rank estimators. The significance of this work is on the automated as well as adaptive (in 

contrast to a fixed cut-off) selection of eigen-components that may potentially allow to overcome the 

flow detection challenges associated with cardiac and microvascular flow imaging, and also can enable 

improved quantification of blood velocities with reduced bias in these clinical applications.



 60 

 

References 
 

Arnal, B., Baranger, J., Demene, C., Tanter, M., & Pernot, M. (2017). In vivo real-time cavitation 

imaging in moving organs. Physics in Medicine & Biology, 62(3), 843–857. 

Arthur, D., & Vassilvitskii, S. (2007 ). K-means++ : the advantages of careful seeding. ACM-SIAM 

Symp. on Discrete Algorithms (SODA’07). New Orleans, Louisiana. 

Baranger, J., Arnal, B., Perren, F., Baud, O., Tanter, M., & Demené, C. (2018). Adaptive 

Spatiotemporal SVD Clutter Filtering for Ultrafast Doppler Imaging Using Similarity of 

Spatial Singular Vectors. IEEE Transactions on Medical Imaging , 37(7), 1574 - 1586. 

Bayat, M., & Fatemi, M. (2018). Concurrent Clutter and Noise Suppression via Low Rank Plus Sparse 

Optimization for Non-Contrast Ultrasound Flow Doppler Processing in Microvasculature. 

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 

Calgary, AB, Canada. 

Bayat, M., Fatemi, M., & Alizad, A. (2018). Background Removal and Vessel Filtering of Noncontrast 

Ultrasound Images of Microvasculature. IEEE Transactions on Biomedical Engineering, 66(3), 

831 - 842. 

Beevi, S. Z., Sathik, M. M., & Senthamaraikannan, K. (2010). A Robust Fuzzy Clustering Technique 

with Spatial Neighborhood Information for Effective Medical Image Segmentation. 

International Journal of Computer Science and Information Security, 7(3), 132-138. 

Bjaerum, S., Torp, H., & Kristoffersen, K. (2002). Clutter filter design for ultrasound color flow 

imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49(2), 204 

- 216 . 

C. Tay, P., Acton, S. T., & Hossack, J. A. (2011). A wavelet thresholding method to reduce ultrasound 

artifacts. Computerized Medical Imaging and Graphics, 35(1), 42-50. 

Candès, E. J., Sing-Long, C. A., & Trzasko, J. D. (2013). Unbiased Risk Estimates for Singular Value 

Thresholding and Spectral Estimators. IEEE Transactions on Signal Processing, 61(19), 4643 

- 4657. 



 

 61 

Celebi, M. E., Kingravi, H. A., & A.Vela, P. (2013). A comparative study of efficient initialization 

methods for the k-means clustering algorithm. Expert Systems with Applications, 40(1), 200-

210. 

Chee, A. J., & Yu, A. C. (2017). Receiver-Operating Characteristic Analysis of Eigen-Based Clutter 

Filters for Ultrasound Color Flow Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, 

and Frequency Control, 65(3), 390 - 399. 

Chee, A. J., Ho, C. K., Yiu, B. Y., & Yu, A. C. (2016). Walled Carotid Bifurcation Phantoms for 

Imaging Investigations of Vessel Wall Motion and Blood Flow Dynamics. IEEE Transactions 

on Ultrasonics, Ferroelectrics, and Frequency Control, 63(11), 1852 - 1864. 

Chee, A. J., Yiu, B. Y., & Yu, A. C. (2017). A GPU-Parallelized Eigen-Based Clutter Filter Framework 

for Ultrasound Color Flow Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and 

Frequency Control, 64(1), 150 - 163. 

Cohen, R., Zhang, Y., Solomon, O., Toberman, D., Taieb, L., Sloun, R. J., & Eldar, Y. C. (2019). Deep 

Convolutional Robust PCA with Application to Ultrasound Imaging. ICASSP 2019 - 2019 

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 

Brighton, United Kingdom,. 

Demené, C., Deffieux, T., Pernot, M., Osmanski, B.-F., Biran, V., & Gennisson, J.-L. (2015). 

Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and 

fUltrasound Sensitivity. IEEE Transactions on Medical Imaging, 34(11), 2271 - 2285. 

Dineley, J., Meagher, S., Poepping, T., Dicken, W. M., & Hoskins, P. (2006). Design and 

characterisation of a wall motion phantom. Ultrasound in Medicine & Biology, 32(9), 1349-

1357. 

Dolon, L. I., Ghosh, A., Alam, T., Alam, M. S., Khaliluzzaman, M., Imteaj, A., & Hassan, M. M. 

(2016). Segmentation analysis on magnetic resonance imaging (MRI) with different clustering 

techniques: Wavelet and BEMD. 2016 International Conference on Innovations in Science, 

Engineering and Technology (ICISET). Dhaka, Bangladesh. 

Fränti, P., & Sieranoja, S. (2019). How much can k-means be improved by using better initialization 

and repeats? Pattern Recognition, 93, 95-112. 



 

 62 

Golfetto, C., Ekroll, I. K., Torp, H. G., & Avdal, J. (2018). 3D Coronary Blood Flow Imaging: A 

Comparison of Automatic Adaptive Clutter Filters. IEEE International Ultrasonics Symposium 

(IUS). Kobe, Japan. 

Heimdal, A., & Torp, H. (1997). Ultrasound Doppler Measurements of Low Velocity Blood Flow: 

Limitations Due to Clutter Signals from Vibrating Muscles. IEEE Transactions on Ultrasonics, 

Ferroelectrics, and Frequency Control, 44(4), 873-881. 

Ho, C. K., Chee, A. J., Yiu, B. Y., Tsang, A. C., Chow, K. W., & Yu, A. C. (2017). Wall-Less Flow 

Phantoms With Tortuous Vascular Geometries: Design Principles and a Patient-Specific Model 

Fabrication Example. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency 

Control, 64(1), 25 - 38. 

Hoeks, A., Vorst, J. v., Dabekaussen, A., Brands, P., & Reneman, R. (1991). An efficient algorithm to 

remove low frequency Doppler signals in digital Doppler systems. Ultrasonic Imaging, 13(2), 

135-144. 

Hoskins, P. R., & McDicken, W. (1997). Colour ultrasound imaging of blood flow and tissue motion. 

The British Journal of Radiology , 70(837), 878-90. 

INC, P. (2019, 11 18). Retrieved from Phidgets: 

https://www.phidgets.com/?tier=3&catid=23&pcid=20&prodid=1029 

Jensen, J. (1993). Stationary echo canceling in velocity estimation by time-domain cross-correlation. 

IEEE Transactions on Medical Imaging, 12(3), 471 - 477. 

Jensen, J. A. (2007). Medical ultrasound imaging. Progress in Biophysics and Molecular Biology, 93(1-

3), 153-165. 

Jensen, J. A., Nikolov, S. I., Gammelmark, K. L., & Pedersen, M. H. (2006). Synthetic aperture 

ultrasound imaging. Ultrasonics, 44(Supplement), e5-e15. 

Jin, Z.-Q., He, W., Wu, D.-F., Lin, M.-Y., & Jiang, H.-T. (2016). Color Doppler Ultrasound in 

Diagnosis and Assessment of Carotid Body Tumors: Comparison with Computed Tomography 

Angiography. Ultrasound in Medicine & Biology , 42(9), 2106-2113. 

Kadi, A., & Loupas, T. (1995). On the performance of regression and step-initialized IIR clutter filters 

for color Doppler systems in diagnostic medical ultrasound. IEEE Transactions on Ultrasonics, 

Ferroelectrics, and Frequency Control , 42(5), 927 - 937. 



 

 63 

Kim, M., Abbey, C., Hedhli, J., Dobrucki, L., & Insana, M. (2017). Expanding Acquisition and Clutter 

Filter Dimensions for Improved Perfusion Sensitivity. IEEE Transactions on Ultrasonics, 

Ferroelectrics, and Frequency Control, 64(10), 1429 - 1438. 

Kruse, D., & Ferrara, K. (2002). A new high resolution color flow system using an eigendecomposition-

based adaptive filter for clutter rejection. IEEE Transactions on Ultrasonics, Ferroelectrics, and 

Frequency Control , 49(12), 1739 - 1754. 

Li, Y., Zhao, K., Chu, X., & Liu, J. (2013). Speeding up k-Means algorithm by GPUs. Journal of 

Computer and System Sciences, 79(2), 216-229. 

Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory , 28(2), 

129 - 137. 

Maresca, D., Correia, M., Tanter, M., Ghaleh, B., & Pernot, M. (2018). Adaptive Spatiotemporal 

Filtering for Coronary Ultrafast Doppler Angiography. IEEE Transactions on Ultrasonics, 

Ferroelectrics, and Frequency Control, 65(11), 2201 - 2204. 

Maresca, D., Correia, M., Villemain, O., Bizé, A., Sambin, L., Tanter, M., . . . Pernot, M. (2018). 

Noninvasive Imaging of the Coronary Vasculature Using Ultrafast Ultrasound. JACC: 

Cardiovascular Imaging, 11(6), 798-808. 

Montaldo, G., Tanter, M., Bercoff, J., Benech, N., & Fink, M. (2009). Coherent plane-wave 

compounding for very high frame rate ultrasonography and transient elastography. IEEE 

Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 56(3), 489 - 506. 

Moubark, A. M., Harput, S., Cowell, D. M., & Freear, S. (2016). Clutter noise reduction in B-Mode 

image through mapping and clustering signal energy for better cyst classification. IEEE 

International Ultrasonics Symposium (IUS). Tours, France. 

Mozumi, M., & Hasegawa, R. N. (2019). Utilization of singular value decomposition in high-frame-

rate cardiac blood flow imaging. Japanese Journal of Applied Physics, 58(SG), SGGE02-1 - 

SGGE02-8. 

Nameirakpam, D., Khumanthem, M., & Jina, C. Y. (2015). Image Segmentation Using K-means 

Clustering Algorithm and Subtractive Clustering Algorithm. Eleventh International Multi-

Conference on Information Processing-2015 (IMCIP-2015), 54. Bangalore, India. 



 

 64 

Paul, Y., Barthez, D., DVM, R. L., Peter, V., & Scrivani, D. (1997). Side Lobes and Grating Lobes 

Artifacts in Ultrasound Imaging. Veterinary Radiology & Ultrasound, 38(5), 387-393. 

Pinter, S. Z., & Lacefield, J. C. (2010). Objective Selection of High-Frequency Power Doppler Wall 

Filter Cutoff Velocity for Regions of Interest Containing Multiple Small Vessels. IEEE 

Transactions on Medical Imaging, 29(5), 1124 - 1139. 

Ramnarine, K. V., Nassiri, D. K., Hoskins, P. R., & Lubbers, J. (1998). Validation of a New Blood-

Mimicking Fluid for Use in Doppler Flow Test Objects. Ultrasound in Medicine & Biology, 

24(3), 451-459. 

So, H., Chen, J., Yiu, B., & Yu, A. (2011). Medical Ultrasound Imaging: To GPU or Not to GPU? 

IEEE Micro, 31(5), 54 - 65. 

Song, F., Zhang, D., & Gong, X. (Dec 2006). Performance evaluation of eigendecomposition-based 

adaptive clutter filter for color flow imaging. Ultrasonics, 44(Supplement), e67-e71. 

Song, P., Manduca, A., Trzasko, J. D., & Chen, S. (2016). Ultrasound Small Vessel Imaging With 

Block-Wise Adaptive Local Clutter Filtering. IEEE Transactions on Medical Imaging , 36(1), 

251 - 262. 

Song, P., Trzasko, J., Manduca, A. M., Qiang, B., Kadirvel, R., Kallmes, D. F., & Chen, S. (2017). 

Accelerated Singular Value-Based Ultrasound Blood Flow Clutter Filtering With Randomized 

Singular Value Decomposition and Randomized Spatial Downsampling. IEEE Transactions on 

Ultrasonics, Ferroelectrics, and Frequency Control, 64(4), 706 - 716. 

Takahashi, H., Hasegawa, H., & Kanai, H. (June 2015). Echo motion imaging with adaptive clutter 

filter for assessment of cardiac blood flow. Japanese Journal of Applied Physics, 54(7S1), 

07HF09-1 – 07HF09-8. 

Tanter, M., & Fink, M. (2014). Ultrafast Imaging in Biomedical Ultrasound. IEEE Transactions on 

Ultrasonics, Ferroelectrics, and Frequency Control , 61(1), 102 - 119. 

Tanter, M., Bercoff, J., Sandrin, L., & Fink, M. (2002). Ultrafast compound imaging for 2-D motion 

vector estimation: application to transient elastography. IEEE Transactions on Ultrasonics, 

Ferroelectrics, and Frequency Control, 49(10), 1363 - 1374. 



 

 65 

Tierney, J., Coolbaugh, C., Towse, T., & Byram, B. (2017). Adaptive Clutter Demodulation for Non-

Contrast Ultrasound Perfusion Imaging. IEEE Transactions on Medical Imaging , 36(9), 1979 

- 1991. 

Tierney, J., Walsh, K., Griffith, H., Baker, J., Brown, D., & Byram, B. (2019). Combining Slow Flow 

Techniques With Adaptive Demodulation for Improved Perfusion Ultrasound Imaging Without 

Contrast. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 66(5), 834 

- 848. 

Udesen, J., Gran, F., & Jensen, J. A. (2005). Fast color flow mode imaging using plane wave excitation 

and temporal encoding. Medical Imaging 2005: Ultrasonic Imaging and Signal Processing. 

5750, pp. 427-436. San Diego, California, United States: SPIE. 

Waraich, S. A., Chee, A., Xiao, D., Yiu, B. Y., & Yu, A. (2019). Auto SVD Clutter Filtering for US 

Doppler Imaging Using 3D Clustering Algorithm. ICIAR 2019: Image Analysis and 

Recognition (pp. 473 - 483). Waterloo: Springer, Cham. 

Wells, P. N. (2006). Ultrasound imaging. Physics in Medicine & Biology, 51(13), R83 - R98. 

Wu, M.-N., Lin, C.-C., & Chang, C.-C. (2007). Brain Tumor Detection Using Color-Based K-Means 

Clustering Segmentation. Third International Conference on Intelligent Information Hiding 

and Multimedia Signal Processing . Kaohsiung, Taiwan. 

Yiu, B. Y., Tsang, I. K., & Yu, A. C. (2011). GPU-based beamformer: Fast realization of plane wave 

compounding and synthetic aperture imaging. IEEE Transactions on Ultrasonics, 

Ferroelectrics, and Frequency Control, 58(8), 1698 - 1705. 

Yiu, B. Y., Walczak, M., Lewandowski, M., & Yu, A. C. (2019). Live Ultrasound Color Encoded 

Speckle Imaging Platform for Real-Time Complex Flow Visualization In Vivo (in press). IEEE 

Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 

doi:10.1109/TUFFC.2019.2892731 

Ylitalo, J., & Ermert, H. (1994). Ultrasound synthetic aperture imaging: monostatic approach. IEEE 

Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 41(3), 333 - 339. 

You, W., & Wang, Y. (Oct 2009). Adaptive clutter rejection for ultrasound color flow imaging based 

on recursive eigendecomposition. IEEE Transactions on Ultrasonics, Ferroelectrics, and 

Frequency Control, 56(10), 2217 - 2231. 



 

 66 

Yu, A. C., & Cobbold, R. S. (2008). Single-ensemble-based eigen-processing methods for color flow 

imaging - Part I. The Hankel-SVD filter. IEEE Transactions on Ultrasonics, Ferroelectrics, and 

Frequency Control , 55(3), 559 - 572. 

Yu, A. C., & Lovstakken, L. (2010). Eigen-based clutter filter design for ultrasound color flow imaging: 

a review. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control , 57(5), 

1096 - 1111. 

Yu, A. C., Johnston, K. W., & Cobbold, R. S. (2007). Frequency-based signal processing for ultrasound 

color flow imaging. Canadian Acoustics, 35(2), 11-23. 

Zhang, Y., Gao, Y., Wang, L., Chen, J., & Shi, X. (2007). The Removal of Wall Components in Doppler 

Ultrasound Signals by Using the Empirical Mode Decomposition Algorithm. IEEE 

Transactions on Biomedical Engineering, 54(9), 1631 - 1642. 

Zweig, M. H., & Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: a fundamental 

evaluation tool in clinical medicine. Clinical Chemistry, 39(4), 561–577. 

 

 


	Author's Declaration
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Chapter 1  Introduction
	1.1 Chapter Overview
	1.2 Background
	1.2.1 Physical Principles of Ultrasound Imaging
	1.2.2 Flow Estimation Principles in Ultrasound Imaging
	1.2.3 High-frame-rate Data Acquisition Technique
	1.2.4 Origin of Clutter in Ultrasound
	1.2.5 Tissue Motion in Ultrasound Flow Imaging
	1.2.6 Conventional Methods of Clutter Filtering
	1.2.7 Eigen-based Clutter Filtering: Advantages and Limitations
	1.2.8 Data Clustering in Biomedical Imaging

	1.3 Outline of Thesis Study
	1.3.1 Motivation and Hypothesis
	1.3.2 Research Objectives


	Chapter 2  Robust Eigen-filter Design for Ultrasound Flow Imaging
	2.1 Chapter Overview
	2.2 Methodology
	2.2.1 Ultrasound Doppler Signal Components
	2.2.2 Singular Value Decomposition
	2.2.3 Generation of Image Statistics
	2.2.4 K-means Clustering for Adaptive Clutter Filtering
	2.2.5 Suppression of Tissue Clutter and Noise Components
	2.2.6 Power Doppler (PD) Flow Map Construction
	2.2.7 Eigen-image Analysis

	2.3 ROC Analysis for Flow Detection Performance Investigation
	2.3.1 Comparison with Different Clutter Rank Estimation Methods
	2.3.2 Tissue and Flow Region Identification
	2.3.3 Generation of ROC Curves

	2.4 Chapter Summary

	Chapter 3  In Vitro and In Vivo Experimental Setup
	3.1 Chapter Overview
	3.2 Flow Phantom Testbed Design
	3.2.1 Fabrication of Phantom Box
	3.2.2 Fabrication of PVA-based Vessel Tube
	3.2.3 Tissue Mimicking Material Formation
	3.2.4 Blood Mimicking Fluid Formation
	3.2.5 Development of Vibratory Stage to Synthesize Tissue Motion
	3.2.6 In-house Programmable Flow Pump

	3.3 High-frame-rate Data Acquisition
	3.3.1 Imaging Hardware for Flow Phantom Experiment
	3.3.2 Data Acquisition for Flow Phantom Experiment
	3.3.3 Imaging Hardware for In Vivo Investigation
	3.3.4 Data Acquisition for In Vivo Investigation

	3.4 Ultrasound Image Formation
	3.4.1 Receive Beamforming
	3.4.2 Image Formation Parameters

	3.5 Chapter Summary

	Chapter 4  Experimental Results
	4.1 Chapter Overview
	4.2 Flow Phantom Experimental Results
	4.2.1 Distinct Clusters Yielded by K-means Clustering
	4.2.2 K-means based SVD filter achieves Strong Flow Detection and Noise Suppression
	4.2.3 Enhanced ROC Performance Gained by K-means Clustering based SVD Filter
	4.2.4 Adaptive Suppression of the Eigen-components Contributes to Improved Clutter Suppression
	4.2.5 Effect of “Noise” Cluster Suppression on Flow Detection

	4.3 In vivo Experimental Results
	4.3.1 K-means Clustering Yields Distinct Clusters
	4.3.2 Strong Flow Detection and Noise Suppression Achieved by the K-means based SVD filter
	4.3.3 Improved ROC Performance Gained by K-means Clustering based SVD Filter
	4.3.4 Adaptive Eigen-component Suppression Resulted in Improved Clutter Suppression
	4.3.5 Effect of “Noise” Cluster Suppression on Flow Detection


	Chapter 5  Interpretations and Significance of Study Findings
	5.1 Summary of Contributions
	5.2 Significance of Study Findings
	5.2.1 Improved Flow Detection and Noise Suppression Achieved by the K-means based SVD Filter
	5.2.2 Adaptive and Automatic Eigen Rank Estimation
	5.2.3 Highest ROC Performance Achieved by the K-means Based SVD filter

	5.3 Limitations of the Proposed Method
	5.4 Future Directions
	5.5 Research Summary

	References

