555 research outputs found

    Empowering parallel computing with field programmable gate arrays

    Get PDF
    After more than 30 years, reconfigurable computing has grown from a concept to a mature field of science and technology. The cornerstone of this evolution is the field programmable gate array, a building block enabling the configuration of a custom hardware architecture. The departure from static von Neumannlike architectures opens the way to eliminate the instruction overhead and to optimize the execution speed and power consumption. FPGAs now live in a growing ecosystem of development tools, enabling software programmers to map algorithms directly onto hardware. Applications abound in many directions, including data centers, IoT, AI, image processing and space exploration. The increasing success of FPGAs is largely due to an improved toolchain with solid high-level synthesis support as well as a better integration with processor and memory systems. On the other hand, long compile times and complex design exploration remain areas for improvement. In this paper we address the evolution of FPGAs towards advanced multi-functional accelerators, discuss different programming models and their HLS language implementations, as well as high-performance tuning of FPGAs integrated into a heterogeneous platform. We pinpoint fallacies and pitfalls, and identify opportunities for language enhancements and architectural refinements

    Cellular Automata Applications in Shortest Path Problem

    Full text link
    Cellular Automata (CAs) are computational models that can capture the essential features of systems in which global behavior emerges from the collective effect of simple components, which interact locally. During the last decades, CAs have been extensively used for mimicking several natural processes and systems to find fine solutions in many complex hard to solve computer science and engineering problems. Among them, the shortest path problem is one of the most pronounced and highly studied problems that scientists have been trying to tackle by using a plethora of methodologies and even unconventional approaches. The proposed solutions are mainly justified by their ability to provide a correct solution in a better time complexity than the renowned Dijkstra's algorithm. Although there is a wide variety regarding the algorithmic complexity of the algorithms suggested, spanning from simplistic graph traversal algorithms to complex nature inspired and bio-mimicking algorithms, in this chapter we focus on the successful application of CAs to shortest path problem as found in various diverse disciplines like computer science, swarm robotics, computer networks, decision science and biomimicking of biological organisms' behaviour. In particular, an introduction on the first CA-based algorithm tackling the shortest path problem is provided in detail. After the short presentation of shortest path algorithms arriving from the relaxization of the CAs principles, the application of the CA-based shortest path definition on the coordinated motion of swarm robotics is also introduced. Moreover, the CA based application of shortest path finding in computer networks is presented in brief. Finally, a CA that models exactly the behavior of a biological organism, namely the Physarum's behavior, finding the minimum-length path between two points in a labyrinth is given.Comment: To appear in the book: Adamatzky, A (Ed.) Shortest path solvers. From software to wetware. Springer, 201

    An Overlay Architecture for Pattern Matching

    Get PDF
    Deterministic and Non-deterministic Finite Automata (DFA and NFA) comprise the fundamental unit of work for many emerging big data applications, motivating recent efforts to develop Domain-Specific Architectures (DSAs) to exploit fine-grain parallelism available in automata workloads. This dissertation presents NAPOLY (Non-Deterministic Automata Processor Over- LaY), an overlay architecture and associated software that attempt to maximally exploit on-chip memory parallelism for NFA evaluation. In order to avoid an upper bound in NFA size that commonly affects prior efforts, NAPOLY is optimized for runtime reconfiguration, allowing for full reconfiguration in 10s of microseconds. NAPOLY is also parameterizable, allowing for offline generation of repertoire of overlay configurations with various trade-offs between state capacity and transition capacity. In this dissertation, we evaluate NAPOLY on automata applications packaged in ANMLZoo benchmarks using our proposed state mapping heuristic and off-shelf SAT solver. We compare NAPOLY’s performance against existing CPU and GPU implementations. The results show NAPOLY performs best for larger benchmarks with more active states and high report frequency. NAPOLY outperforms in 10 out of 12 benchmark suite to the best of state-of-the-art CPU and GPU implementations. To the best of our knowledge, this is the first example of a runtime-reprogrammable FPGA-based automata processor overlay

    Stardust: Compiling Sparse Tensor Algebra to a Reconfigurable Dataflow Architecture

    Full text link
    We introduce Stardust, a compiler that compiles sparse tensor algebra to reconfigurable dataflow architectures (RDAs). Stardust introduces new user-provided data representation and scheduling language constructs for mapping to resource-constrained accelerated architectures. Stardust uses the information provided by these constructs to determine on-chip memory placement and to lower to the Capstan RDA through a parallel-patterns rewrite system that targets the Spatial programming model. The Stardust compiler is implemented as a new compilation path inside the TACO open-source system. Using cycle-accurate simulation, we demonstrate that Stardust can generate more Capstan tensor operations than its authors had implemented and that it results in 138×\times better performance than generated CPU kernels and 41×\times better performance than generated GPU kernels.Comment: 15 pages, 13 figures, 6 tables
    corecore